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We show how the Feynman-Kleinert approximation to path integrals (which is based on a locally harmonic variational ansatz 
and the Jensen-Peieds inequality) can be improved systematically towards the exact result by means of two different methods. 
One of them leads, even at the lowest correction level, to a great accuracy for any coupling strength including the strong-coupling 
limit. 

1. In a recent note [ 1 ] we have increased the power  o f  the var ia t ional  approach to path  integrals by intro- 
ducing a separate  tr ial  frequency for each pr incipal  quan tum number  o f  a quan tum system. The spectral res- 
o lu t ion o f  the ansatz  gave deta i led in format ion  on all energy levels o f  an anharmonic  oscillator. The ground 
state energy, however,  d id  not  improve  with respect to the s imple F e y n m a n - K l e i n e r t  approx imat ion  [2,3 ] ~ 
which made  essential  use o f  the Jensen-Peier l s  inequal i ty  

( e  - x )  >~e <-x> . ( 1 ) 

The  ground state energy coincided with the expectat ion value o f  the Hami l ton ian  opera tor  in a normal ized  
Gauss ian  wave packet  o f  op t imized  width.  Fo r  the anharmonic  oscillator,  the devia t ion  from the exact energy 
was o f  the order  o f  a few percent.  

Obviously,  i f  we want  to do  bet ter  than that,  we have to go beyond the Jensen-Peier ls  inequality.  This is 
what  we want  to do in this note by developing two systematic  graphical  schemes of  different complexi ty  and 
qual i ty  for improving  the effective classical potential .  

2. For  la ter  compar i son  we briefly recall the F e y n m a n n - K l e i n e r t  approach:  The par t i t ion  function o f  a quan- 
tum mechanical  par t ic le  o f  mass M in a one-dimensional  potent ia l  V ( x )  can always be expressed as a classical 
phase space integral  

- - o o  - - o o  - - o o  

with fl -= 1 / ks  T, where the var iable  o f  integrat ion :Co is the t ime-averaged posi t ion g - ( 1 / hfl ) f ~o p dz x (z)  o f  the 
f luctuating path.  The funct ion Veff,¢m(Xo) appear ing in the Bol tzmann factor is called the effective classical po- 
tential. It  has the obvious path  integral  representa t ion 
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exp[ -]~Veff, el(xo) ] - -Z x° --~ J ~xJ(X--Xo) exp( -~¢ /h ) ,  (3) 

where ~¢ is the Euclidean action 

/ I  

d = ° j  dz [ ½M22+ V(x(z) ) ] (4) 
0 

and i~ the modified 6 function 

~ ( X - X o ) - ~  ,~(X-Xo) , 
which forces g to be equal to Xo. The paths have the same values at initial and final imaginary times r =  0 and 
T= hp. The quantity Z x° is the localpartition function. The effective classical potential obviously coincides with 
the local free energy F~°= - p - 1  log Z ~--- Vcff,¢l (x  0 ). 

The usefulness of  a separate treatment of Xo derives from the fact that at finite temperatures the fluctuations 
rarely carry x(~) far from g. The square deviations [x(~)_.~]2 a re  for larger temperatures only of the order 
of  h2p/12M and remain finite down to zero temperature where they are of the order of h/2x/MV" (xmin) (with 
Xmm being the position of the potential minimum). The main thermal fluctuations take place in g with the 
average square deviation o f g  from the potential minimum being of the order of 1/pV" (Xm~,). Thus, at larger 
temperatures these must be integrated out exactly, which is done in ( 1 ). The fluctuations x (~) - g ,  on the other 
hand, can be dealt with approximately with satisfactory accuracy on the basis of a variational approach which 
is excellent at high and satisfactory at low temperatures. 

The variational ansatz makes use of the trial partition function of  a harmonic oscillator centered at Xo with 
the local action 

*p 

d r =  J d~M[½2~+½~2(Xo)(X-Xo) ~] (5) 
0 

for which the path integral with restricted g=Xo can be done and gives the  local harmonic partition function 

f 
Z ~  =exp[  -flV'~(Xo) ] --- J ~x/5(g-Xo)  exp( - d'~/h) = sinh[ ½h/~g2(Xo) ] " (6) 

The right-hand side differs from the unrestricted global partition function 

1 
Zm~°) = 2 sinh [ ½ hPt2( xo ) ] ( 7 ) 

by a factor hpt2(Xo). Expectations within the local trial partition function will be denoted by < >if, i.e. 

< . . . > ~  ( Z ~ )  -~ J ~xg(.~-Xo) exp(- , f f -~ lh)  .... (8) 

Using (6) and (8) one can write 

I ~ x 6 ( g - X o )  e x p ( - ~ C / h ) - -  J ~ x  J ( £ - X o )  e x p ( - s l ' ~ / h )  e x p [ -  ( ~ - ~ ¢ ~ ° ) / h ]  

= < e x p ( - ~ / h - ~ ' ~ / h )  )~  (9) 

and apply the Jensen-Peierls inequality 

< e x p ( - , f / h - , f f ' f f / h )  )'~ >/exp( - <,.,¢/h-sl'ff/h)'ff) (10) 

to derive the Feynman-Kleinert approximation W~ (xo) to the effective classical potential [2,3 ] 
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Vaf, cl(Xo) ~ Wl (Xo) -- V g ( x o )  + V,,2(Xo) - ½12 z (xo)aZ(xo) . ( 11 ) 

The last two terms are the expectations 

1 
( ~ / h ) ~  = ( V ( x )  ) S  o -~. Va2(Xo) , 

1 
( ~ / h  ) ~  = ½Mt22(Xo) ( ( X - X o ) Z )  ~ =- ½Ml2Z(xo)a2(xo) . (12)  

The restricted square deviation ( ( X - X o ) 2 ) ~  is given by 

h l 
a 2 ( x ° ) =  2Ml2(Xo) coth[½hflg2(Xo) ] Mflf22(Xo ) . (13) 

The first term is the well-known unrestricted average while the second term subtracts from this the square de- 
viations of  $ from Xo. The restricted expectation of the potential, Va2(Xo), is obtained by a simple Gaussian 
smearing process of  width aZ(xo), 

c o  

f 0x6 
Va2(Xo) - --Joo x/2na2(x°) exp[ - (X'o -Xo)Z /2a2(xo) ]  V(x 'o) .  (14) 

The best approximation is reached at 

g22(Xo) = 2 OV, a(Xo) (15) 
M Oa 2 

Equations (13) and (15) are solved numerically, most comfortably by iteration. The approximate effective 
classical potential W~ (Xo) is always slightly larger than the exact Vefr, c~(xo). 

The resulting approximation to the partition function 
o o  

Z , =  _foox/2 ndff°fl/M e x p [ - f l W ' ( x ° ) ]  (16) 

leads to a free energy F~ ---- kBTlOg Z1 which describes the true free energy F -  = kBTlog Z of the system quite well 
at all temperatures. At high temperatures, this is not astonishing since F1 has the correct classical limit. At low 
temperatures, the accuracy is due to the fact that F~ tends to the lowest energy of the Hamiltonian operator 
in a Gaussian trial wave packet. This is known to be quite accurate for potentials with a smooth minimum 
(even for singular potentials such as 1/r  the variational energy is accurate to 15% [2,3 ] ). At arbitrary tem- 
peratures the approximation is always better than that. 

A simple integral leads from the approximate effective classical potential W1 (Xo) to particle distributions 
and response functions to an external source [3]. 

3. The first type of systematic improvements to be developed in this note comes about as follows. We expand 
the action into powers of  the fluctuations x'  ( r ) = x ( z ) - X o  around the temporal average and write 

~=~+~¢~0,  (17) 

with 

• ~go=hflV(xo),  s g ~ =  ~ dr [ ½ M Y c a + V ~ ( x ' ( z ) ) ]  (18) 
0 
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and 

1 1 V ( 3 ) ( . X 0 ) X , 3 _ ~  - 1 VX°(x ' ) = ~.. V" (Xo)X'2+ ~ ~ Vt4)(Xo)X'4+ .... (19) 

The V' (Xo) term is absent since £' -=fo ~p dzx '  (z)  =0  by definition of x' .  
The action d ~° is now extended by a bilocal external current term 

hp tip 

~ c a . = _ ½  ~ dz ~ d z ' x ( z ) K ( z , z ' ) x ( z ' )  (20) 
0 0 

and the local partition function can be written as 

Z~°[ K] = e x p ( -  W~°[ K] /fi ) , (21) 

where W~°[K] is a functional ofK(z,  z' ) whose derivative ~/~K(~, ~' ) gives, for each Xo, the correlation func- 
tion G~(T, z' ) = <x' ( z )x '  ( z ' )  )xo via ~ W / S K =  - ½G "~. The property £' =0  implies also that <x' ( z ) ) ~ - 0  so 
that G~(z ,  z ' )  is a connected correlation function. We now form the double Legendre transform 

r~°[ G ~o1 =_ W~°[ K] - W ~ K==- W~°[ K] + ½GX°K, (22) 

where the subscript K indicates the associated functional derivative and multiplication is functional. The func- 
tional derivative of F~° [G ~° ] with respect to G ~° satisfies F~o[G ~ ] = ½K. This shows that for the physical sit- 
uation with no external current K, the functional F ~° [ G ~ ] is extremal in G ~°. It may be called the local effective 
action o f  the second type associated with the action ~ .  There are simple graphical rules for calculating 
F ~ [ G  ~°] organized by powers of the coupling strength in V(xo) [4,5] #2. The result is 

F~°[G x° ] =fif lV(xo) +ti Tr log[ (G "°) - i f i / ( _ M 0 2 )  ] + ½fi Tr{ [ - M O  2 + V" (Xo) ] G~°(z, z' ) -f i} 

~P 
+ lh2 1 dz G~°2(z, z) +F~t  [G ~° ] ,  (23) 

0 

with F~t[G ~° ] = F ~ [ G  ~° ] + F ~ [ G  ~° ] +... collecting the interactions (involving 2, 3, ... powers of the coupling 
strength). They are given by the two-particle irreducible graphs 

1 1 V(4) (..~0)2 f f GX°4(z, Z') /'~o =--i- ~ r (3) (Xo)2 ~/  GXO3(z, z' )-- 4-- ~ 

'@ '© 
=- l-~' - ~ • ( 2 4 )  

1 V O  ) 1"~ 0"~-- ~ (Xo)2V(4)(Xo) ~ GX°5+ ~ V(4'(Xo)3 ~ GX°6 

with the diagrams indicating the contractions to be performed. Each line corresponds to a Green function 
G~°(z, z' ) containing the z variables of the vertices and the integral symbols imply the integrals f~o a dz  over 
the z variables. We now write down a general spectral decomposition for Gx°(z, z' ) respecting the £' =0: 

~2 The diagrams with the correct multiplicity are given in fig. 4 of ref. [ 5 ]. 
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2 ~ 1 
GX°(z, Z') = ~m~__, exp[ --iOgm(r--Z' ) ] (.0 2 +g22(Xo) ' 

with the Matsubara frequencies O~m= 2nmkaT/h. For I ~ - z ' l <  fl the sum is 

l ( ) 
Gxo( L z, ) = Mflg-22(Xo) ½hflg2 cosh[ ½ ( l z -  z' l -hfl)g2] - 1  

sinh ( ½ hflf2) 

a function GX°(v-z  ' ) of  the time difference only. With it, (24) can be rewritten as 

1 
F~°[ G ~° ] =,8W2 (Xo) =f l [  W~ (Xo) + W~°~r(xo) ],  

(26) 

(27) 

(28) 

where 

• fsinh[½hflf2(Xo)]'~ Wl(Xo)=fl  - l  IOg~- ~ -) + V(xo) + ½ [ V" (Xo)-Mg22(Xo) ]a2 + I Vt4)(xo)a 4 (29) 

and 

1 
W ~'~ ( Xo ) F~t [G xo ] ,~pv,3,(Xo)2a~ ,~v<"(Xo)2a". = - ~  = _ _ 

+ ~flV °)  (Xo)2flV (4) (Xo)2a~ ° + l f lv( ' ) (Xo)3a~ 2 , 

having defined 

a2(xo) --- GX°(z, z) = 

and 

a~(xo)=- ~ f dzG~°3(z) , 
0 

Ji# ~# 

1 
Mflf22(Xo ) { ½hflf2(Xo) coth[ ½hflf2(Xo) ] - 1}, 

0 

I l l  ag°(Xo) - (h#)2 d~ dT' G ~ ( ~ - T ' ) G ~ 2 ( T ' ) G ~ 2 ( O ,  

0 0 

tt# Ji# 

a  ,Xo,-l I I (hfl)2 dz dz' G~2(r-~ ')G~2(~ ')Gx°2(r). 
o o 

(30) 

(31) 

(32) 

Higher graphs can easily be written down using the results of ref. [ 5 ], p. 366. Note that W1 (Xo) coincides with 
the Feynman-Kleinert  approximation ( 11 ) which happens to be extremal with respect to independent vari- 
ations in f22(Xo) and a 2. 

4. To see the improvement brought about by the corrections we shall apply this and the method to be 'pre- 
sented in section 6 to the classical partition function of the anharmonic oscillator consisting of the integral 

Z =  - ~  ~ exp[ - fl(½(/)2x2--I- 14gx4 ) ] .  (33) 

It is easy to expand this in powers of  g as Z= ~k~__O z (k)g,k where g '  =g/flto 4. The coefficients are 
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ztk)= ( - 1 ) k F ( 2 k + ½ )  (34) 
k~ r(  ½ ) 

hke l, - ~ ,  ~ - ,  --T~-,  ~ . . . . .  For large k they grow hke starting out " a to5 3465 675675 " ( -  1 )k4kk!/k~x/~. The series is di- 

vergent but Borel-summable. It can be expanded in a convergent power series in l / x /~  7 by rewriting it as 
oo 

1 [ exp(-y2) (35) 
Z = g ' - ' / 4 ~ j o  x/y 

and expanding the first exponential. The result is the absolutely convergent strong-coupling series 

z--g '-~/" ~ ~k(1/X/~7) k, (36) 
k = O  

with the coefficients 

1 .kr(½k+~) (37) 
~ =  2---~ ( - 1  ) ~ .  

This is the same as 

| ( I ~ I/2 
Z=exp (1 /8g ' )Wo ,_~ /4 (1 /4g ' )=~ \~g , ]  exp(1/8g')K~/4(1/Sg'), (38) 

where Wo._l/4(z) is Whittaker's function and Kl/4(z) the modified Bessel function. For g-~oo the function 
approaches the limit 

Z , tog '-!/4 , (39) 
g ~ O O  

with 

1J 

g, 1"0 

Fig. 1. The anharmonic model integral as a function ofg' in comparison with the three variational approximations, Zj (dashed) based 
on the Jensen-Peierls inequality, the Pad6 approximation Z ~ ,  the new variational approximation Z3, and the exact Z~. The latter two 
are indistinguishable on this plot, Z3 lying less than 0.1% below Z~ at g' = 10. 
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co 

X o = ~  2----~ ~ 1.0228 . 

The curve is plotted in fig. 1. 

(40) 

5. How well is this classical partition function reproduced by the successive improvements? The correlation 
functions of  the trial oscillator are a2= ( x 2 ) a =  1/p£/2 and the function WE of (28) reduces for fl= 1 to 

6 2 6 3 
W 2 =  W l  + w ~ ° r r  = ½ l°g( 'Q2/° ' )2)+½(t°2- 'Q2)a2+~4ga4- 4-8 g 2 a S +  4-8 g3a12 5X6494a16+128 .... (41) 

In this simple case the different contractions in the diagrams are all the Same and the coefficients of  WE can 
be calculated to all orders as 6nc,,g"a 4n with c, satisfying the recursion relation (see eq. (101 ) of ref. [ 5 ] ) 

l ( - ~ c . _ 1 ( 2 n - 2 ) ( 2 n - 3 ) + 8 ~  m m ' ( 2 m ' - l ) c m , )  (42) Cn = "~ 

35 175 1925 175175 875875 14889875 The value of ~ 2  where W 2 i s  minimal c a n  s o  that c5, c6, ... a r e  ~ ,  - 96 , 96 , - 576 , 144 , - 96 , . . . .  

be expanded in a power series, reinserted into Z 2 - e x p ( -  W2), and the result is the power series 
Z 2  ~ ~ - ~ = o  z~k)g 'k whose coefficients agree with the exact ones to the order to which the correction terms have 
been included. The higher coefficients grow rapidly and have a very small radius of convergence, although they 
cannot quite match the factorial growth with zero radius of  (34). At the Feynman-Kleinert  level, zl k) start 
out like 

l ,  3 81 1665 168939 24329889 1526112009 356115654603 19884581106597 
- -  4 ,  ~ ,  - -  128 , 2048 , - -  4 0 9 6 ~ ,  327680 , - -  9175040 , 58720256 , 

3595662040811859 1338018356629685889 
! 174405120 ' 46976204800 , 

with the successive ratios growing like -0 .75 ,  - 3.38, - 5.14, - 6.34, - 7.20, - 7.84, - 8.33, -8 .73 ,  - 9.04, 
-9.30, showing the small radius of convergence. This is to be compared with the exact ratios -0 .75 ,  -4 .38 ,  
-8 .25 ,  - 12.1875, - 16.15, -20 .13 ,  -24 .11 ,  -28 .09 ,  -32 .08,  -36 .08.  

An important feature of the Feynman-Kleinert approximation is that it explains quite well the strong-coupling 
behaviour g~oo  of the system. In this limit, Q2 diverges like dg 1/2 a n d  Zl-*el/4/x/dgl/4 with d=x/3 .  The 
value e 1 / 4 / x / ~  0.9756 compares reasonably with the correct value x0 in (40). However, when trying to cal- 
culate this behaviour in the presence of the correction terms, we find a severe weakness of the present im- 
provement scheme: The equation to be solved for d reads (correction terms in parentheses) 

3 ( 6 5 4 8 1 0 )  
- d +  ~ - ~ 3 - - - d  5 + - d r  + . . . .  0 . (43) 

The factorial growth of the coefficients makes it impossible to extract a solution without resummation pro- 
cedures. Without a knowledge on the large-order behaviour we cannot use the most powerful Borel techniques 
but may take recourse to a Pad6 approximation. Assuming that for a more complicated theory only the g2 
diagrams are calculated and the large-order behaviour is unknown we rewrite W2 as 

w P a d ~  ~ ½ I o g ( ~ " ~ 2 / O 9 2 )  + 1 ( t O 2 _ _  2~,-22)a2 + i ()2m2_1_ 3o ,~4  3o2r j8 . j . .  
~ ~ - - 4 6  ~ - - ~ 6  t~ - - . . .  

- ½ log a2+ ½co2a2+ ½ ( c -  1 ) - ½c 1 + ( 1 - 3/2c)ga 4 (44) 
1 +ga 4 

with an arbitrary parameter c, the asymptotic extremum is determined by - el+ (3/d) ( 1 + 1/d 2) -2 = O, the 
corresponding Pad6 approximation to (43), and this has still no solution. We may, however, approximate (43) 
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with the different Pad6 approximation - d (  1 - 1/d 2 ) / (  1 + 2/d  2 ) = 0 which is solved by d=  1 and corresponds 
to the energy 

g a  4 

3 f dt l - t  
W ~ a a ~ = - ½ 1 ° g a 2 + ½ ( a 2 - 1 ) - 4  ,/ t l + 2 t '  (45) 

0 

The asymptotic behavior of  ~ .d~  is d -  ~/2 exp [ ½ - ~f~/a2 d t / (  1 + 2t) ] g -  ~/4~ 1.0920g- ~/4, which is too large 
by ~ 7%. Also a Borel-Pad6 approximation 

1 - tga  4 
ff'2Vad~=--½ logaE+½(a2--1)--½ dt e - t  l + 2tga--~ 4 (46) 

0 

is not much better, giving an equation d=  3f~ dt e- t t (  1 + t /2d 2) -2 solved by d ~  1.015 and an asymptotic limit 
Z~'a~-,d-~/Eexp[ ½ - ] f ~  dttd-2(1 +t /2d2)-X]g- l /4~ 1.087g -1/4, still too large by ~6%. 

When calculating Z2, the strong-coupling problem implies that the extremality condition has a solution only 
for small g<< I. For the two Pad6 approximations, however, the extremum exists for all g and the resulting 
partition functions Z~ a~ approach the exact ones in a similar way as Z1 (see fig. l ), except that they do so 
from above with an error which slowly increases to the asymptotic values 8% and 6%, respectively. Since they 
do not improve Z1, we do not plot them. 

Obviously, as long as only the g2 correction is known, the situation is quite unsatisfactory. This leads us to 
searching for a better improvement scheme which contains reliable information on the strong-coupling limit 
from the beginning. 

6. The following improvement scheme is greatly superior to the previous one. It requires the evaluation of 
only a few correlation functions and yields, for the anharmonic oscillator, extremely good approximations to 
all excitation energies for all g including the strong-coupling limit. We split the action ~xo in ( 17 ) -  ( 19 ) into 

XO __ XO X0 the local trial action d f f  of (5) plus an interaction ~¢i.t-~¢ - ~ ¢ a  and expand the exponential 
exp( - ~¢~t/h) into a power series. Calculating the expectations within in the trial partition function Zff yields 
an expansion 

( 1 1 1 /,~.xo 3 ) exp(-~Co/h)Z~ 1 -  ~ ( ~ t ) ~ ° +  ~-~ (Sg~nt2)~ ° -  ~ \ ~ m t  )S°+."" • (47) 

This can be rewritten as an exponential function of a rearranged series which, when truncated after the cubic 
terms in d~int, reads 

( 1 x° x° 1 /'~tx°2xx° 1 ) e x p ( - f l W ~ ) - e x p  - - # V ( x o ) - - f V ' ~ -  ~ ( ~ i n t  >.q "~ ~ \ ' - ~  int / o , e -  ~ ( ~ n t  3 )~x~,c , (48) 

where the subscript c defines the connected correlation functions via the cumulant expansion 

. ¢ / x o 2 x x o  __ / , ~ x O  \ x o 2  ~.i., /a,c = (~¢~nt 2 ) i f - -  \ ~ i n t / ~  , 
/ , . . ¢ x o 3 \ x o  __ xo3 xo xo2 xo xo xo xo xo3 d- 2(~¢int ~a , \~a~ int / D , c  = ( J ~ i n t  ~ Q  - - 3 ( ~ ¢ i n t  ) a  (d~4int ~£~ (49) 

etc. We may carry the expansion further, but for many purposes and in this note we shall go only this far. The 
approximate local free energy of the system is obtained by extremizing W~ ° defined by (49) with respect to 
the trial frequency ~2. The original Feynman-Kleinert approximation corresponds, of  course, to stopping after 
the first expectation of ~¢~t. 

7. To see the greatly improved accuracy brought about by the new terms consider first the partition function 
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Table 1 
The new approximation Z3 for the model partition function (33) as compared with the exact one Zex, the Feynman-Kleinert approxi- 
mation ZI, and the lower-order approximation Z2. 

g' Zex Z, Z3 Z2 

1 0.772052178 0.759099639 0.771784848 0.779618732 
2 0.697727989 0.682058752 0.697379209 0.707793821 
3 0.652511915 0.635812008 0.652129205 0.663692090 
4 0.620282560 0.603115125 0.619882812 0.632059224 
5 0.595411433 0.578026028 0.595002455 0.607536290 
6 0.575265822 0.557790484 0.574851763 0.587602248 
7 0.558403061 0.540909512 0.557986336 0.570868994 
8 0.543948145 0.526478854 0.543530246 0.556491231 
9 0.531331175 0.513912161 0.530913086 0.543916527 

I0 0.520160764 0.502808246 0.519743112 0.532764372 

Table 2 
The new approximation E ° for the ground state energy of the anharmonic oscillator (in units hto ) for various couplings g as compared 
with the exact one E ° ,  the Feynman-Kleinert approximation Et °, and the lower order approximation E2 °. 

:~g' E°. E o E o E o 

0.1 0.559146 0.560307371 0.559154219 0.558926659 
0.2 0.602405 0.604900748 0.602430628 0.601789378 
0.3 0.637992 0.641629862 0.638035761 0.636984919 
0.4 0.668773 0.673394715 0.668834137 0.667405766 
0.5 0.696176 0.701661643 0.696253638 0.694480729 
0.6 0.721039 0.727295668 0.721131779 0.719043542 
0.7 0.743904 0.750857818 0.744010403 0.741631780 
0.8 0.765144 0.772736359 0.765263715 0.762616228 
0.9 0.785032 0.793213066 0.785163496 0.782265430 

1 0.803771 0.812500000 0.803914055 0.800781250 
10 1.50497 1.53125000 1.50549935 1.49462891 
50 2.49971 2.54758040 2.50070646 2.48038428 

100 3.13138 3.19244404 3.13265657 3.10661623 
500 5.31989 5.42575605 5.32225950 5.27671970 

1000 6.69422 6.82795331 6.69722906 6.63962245 

o f  the  s imple  integral  ( 33 ) .  T h e n  we can  d r o p  the  local i ty  label  Xo and  the  " i n t e r a c t i o n "  is ~'n, = ~ fig(rx2"t-x4) 
with  r =  2 ( o 9 2 - / 2 2 ) / g .  T h e  cor re la t ion  func t ions  are  s imply  

(~nt>~=lg(3a4+ra2), (~2nt>a,c=g2(6aS+ 3a6r+~a4r2), 

< ~¢ i3nt , 3 ,Or+ , >a,c=~g (1 1 8 8 a t 2 + 2 8 8 a  27aSr2+a6r3) (50 )  

wi th  a 2 =  1~fig22. T h e  resul t ing  a p p r o x i m a t i o n  Z 3 = e x p ( - ~ W 3 )  is shown in fig. 1. The  curve  lies so closely 

u n d e r n e a t h  the  exac t  cu rve  tha t  it is imposs ib le  to d is t inguish  the  two wi thou t  magn i f i ca t ion .  We there fore  
state the  va lues  in table  1. T h e  e r ro r  is eve rywhe re  less t han  0.1% a m o u n t i n g  to an  i m p r o v e m e n t  in accuracy  

o f  abou t  a fac to r  40 wi th  respect  to the  F e y n m a n - K l e i n e r t  a p p r o x i m a t i o n .  

N o t e  tha t  i t  is necessary  to go to  Za to  get a subs tant ia l  i m p r o v e m e n t  o v e r  the  F e y n m a n - K l e i n e r t  approx-  

i m a t i o n  Z, .  I f  we were  to s top the  expans ion  in ( 4 9 )  af ter  the  q u a d r a t i c  t e rms  there  wou ld  be  no  e x t r e m u m  

i n / 2 .  T h e  reason  is the  a l t e rna t ing  sign o f  any add i t iona l  expec ta t ions  in ( 4 9 )  which  causes the tr ial  energy 

o f  o r d e r  n to d ive rge  to ( - 1 ) " - '  × oo for  f 2 ~ 0 .  Since  it  goes to pos i t ive  in f in i ty  for  large f2, only  the  odd  orders  
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Table 3 
The new approximation E s for the excited energy of the anharmonic oscillator (in units hto ) at various couplings g in comparison with 
the exact one E~, the Feynman-Kleinert approximation E~ s, and the lower order approximation E2 s. 

~g' E~ E~ E3 a E~ 

0.1 13.3790 13.3235257 13.3847643 13.3766211 
0.2 15.8222 15.7327929 15.8275802 15.8135994 
0.3 17.6224 17.5099190 17.6281810 17.6099785 
0.4 19.0889 18.9591071 19.0958388 19.0742800 
0.5 20.3452 20.2009502 20.3531080 20.3287326 
0.6 21.4542 21.2974258 21.4629384 21.4361207 
0.7 22.4530 22.2851972 22.4625543 22.4335694 
0.8 23.3658 23.1879959 23.3760415 23.3451009 
0.9 24.2091 24.0221820 24.2199988 24.1872711 

1 24.9950 24.7995745 25.0064145 24.9720376 
10 51.9865 51.5221384 51.9986710 51.9301030 
50 88.3143 87.5058600 88.3500454 88.2154879 

100 111.128 110.105819 111.173183 111.002842 
500 189.756 188.001018 189.833415 189.540577 

1000 239.012 236.799221 239.109584 238.740320 

have min ima.  The  even  approx imat ions  can, however,  serve to slightly improve  the F e y n m a n - K l e i n e r t  by eval- 
uat ing then at  the extremal  t2 o f  the lower odd  approx imat ion ,  as i l lustrated in the last column of  table 1. 

8. Let us f inally i l lustrate the qual i ty  o f  the new approx imat ion  for the path  integral of  the anharmonic  os- 
cillator. Fo r  s impl ic i ty  we consider  only the worst  possible case o f  a vanishing temperature .  Then Xo is equal 
to zero and can be d ropped  in all equations,  the value o f  W3 at xo giving an approx imat ion  E ° for the ground 
state energy. The correlat ion funct ions (50)  o f  the in teract ion entering into WJ  ° o f  (49)  become #3 

(~¢int)~=14hflg(3a4+ra2), (d2nt)a,c=hfl×2gE(~aS+~a6r+~a4r2)/h~, 

( ~2nt )a,c = hfl× 6g 3 ( ~ a  ,2 + i_~65 a lOrd. 3aSr2 + ~2a6r a)/•202 " (51 ) 

Minimiza t ion  o f  W3 with respect to t2 gives the results shown in table 2. The gain in accuracy over  the F e y n m a n -  
Kleiner t  approx ima t ion  is also here considerable  (abou t  a factor  40) .  The error  is now less than  0.1%. Also 
shown are the numbers  for the even approx ima t ion  I412 evaluated at the extremal  12 values of  W1. A full dis- 
cussion o f  IV3 for all t empera tures  will be given elsewhere. 

In  the two examples  the new approx ima te  energies always lie above  the true ones (a fact which is not  true 
for the even approx imat ions  such as I4"2). WeSherefore conjecture that  it  may  be possible to prove an inequal i ty  
for all odd  approx ima t ions  I413, I415, ... generalizing and  sharpening the Jensen-Peier l s  inequality.  

Wi th  the approx ima t ion  being so successful we may  apply  it to the pa th  integral projected into a f ixed excited 
state o f  the  tr ial  oscillator.  The exci ted energies are given by  the project ions  o f  the expectat ions conta ined in 
W3 to a given n. The energy shifts with respect to E~ = h l 2 ( n +  ½ ) are then given by the well-known Rayle igh-  
Schr'6dinger formula  associated with the per tu rba t ion  potent ia l  A V= ½ (092-  0 2)x2d. ~gx 4. U p  to this order  it  
reads 

aV.maV,., aV.maV,.kav,,. AV.,.aV,.. 
l~E'n=~tE~'Jt'~E~'Jl-l~Eg~'AVnn- m#n ~ Em--En -1- m#n ]~ k.,, ~" ( E m - E n ) ( E k - E n ) - A V n n  m,,n ~" (Em--En) 2" 

(52)  

#3 
The r" terms are found from those with no r by replacing in them ~2 by x/t22+gr/2M and expanding everything in powers of r up to 
/.3. 
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After some algebra we find [7] 

AE'~ = ¼g[ 3( 2n2 + 2n+ 1 )a4 + r( 2n+ 1 )a 2 ] , 

AE~ = - ~g2[ ( 3 4 n 3 + 5 1 n 2 + 5 9 n + 2 1 ) a S +  ] ( 2n2+  2 n +  1 )a6r+  ~6 ( 2 n +  1 )a4r2]/hg2, 

A E ~ = g 3 1 3 ( 1 2 5 n 4 + 2 5 0 n 3 + 4 7 2 n 2 + 3 4 7 n +  1 l l )a12 + 5 ( 34n3 + 51n2 + 59n+ 21)al°r  

+ 3 ( 2 n 2 + 2 n +  1 )aSr2+~2(2n+ 1 )a6r3]/h2ff22 , (53) 

which for n = 0  reduce to (53),  apart from a factor hfl. Extremization gives for all n energies which lie only 
very little above the true ones. This is illustrated in table 3 for n = 8  (compare with the energy table in ref. 
[ 1 ] ). A sum over the Bol tzmann factors associated with these energies yields, of  course, an extremely good 
approximation to the part i t ion function. 

It will be interesting to see how well the particle distr ibutions can be reproduced by applying the same ap- 
proximation to the density matrices. 

9. We have given two schemes for a systematic improvement  scheme to the Feynman-Kle ine r t  approxi- 
mat ion  to path integrals. The first is based on a local version of the well-known loop expansion of the effective 
action of the second type. The second uses a natural  expansion of the part i t ion function in powers of the trial 
interactions. The first method is beset with the typical problems of factorial growth of the loop diagrams. These 
can be overcome only by appropriate resummat ion  techniques. A Borel resummat ion would be best, but  a Pad6 
approximat ion is seen to yield reasonable results. 

The second method is extremely accurate and promises to be successful also in quan tum field theories. 
In a forthcoming paper we shall extend the variat ional  principle to tunnel ing processes and obtain a greatly 

improved control over per turbat ion coefficients to all orders of the coupling constant [ 6 ]. 
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