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Abstract

The critical exponents of Ginzburg-Landau theory (scalar QED) with a
Chern-Simons term in the action are calculated at the one-loop level as func-
tions of the statistics determining parameter #. The calculation is performed
in D = 3 dimensions which emphasizes the infrared aspects of the critical
phenomena, as suggested by Parisi. Ordinary scalar QED is obtained in the
limit # — 0, in which case the Chern-Simons term generates a topological
mass and serves merely as an infrared regulator. In general, the term deforms
the statistics of the complex field slightly into the direction of fermions. Only
for large 0 there is an infrared-stable fixed point in the renormalization flow

in the case of a single complex field.
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With the discovery of integer and fractional quantum Hall effects and high-T,. supercon-
ductivity, physics in 2+1 dimensions has attracted considerable attention. An intriguing
property of the reduced dimensionality is the fact that it allows for the appearance of a
topological term in the action of the vector potential, a so-called Chern-Simons term. This
term is at the root of various special effects. It produces a gauge-invariant photon mass
and, most spectacularly, changes the statistics of the particles to which it is coupled into
fractional statistics (an impossibility in a 3+1-dimensional local quantum field theory).

In this note we would like to explore two different aspects of a Chern-Simons term in
three spatial dimensions. On the one hand, we take advantage of the fact that such a term
renders the photon massive. In former days there where two principal mechanism by which
this happened. One is the so-called Meissner-Higgs mechanism, where the photon aquires
a mass by absorbing a massless Goldstone particle. The other is Debeye screening which
occurs in a charged plasma. Both mechanisms are important in many physical systems and
the same thing may be true for the new mechanism.

The second aspect of a Chern-Simons term is the deformation of the statistics of the
field it is coupled to. We want to explore the consequences of such a deformation with re-
spect to an old problem in the description of the superconducting phase transition in three
space dimensions. The Ginzburg-Landau theory does not allow for the standard estimate of
critical exponents in 3 dimensions via the renormalization group since the symmetric phase
of the model is plagued by infrared divergencies, due to the masslessness of the photon. To
circumvent this problem one can formulate the theory in arbitrary dimension D and con-
struct an expansion for the critical exponents in powers of the deviation ¢ = D — D, from
the critical dimension D., which is the dimension where the coupling constant is dimension-
less and the critical exponents take there mean-field values. The critical dimension of the
Ginzburg-Landau model is D, = 4. Close to the critical dimension, the e-expansion has the
advantage that it automatically provides a small parameter, viz. €, in which the fixed point
and the corresponding critical exponents can be computed as a power series. So, for € small,

this procedure is systematic and consistent. This is, of course, no longer true when ¢ is set



to, for example, 1. In that case, the power series in € turns into an asymptotic series which
only after a resummation gives reliable results. It is one of the pleasant surprises of nature
that in a pure ¢*-theory, despite the fact that e ceases to be small, one-loop calculations
have yielded results which are of the correct order of magnitude.

A second possibility to circumvent the infrared problems of massless photons is to con-
sider an artificially enlarged theory with n components of the complex scalar field in which
one can study the limit n — oo where a mean-fild theory exists and perform a perturbation
around that yielding results as an expansion is 1/n.

Both methods have been employed in the context of the Ginzburg-Landau theory by
Halperin, Lubensky and Ma [1]. Their main result was that it is impossible to calculate
the critical exponents in a low-order e-expansion due to the absence of an infrared-stable
fixed point. Only for an unphysical large number of field components (n > 365.9) does there
exist such a fixed point. They interpreted this result as signaling a first-order transition
for n < 365.9 and € small. This is in accord with the results obtained by Coleman and
Weinberg [2] who studied electrodynamics of massless scalar mesons in four dimensions and
discovered that at the one-loop level the photon becomes massive. A study of their effective
action shows a precocious onset of the Higgs mechanism with a sudden appearance of a finite
photon mass out of the symmetric phase. This is typical for a first-order transition.

The critical exponents corresponding to the fixed point for n > 365.9 are according to

Halperin, Lubensky and Ma [1] given by
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to first order in e.

In the large-n calculation in fixed (D = 3) dimension these authors obtained a fixed

point with critical exponents



n=-4.053n""+0n"?), v=1-972n"1+0(n?). (3)

On the basis of this result they conjectured that also in D = 3 there exists a critical value n,
such that for n > n. the transition is second order, and first order for n < n.. The authors
recognized that this conclusion could not be reliable since there exists an experimantally
well-studied system of a smectic liquid crystal whose transition to the nematic phase can
be described by a Gingburg-Landau theory but which has regimes of both first and second
order. In fact, it was possible to show by a duality transformation of the Ginzburg-Landau
model to a pure ¢* theory on a lattice that there exists a tricritical point characterized by a
certain ratio of penbetration depth versus coherence length [3] below which the transition is
of first order. This theoretical conclusion has meanwhile been corroborated by Monte Carlo
simulations [4]. The failure of the Halperin, Lubensky and Ma calculation in the continuum
indicates the failure of the e-expansion at the large value ¢ = 1.

The circumstance that a Chern-Simons term imparts a (gauge-invariant) mass to the
photon allows us to use this term as an infrared regulator and carry out a direct computation
of the critical exponents in three dimensions, making the large-n limit superfluous. At the
end of the calculation the 6 parameter, which multiplies the Chern-Simons term, may be set
to zero to obtain the results pertaining to the usual Ginzburg-Landau model.

The topologically massive Ginzburg-Landau model is defined by the Hamiltonian

. 2
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Here, p, v, A = 1,2, 3 are space indices, €, is the antisymmetric Levi-Civita symbol in three
dimensions and ¢° is a complex scalar field which we parametrize as ¢° = %(d)ﬁ) +1i¢9). We
have added a gauge-fixing term to the Maxwell term, with {, the gauge-fixing parameter,
and the last term is the Chern-Simons term. Without this term (4) is the usual Ginzburg-
Landau model. It has been shown by Semenoff and Sodano [5] that in the low-energy limit,
which is the relevant domain for us, the theory (4) describes fields with exotic spin and

statistics. Specifically, the spin is given by 1/470.
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Calculations of critical properties in 3 dimensions where first perormes in a pure scalar
field theory by Parisi [6]. Near the critical point the system has only one relevant length
scale, viz. the correlation length m ™1 which diverges at this point. This implies that m is the
only mass scale available to convert dimensionful coupling constants to dimensionless ones.
The Ginzburg-Landau model has two (bare) coupling constants: Ay and the electric charge
ep which have mass dimension 4 — D and (4 — D) /2, respectively, so that the corresponding
dimensionless coupling constants are go = Ao/m*™" and oy = €2/m*~". On dimensional
grounds it follows that a perturbative expansion in powers of the coupling constants Ay and
e? is, in effect, an expansion in powers of the dimensionless quantities gy and . Since m — 0
at the critical point, go and ag tend to infinity and a perturbative expansion in terms of these
bare parameters breaks down at the transition point. To find expansion parameters which
remain finite at the critical point Parisi uses the fact that according to the experimentally
known scaling laws of statistical mechanics the connected two-point correlation function for

the scalar field
Go(k) =< ¢°(k)¢"(—k) > ()
behaves near the critical point as
Go(0) ~ m™2 (6)

with 1 being a critical exponent. A non-zero n implies that the mass-dimension of te bare

field ¢° has shifted from the canonical value (D — 2) to
1
d¢:§(D—2+n). (7)

To comply with the scaling law (6), Go(k) can be written for small momenta as

_ Z
2+ m?+O(kY) ®)

Go(k)

with the dimensionless factor 7, the so-called field renormalization constant, which near the
critical point behaves as m”. In terms of this factor the critical exponent 7 is given by the

function



)= M u(Z,) (9)

evaluated at the critical point. The factor Z; may be cancelled from the Green function by

introducing a renormalized field

¢ = 7;"%¢". (10)

The scaling laws of statistical mechanics tell us in addition that the one-particle irre-

ducible n-point correlation function, or vertex function, behaves near the critical point as
r§ ~ mP s, (11)

A dimensionless expansion parameter which, in contrast to go = Ag/m®?~*, remains finite at

the critical point is now easily constructed, namely
g:=mP\ (12)

with A :== I'® the renormalized 4-point function which is related to the bare vertex function
F(()4) via I'® = Z;F((;L), since it involves 4 scalar fileds. Close to the critical point where
go = Mo/mP~* — o0, g tends to a finite constant ¢g*. Indeed, g* ~ mP*m»1mP-d ~ 1. A
similar construction can be given for the electric coupling constant eg.

The fact that the thus constructed coupling parameters remain finite at the critical point
allows for a perturbation expansion of the critical exponents. To this end one writes the

Hamiltonian (4) Hy = H + §H as a sum of the renormalized Hamiltonian H

1 9 1 1 A 2
H = 9 (au¢a) + §m2¢2 + 56214;219252 - eeabAu¢aau¢b + 1 (¢Z>
1 1 0
+1F3V + 2—4_(6#14#)2 + 1562%1/)\14#31/%1)\ (13)

and counter terms 6 H

1 1 1
5H = §<Z¢ — 1) (8ﬂ¢a)2 + §(Z¢m(2) — m2)¢3 + 562(Z¢ — 1)Ai¢)i

—elZy — Ven Ay + 3 (20— 1) (62) 4 1(Za— VIR, (14)



whose form takes advantage of the gauge invariance of the theory. The first term contains

only the renormalized fields and parameters

A, = ZXUQAIOH e= Zi/Qeo

ba = 2,700, (=731 (15)

A= Z1Z3 Xo.

In (13) and (14), the field labels a, b = 1, 2 and €, is the two-dimensional Levi-Civita symbol.
The statistics determining parameter 6 is dimensionless and will not be renormalized. This
is why it does not require a Z factor. It may be considered as a free parameter of the theory.
We shall be working in the gauge ¢ = 0, thus effectively setting 9, A, to zero in (13).

The Feynman rules we obtain from (13) and (14) are the usual ones for scalar QED apart

from the photon propagator, which due to the presence of the Chern-Simons term becomes

| kky ok
= m <5l“/ — 22 — fe EMV/\E) 5 (16)

showing the topologically acquired photon mass my = 0e?.

When working with a mas-
sive theory, we may chose vanishing external momenta as a renormalization point. The

renormalization conditions are then:

(= 0) = m?,

)
%Fﬁ)(kgﬂk?:o =1,
iy (k% = 0) = 6X (17)

PG = 0) =1
0
@Hﬁ(ﬁ)!wzo =2,
where the I''s are the renormalized scalar field correlation functions, with the indices indi-

(21) stands for the two-point

cating the type of the external fields. The correlation function I'
function with one mass insertion, and ny) is the (renormalized) gauge field correlation func-

tion. The conditions (17) fix the counter terms appearing in (14). The advantage of chosing



the Lorentz gauge (¢ = 0) is that the diagrams depicted in Fig. 1 are zero for zero external
momenta, which is our renormalization point. It is straightforward to calculate the other

one-loop diagrams. The important results are

diagram D=3 D=4—¢
2 e 3,
3 m + Oe? 872 €
(18a)
(18b)
1 e k, k 1 € k,k
- k(s — L~ — —k%|s,, — £
241 m <“ k2 ) 2472 € <“ k2 )
(18¢)
1A 1A
2rm 3272 €
(18d)
150 15
2T m 272 €
(18e)
9 et
0 el
(18f)
(18g)

where for comparison we included also the results obtained in an e-expansion for ordinary
scalar QED. In the latter case we did not introduce an arbitrary mass parameter to render
the coupling constants dimensionless. In the diagrams with four external legs we included
a factor of three to account for the s,t and u channel.

The fact that the last diagram is zero is a remarkable property of topologically gen-
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erated mass. In the e-expansion of the ordinary Ginzburg-Landau theory, this diagram is
proportional to e* and this is responsible for the non-existence of a fixed point. It would be
determined by the solution of a quadratic equation in e? but the sign of the diagram is such
that apart from the trivial solution e? = 0 the equation has no solution, and thus no non-
trivial fixed point. In the presence of the Chern-Simons term, however, the vanishing of this
diagram guarantees, as we shall demonstrate below, that there exists always a non-trivial
fixed point.

The evaluation of the diagrams in the table with the normalization conditions (17) yield

the following values for the various Z factors to one-loop order:

2 1
Z¢:1+%m,

Za=1-5

Z¢2=1+%—3%a_%9 (19)
Z,\1+%g.

The factor Zg» shows up in the counter term corresponding to the fourth diagram in Table

1:
C Ly Ly — 1, (20)

with the broken line indicating a mass insertion. From the counter terms (19) we now

calculate the critical exponents in the standard way and find

0 2 a~t
(2 | — e
Y mam n( ¢)|>\0,/0 3 (a71+9)2
0 a?
5(06) = ma—ma|/\0’eo = -+ %
0 g 2 at
e I (Z) )y = L2 Y 21
ry mam n( ¢ )|>\070 27T+37T (a_1+0)2 ( )

5()_mi| __+i2_i0‘7_1
g - 8mg Ao,e0 — g 4’/Tg 37T (afl_i_e)gg'

The set of equations yields apart from the trivial fixed point, the infrared-stable fixed point



4 32
U, g =L — 2 22
G 8T l +(1+247r9)2]’ (22)

with the corresponding critical exponents

16
— ** ®\ 2
n=(g",a") 0T 20707 (23)
and
8 2
192475 a )= |1+ —F 24
v MRICELD 5[ +(1+247r9)2] (24)

Eq. (22) shows that topologically massive scalar QED has always a fixed point at the one-
loop order. However, the value of the critical exponent 7 is not always physical. On general
grounds n and v should fulfill the inequalities n > 2 — D and v > 1. The latter condition
is fulfilled for every value of 8, but the former only for values of the statistics determining

parameter 0 larger than the threshold value
O = 1/8. (25)

As aresult, 7 varies from 0 (0 = 00) to —1 (6 = 0) and v from 2 = .625 (6 = o0) to 2 ~ .556
(0 = 00). This restriction on 6 is an analog of the condition n > 365.9 on the number of field
components found in [1]. It forbids us to set § = 0 and go to the standard Ginzburg-Landau
model which we really would like to do.

According to Semenoff and Sodano [5] the theory decribes fields with spin given by 1/476.
Thus the threshold value (25) corresponds to a spin-2 field implying that in an application
to particles with fractional statistics we are restricted to spins smaller than two.

Reliable results are obtained in the limit § — oo in which case the theory goes over into

a pure spin-0 \¢* filed theory where we recover the known critical exponents

8 n+ 2
0, vl===2-1"° 26
n—uy v 5 n+87 ( )

where n is the number of real field components.
It follows from (24) that the value of the critical exponent v at finite 6 is smaller than that

at § = oo. This fact surprises us for the following reason. Anyons, having spin, experience
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an effective repulsion (centrifugal barrier) which is absent in the case of spinless particles.
We, therefore, expect that the effect of turning on the spin of the field by letting 1/6 > 0,
is to increase the coupling constant g. This is indeed the case as can be seen from Eq.
(22) giving the value of g at the critical point. For a pure A¢* theory this would imply a
larger value for the critical exponent v. In the charged case, however, the function 4, which
according to (24) determines v has a second term [see (21)] that for increasing 1/6 moves in
a direction opposite to that of the first term. In fact, this second term dominates, resulting
in the positive sign in front of the second term in (24) and a smaller value for v when 1/6
increases. We suspected a sign error but could not detect any.

We have seen that ordinary scalar QED, corresponding to taking 6 = 0, could not be
recovered from the topologically massive theory, because it leads to a value n < —1, which
is unphysical. In order to be able to set # = 0 we generalize the theory to one with n/2
complex fields, with n an even integer. This leads to the folowing changes in the results
given in Table 1. The second diagram has to be multiplied with n/2, the third with (n+2)/4

and the fourth diagram obtains a factor (n + 8)/10. The resulting critical point is

481 8 64n
“ n 7 n+8[ +(n+487r9)2]’ (27)

with the critical exponents

32n
_ _ 2
T~ T+ 4370)2 (28)
and
2 —4 2
19 n —+ n 32n (29)

n+8 n+8 (n+4876)2
Eq. (27) shows that, as is usual the case, sufficient large values of n render a* and ¢g* small
enough so as to make a perturbative expansion in these parameters reliable. In the limit
0 — oo we recover, of course, the well-known results for the pure O(n)-symmetric \¢*
theory:

n+8
n+14

n—0, v— (30)
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On the other hand, for # = 0 we find the values

32 n(n+ 8) 26 1
B _ 42 L 1
w YT —isntis T, TOGs) (31)

/]7 =
the first of which makes sense only if n > 32. The threshold value n, = 32 for the number
of components of the scalar field should be compared to the much larger value n, ~ 365.9
obtained by Halperin, Lubensky and Ma [1] in the e-expansion. We also note that our

critical exponents (31) differ considerable from those obtained by these authors in the large

n-limit for D = 3, Eq. (3).
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