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We improve the Feynman-Kleinert variational approach to euclidean path integrals rendering it much more powerful
in the low-temperature regime. The new power is illustrated by an application to the anharmonic oscillator with a
potential ¥ (x) = {m?x? + }gx*, where it yields not only a better approximation to the low-temperature part of
the partition function but delivers, in additition, all bound-state energies uniformly well for any principal quantum
number n and coupling constant g.

1. Some time ago, Feynman and Kleinert [1]*' [3] have considerably improved a crude variational approach
to euclidean path integrals developed earlier by Feynman in his textbook on statistical mechanics [4]. (A similar
improvement was given by Giacetti and Tognetti [5].) This made it possible to calculate quite accurately the
effective classical potential®* of a quantum mechanical system at all temperatures by means of a single numerical
integration. This quantity contains information on particle distributions [6] and correlation functions [3,7].
The method has been applied to a variety of more complicated physical systems, most recently with success
to anharmonic quantum chains [8] and quantum crystals [9]. It also has important applications to tunneling
processes {10].

The purpose of this note is to present an essential improvement to this approach in the low temperature
regime. As an illustration of the new power we calculate with great accuracy the energies of all excited states of
the anharmonic oscillator for small and large couplings and any principal quantum number.

2. The Feynman-Kleinert approach is based on the following observation: The partition function of a quantum
mechanical particle of mass M in a one-dimensional potential ¥ (x) can always be expressed as a classical phase
space integral,

0o 00 dp p2 00 dxo
Z = / dxo / ——GXD[—ﬂ<—+ Veffcl(xo))] = /—CXD[—ﬂVeffcl(xo)] (1)
271'h 2M ’ 2 ’
—oo -0 oo A 2zh ﬂ/M

with # = 1/kgT. The variable of integration x; coincides with the time-averaged position X = (1/Af) foh Pdr x (7)
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#1 For a detailed appreciation of the accuracy of the Feynman-Kleinert approach in comparison with several other approx-
imation schemes, see ref. [2].

#2 This is not to be confused with the standard effective potential of quantum field theory whose extremum represents the fully

fluctuating theory and whose functional derivatives are the complete vertex functions. The effective classical potential,

on the other hand, does not yet contain the purely thermal fluctuation which are taken care of by the integral (1).
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of the fluctuating path. The function V. (xp) appearing in the Boltzmann factor is called the effective classical
potential. It has the obvious path integral representation

exp[—BVera(xo)] = /Dxé'(fc — Xxp)exp(—A/h}, (2)
where A is the euclidean action

7
A:/dr[§Mx2+V(x(f))] (3)

0

and J the modified J-function

8(X —xp) =/2rR*B/M 8 (% — x¢),

which restricts x to the value xy. The paths have the same values at initial and final imaginary times 7 = 0 and
7 = A, so that the path integral yields the quantum mechanical trace.

The usefulness of this decomposition derives from the fact that at finite temperatures the fluctuations rarely
carry x () far from X; the square deviations [x (t) — x ]* are for larger temperatures only of the order of #°f [12M
and remain finite down to zero temperature where they are of the order of A/2 4/ M V" {xXmin )} (With Xmin being the
position of the potential minimum ). The main thermal fluctuations take place in x with the average square devia-
tion of X from the potential minimum being of the order of 1/8V " (Xmin). Thus, at larger temperatures these must
be integrated out, exactly which is done in (1). At low temperatures the X = x; integral can be evaluated in a sad-
dle point expansion. The fluctuations x (7) — X, on the other hand, can be treated approximately with satisfactory
accuracy on the basis of a variational approach which is excellent at high and satisfactory at low temperatures.

The variational ansatz makes use of the trial partition function of a harmonic oscillator centered at x; with
the action

ip
AP = / dt M[35% + 327 (x0) (x = x0)°] @
0

for which the path integral with restricted X = xo can be done and gives the Jocal harmonic partition function

%h/}!) (x0)
sinh[ 3782 (x0)]

ZD = exp[-BV(x0)] = /Dx&(x*xo)exp(fl)g/h) = (5)

The right-hand side differs from the unrestricted global partition function

1
2sinh[17B2 (x0) ]

Zo(xg) =
by a factor 282 (x¢). Expectations within the local trial partition function will be denoted by (... ?20, Le.,
()9 = [Z;;O]"'/ng()"c~x0)exp(—A’;§’/h).... (7)
Using (5) and (7) one can write
/Dx&(x — Xp)exp(—A/h) = /DxS()‘c — Xo) exp(—AZ /h) exp[— (A — AL) /]

= (exp(—A/h — AQ/h)) D (8)
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and apply the Jensen-Peierls inequality

(exp(—A/h ~ AJ[R))S > exp(—(A/h — AZ (YY) (9
to derive the Feynman-Kleinert approximation W) (xp) to the effective classical potential [1,3,5]

Vet (X0) & W3 (x0) = V3% (x0) + V2 (x0) — 327 (x0)a” (xo) - (10)

The last two terms are the expectations

|

E(A/h)g’ = (V) = Valxo), Z(AR/ME = $MQ% (%) {(x — x0))2 = sMQ* (x9)a* (xo) . (11)

™| —

It is easy to see that the restricted square deviation {(x — x0)2>z° is given by

1

az(XQ) = m

coth 1782 (x) — (12)

h
2MQ (xo)

The first term is the well-known unrestricted average while the second term subtracts from this the square
deviations of X from x;. The restricted expectation of the potential is V,2{xo) obtained by a simple gaussian
smearing process of width a2 (xg):

oS
7
dx,

Va(xe) = e
o V/27a (x0)

— 0

exp[— (x) — x0)%/2a* (x0)] V (x§) . (13)

The best approximation is reached by minimizing the function W, (xy) of eq. (10) with respect to £ (xp)
which gives

2 9V (x)

2 —
Q) = 5

(14)

The approximate effective classical potential W) (xo) is always slightly larger than the exact Vg o (Xo).
Egs. (12) and (14) are solved numerically, most comfortably by iteration. The resulting approximation to the
partition function

oo

— dxo
o _£ \/2nh g /M

leads to a free energy F) = k7 log Z, which describes the true free energy F = ka7 log Z of the system quite
well at all temperatures. At high temperatures this is not astonishing since F, has the correct classical limit. At
low temperatures the accuracy is due to the fact that F| tends to the lowest energy of the hamiltonian operator
in a gaussian trial wave packet. This is known to be quite accurate for potentials with a smooth minimum (even
for singular potentials such as 1/r the variational energy is accurate to 15% [1,3]). At arbitrary temperatures
the approximation is always better than that.

A simple integral leads from the approximate effective classical potential W] (xy) to particle distributions,
response functions 1o an external source, and, thus, to correlation functions.

exp[—AWi(xo)] (15)
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3. The improvement to be proposed in this note comes about in the following way: First we write the integrand
of the approximate partition function (15) with (10) explicitly as

exp[— AW (x0)] = Z 0 exp{— B[V, 2(xo) — IMQ*(xp)a’(xo) 1} . (16)

Then we expand the local partition function Z,° given by (5) into its spectral content

Z = hpg (xo) Zexp[—hﬂﬁ(xo)(n + Hl. (17)

n=0

Since the exponent in (16) is the average of V' (x) — 1M Q*(x — xp)* with respect to this partition function it
is suggestive to try and apply the Jensen-Peierls inequality (9) separately at each level n. Thus, instead of

/Dxd()“cvx(,)exp(—fl/h) > Z0exp[ BV (x) — 1Q7 (x0) (x — x0) 2T, (18)

we resolve the expectation on the left-hand side into the contributions of eigenstates of the harmonic oscillator
with quantum number » and write

/pxa(x~x0>exp<wA/h) = 3" 1B (x0) expl-hBL (xo) (n + D 1{(nlexp[—(A/h — AR /WM, (19)

n=0

where the averages ((n|...|n)) are to be defined precisely below in section 5. At this point we appeal to their
intuitive meaning and present what we expect to happen, postponing its verification. Applying the Jensen-Peierls
inequality to each term in the sum gives

/’Dxé(x — xp)exp(—A/h)

> Zh/}Q(xo)exp[AhﬁQ(xo)(n + DJexp[-f{n]V (x) — 102%(x0) (x — x0)|n)) 1. (20)

n=40

The exponent contains now the contribution to the expectation (11) of the state of principal quantum number
n. We now separate, as in (12), all restricted expectations into a contribution from the ordinary unrestricted
quantum mechanical fluctuations and the fluctuations of x. All unrestricted expectations are then resolved into
their spectral content. For a®(xy) the separation is by (12)

1

2 - —_——
a”(xo) = x2(xp) MAFO (x0) (21)
and the spectral decomposition of the first term 1s
e h

X2 = (Zay) z_;)exp[—hﬁQ(xO)(n + Dlaegnt - (22)
Thus, for any given value of n, we replace a*(x,) is by its spectral content:

2> (x0) — @2 (X0) = Xy — (23)

! T MBQR2(xo)
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with

Xon = (n+3). (24)

_h
MQ(X())

For polynomial interactions, the smeared potential will contain increasing powers of a?(x;) [each term x?" in
V(x) is being smeared out to a sum Y ;_ (3] )xg("_” (21 — 1)Ma* (x5)]. We express the a (x)’s via (21) in

terms of powers x§ {xo) and observe that these have the spectral decompositions

k

h
TR T @)

(2k = Ux5 (x0) = (Zaiy) ™" Y exp[-hBL(n + )]

n=0

where 7, are the expectations of [M 272 (xg) (x — x0)2]k in the states |n) (i.e., the diagonal matrix elements
of the creation and annihilation operators [(a' + a)/v2]* between states (at)"|0)/v/n!):

m=+3), m=3+n+d), ne=3Qn +30° +4n+ ),
ng = 4 (70n* + 140n° + 344n® + 280n + 105), ... (26)
With these rules, 3a¢* (x;) is to be replaced by

i’l4h2 _ nzh 6 + 3
[MQ(x0)]* MQ(x) MBQRA(xo) ~ [MBR*(x0)]*"

3a* (xg) — (27)

Expanding V,: (x0) in powers of a” (xo) and treating each expansion term in this way yields the spectral content
V2, (Xo). Thus, we obtain an approximation W; (xp) to the effective classical potential Ver o (x0) as follows:

exp[—BWa(x0)] = gl(aX)E 7B (x0) exp(—B{A (x0) (n + ) + [V, (x0) — sMQ%(xo)ar(x0)]1}).  (28)
X0
n=0

This expression suggests now a further improvement which leads to a more powerful low-temperature approx-
imation to be proposed in this note: Instead of finding a single optimal 2 (xy) we may try and minimize each
term in the spectral decomposition with an own £2, (xp). Then we arrive at the approximation W5 (xp) defined by

o0

exp[—BWi(xo)] =

n

gl(ax)hﬂ!),,(xo) exp(—B{AQn(xo) (n + 1) 4 [V,2,(x0) — IMQi(xp)an(x0)1}). (29)
o o

This approximation is presently of a heuristic nature and justified only by its success to be exhibited in the next
section. Hopefully, some modification of it may eventually be derived by proper analysis.

4. As a first application take an anharmonic oscillator with the potential ¥ (x) = sm?x* + tegx* and m* >0
which becomes after smearing
Valxo) = imPxi + Lgxi + im’a® + 1gxia® + 3ga*. (30)
With (23), (27) we obtain the new approximate effective classical partition function

dXQ >
\/27h2BIM go

¢

dxo

Z = / o
o\ 2Rt BIM

exp[-SW2(xo)] = / exp[—BWra(x0)], (31)
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where W, (xp) is the sum of three terms:
Wan(x0) = Wiy (xo0) + WP (x0) + V (xo). (32)

In natural units with # = 1, kg = |, M = 1, the first term reads ** *¢

0 1 m’ + 3gx3 g n
Win(xo) = Z(Q"(XO)-F—Q;(_X())_ ny + 407 (x0) (33)

and collects all parts of W, (xp) with no explicit dependence on f, while the second term

ooy L L_m+3exs g 6 >
W2 (0) =~ 108[8Qn(x0)) + 3 - G0 4( sorGn ™t ﬂm(xo)) (34)

contains all S-dependent parts.
In the limit g — 0 where the system becomes harmonic, the minima lie all at ,(xy) = 1 and exp[— W, (x¢) ]
reduces to [fn/2 sinh{ % Bm)]exp[—fFV (xp)] with the partition function Z, given by the classical integral

o0

1
~ 2sinh({fm)’

1
sBm

Z = — 0 exp(-
sinh(38m) J \/22B/M

2.2
%,Bm x3)

as expected. Both W, (xg) and Z, are exact in this limit and coincide, of course, with the former approximations
Wi(x0), Z, of refs. [1,2].

To judge the quality of the new effective classical potential we observe that it contains precise information on
the energies of all the excited states of the anharmonic oscillator. At low temperatures, we can ignore an (x0)

and all 2, (xp}-dependence rests in Wf,i (xp). Its minimization gives the cubic equation

2 (x0) ~ (m* + 3gx3)2u (x0) — g 74 = 0 (35)
2

solved by

2, (x0) = s(xo)cosh{zacosh[c(xo)]} forc(xg) > 1,

= —s(xo) sin{5 arcsin[c(xo)]} fore(xo) < 1 (36)
with
= _2_ 2 2 — 4gn4
s{xg) = NG m? + 3gxZ, C_S_—3(x0)n2' (37)

At small temperatures, the integrals over xo in (31) will be dominated by the minima of Wf,, (xp) which lie at
xp = 0 and have the values

app — 1370 _ l m2 _g- Fla

#? This is most easily seen by noting that @®(xy) of (12) and 22(xq) of (14) extremize W, (xq) independently in a®(xq)
and Q2 (xg).

#4 Note that at xo = 0 this is the expectation of the difference of the potential and the trial potential in the states |n) of the
harmonic oscillator.
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In the saddle point approximation, the partition function is
o0

Z:aZexp(—BE,?pp). (39)
n=0

Hence EZPP are approximations to the bound-state energies E, of the anharmonic oscillator.
For large g or large # (or both) we find £, (0) — (3)'?¢'?n'/* and the energies E;™ grow like

EP — kg’ k=13 +3(3)* ~0.858536. (40)
This agrees extremely well with the exact growth behaviour which can be obtained from the semiclassical expansion

and has the same power law as (40) but with the slightly (~ 1%) larger proportionality factor

7 2/3
Kexact = (;) (%)4/3[‘8/3(%) ~ 0.867145. (41)

A comparison of our energies with the precise numerical solutions [11,12] of the Schrodinger equation is shown
in table 1. The agreement is seen to be quite good.
For larger temperatures, the optimal values of Q. (xp) obey eq. (35) with a non-vanishing right-hand side:

2023 (x0) @ Wlfn (xo)

RHS = -
M2 082, (xg)

(42)

and can no longer be found analytically. For not too large temperatures (those are relatively uninteresting in
this context being described by the classical limit), however, we make use of the smallness of (42) (being of the
order of 7°) and iterate the equation, by inserting the T # 0 value of Q, (xy) into (42) and solving once more
the cubic equation at the non-zero value of the right-hand side. The solution is given by (36) with ¢ in (37)
replaced by

C—»c(l— RHS) (43)

ghy

The new value is again inserted into (42), etc. The numerical values of W5 (xy) are a better approximation to
the true effective classical potential than W, (xy). As an example take g = 40 and xo = 0 (the worst possible
place). There (W, (0), W5(0)) have for 8 = 2, 3,4, 5 the values (0.514 599465, 0.514 534 682), (0.712742725,
0.712741086) (0.843466072, 0.843466038), (0.935482984, 0.935482983), respectively. There is no im-
provement at § = oo (T = 0) since there W (xp) = Wi (xo).

The new approximation still has the defect that at high temperatures it does not properly reduce to the classical
limit. The heuristic minimization in € (x;) at each n has obviously destroyed this property.

5. Let us end this note by giving a simple explicit procedure for calculating the total restricted averages { ... )i
of (7) used above, as well as a precise definition and evaluation procedure of the projected restricted expectations

((n]...In))g.

First we rewrite (7) as

(LyR=@zn! \/ 27rh / /Dxexp[ AL /B + A(x — x0)].. (44)

—ioco

and complete the potential part of Ag’ quadratically to
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Table 1

Energies of the nth excited states of the anharmonic oscillator with potential ¥ (x) = %xz + %gx“ for various g and n. In
each entry, the top number is the precise numerical value obtained by solving the Schrédinger equation, the second is our
variational result. The top entries of this table are from table 4 of ref. {11].

g Ey E, £ E; E,4 Es Eg Eq Ey

D=

0.1 0559146 1.76950 3.13862 4.62888 6.22030 7.89977 9.65784 11.4873 13.3790
0.560307 1.77339  3.13824 4.62193 6.20519 7.87522 9.62276  11.4407 13.3235

0.2 0602405 1.95054 3.53630 5.29127 7.18446 9.19634  11.3132 13.5249 15.8222
0.604901 195804 3.53489 5.27855 7.15870 915613  11.2573 13.4522 15.7328

0.3 0.637992 2.09464 3.84478 5.79657 791175 10.1665 12.5443 15.0328 17.6224
0.641630 2.10498 3.84240 5.77948 7.87823  10.1151 12.47363  14.9417 17.5099
0.4 0.668773 2.21693 4.10284 6.21559 851141  10.9631 13.5520 16.2642 19.0889

0.673394  2.22962 409959 6.19495 8.47169 10.9028 13.4698 16.1588 18.9591

0.5 0.696176 232441 432752 6.57840 9.02878  11.6487 14.4177 17.322 04 20.3452
0.701667 233919  4.32352  6.55475 8.98383  11.5809 14.3257 17.202 93 20.2009

0.6 0.721039 242102 452812 6.90105 9.48773  12.2557 15.1832 18.2535 21.4542
0.727296  2.43750 4.52343  6.87477 943825 12.1816 15.0828 18.1236 21.2974

0.7 0.743904 250923 4.71033 7.19327 9.90261  12.8039 15.8737 19.0945 22.4530
0.750859  2.52729 4.70501 7.16464 9.84911 12.7240 15.7658 18.9573 22.2852

0.8 0.765144 259070 4.87793 7.46145 10.2828 13.3057 16.5053 19.8634 23.3658
0.772736  2.61021 4.87204 7.43071  10.2257 13.2206 16.3907 19.7179 23.1880

0.9 0.785032 2.66663 503360 7.71007 10.6349 13.7700 17.0894 20.5740 24.2091
0.793213  2.68745 5.02718 7.67739 10.5744 13.6801 16.9687 20.4209 24.0221

i 0.803771 273789 5.17929 794240 10.9636 14.2031 17.6340 21.2364 24.9950
0.812500 2.75994 5.17237 7.90793  10.9000 14.1090 17.5076 21.0763 24.7996

10 1.504 97 5.32161 10.3471 16.0901 22.4088 29.2115 36.4369 44.0401 51.9865
1.53125 5.38213 10.3244  15.9993 222484 28.9793 36.1301 43.6559 51.5221

50 249971 891510 17.4370  27.1926 37.9385 49.5164 61.8203 741728 88.3143
2.54758 9.02338 17.3952  27.0314 37.6562 49.1094 61.2842 74.1029 87.5059

100 3.13138 11.1873 219069  34.1825 47.7072 62.2812 77.7708 94.0780 111.128
3.19244  11.3249  21.8535  33.9779 47.3495 61.7660 77.0924 93.2307 110.106

500 5.31989 19.0434  37.3407  58.3016 81.4012  106.297 132,760 160.622 189.756
542576  19.2811 37.2477  57.9489 80.7856  105.411 131.595 159.167 188.001

1000 6.69422  23.9722  47.0173  73.4191 102.516 133.877 167.212 202.311 239.012
6.82795  24.2721 46.9000  72.9741 101.740 132.760 165.743 200.476 236.799

hp
IMQ (xo) / dr[x(1) ~xo—x;1° = h

0

/12
IMBG2(x0)

with x; = A/Mﬂ.Qz(xo). Now the path integral over x (1) can be done without the restriction of X to xo, the
trial oscillator being recentered at xy + x;. Within this path integral, the expectation of x* (1) is calculated as
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follows: First we replace x2(7) by [x(1) — xo— x:1% + (xo + x;)? since the odd powers in [x{7) — xp — x;] do
not contribute. Now [x (1) — xo — x;]? has the expectation x,. Then we do the gaussian A-integral which replaces
(xo + x;)2 by x2 — 1/M BQ?(x0). Thus, x? has the expectation x{ + x; — L/MBR%(xo) = xg + a’(xo) which
coincides with x? when smeared via (13). The higher powers are treated likewise with the result given after eq.
(25).

We are finally ready to define and calculate the projected expectations ((n|...|n));? which play the principal
role in the present work. We decompose the path integral over the shifted trial harmonic oscillators in (44) into
its spectral content and write

{(nlf (x(@)|m)g

5 ico o0
=(Zz)"! z—nﬁhz—ﬁ—MﬁQZ(xo) / —(2'1'-;'%/d.XaWn(-xa_xo_xl)f(xa)l//n(xa_Xo_xx)
x exp[—hBQ (xo) (n + 1) 1exp[ LM BQR* (x0)x}] (45)

with the standard rea/ oscillator wave functions. As an example, the expectation of x?(7) is found by replacing
X2 by (X2 — xo — X3)* + (X0 + x;3)?, since odd powers in (x, — xo — X;) change n of one wave function by one
unit and, thus, cannot contribute between states of equal n. After this we substitute (x; — xp — x;)? in front
of w,(xs — X0 — X;) by its diagonal matrix elements x,,. Now we integrate over dx, and the wave functions
disappear. Finally we perform the A-integral. With the wave functions having disappeared there is no more A-
dependence except in the gaussian exponential. Hence (xo + x;)? may be replaced by xg + xf which becomes
xg — 1/MBR?(x,). Thus, we find for x*(7) the spectral content of the restricted expectation value

1

2 2
MBQZ(.X()) - xO + an(x())y

((n|x*(T)|n)) @ = x5 + X2 —
as stated above. The higher powers are treated likewise.

In the final approximation leading to W (xy) the expectation (45) is replaced by the same expression with
Q2 (x;) replaced by £, (xg), also in each term of the sum in Zg".

6. Just as in the case of the earlier approximation W, (xy) it is possible to apply the present scheme to systems
with several minima, such as the double-well potential. Also evaluations of particle distributions and response
functions to external sources present no problem. Such applications and further developments would carry us
beyond the size limitations of a letter and will be discussed elsewhere.

The author thanks Dr. A.M.J. Schakel and Mr. R. Goetz for several discussions.
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