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1 Introduction

The global topology of space-time may have effects upon the local properties

of the universe such as energy density and pressure of all fluctuating fields.

Consider, for example, three possible topologically distinct Friedmann uni-

verses, closed, open flat and open hyperbolic. In contrast to the open flat

and hyperbolic universes, the closed universe has a finite size and possess

a discrete spectrum of matter and radiation fluctuations. As a result, its

partition function contains an additional term, a difference between a spec-

tral sum and an integral, which can be determined by the Euler-Maclaurin

formula. In a flat space-time, such differences arise from the energy spec-

trum of electromagnetic waves between two conducting plates and give rise

to an attraction known as the Casimir effect [1] discussed extensively in the

literature (see the reviews in [2-3]).

An important quantum effect in a closed Friedmann universe is that of

particle creation [4-6]. It is a dynamic effect and depends sensitively on the

speed of evolution. This will be ignored here assuming the evolution to be

sufficiently slow, to get pure finite-size effects (see e.g. [7,8]).

The purpose of this note is to calculate the finite-size properties of matter

and radiation fuctuations in a closed universe. The difference between a field

energy in the infinite and finite universe will be called Casimir energy of that

field.

Until now, Casimir energies have been investigated only for zero tem-

perature [3-6, 9, 10] (vacuum case). In this paper we shall derive it for

any temperature. Although it is clear that in the systems with an entropy

s >> 1, as in our universe, the finite-size corrections should be negligible

small and no Casimir effect is observable. This will be seen explicitly from

the high-temperature limit formulas obtained in our paper.

For the description of both fluctuating matter and radiation we consider
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generically a free massive scalar field with an arbitrary coupling to the gravity.

If the mass is set equal to zero the result can be applied to fluctuating

radiation. The free energy of the scalar field is obtained by performing the

functional integral over the Fourier components of free field [11,12]. In the

static universe, there is no problem to do this since the oscillator frequencies

are time independent.

The regularization of the infinite sums is performed using various stan-

dard methods existing in the literature [13-17,3-5]. The expressions for the

energy density and the pressure follow from the free energy by the thermo-

dynamic rules.

Multidimensional cosmology is an important example, where static space

calculation of the Casimir effect can be applied since models with one or more

static compact inner spaces represent an interesting class of the solutions with

spontaneous compactification [18]. The vacuum Casimir energy in this case

may have a considerably effect on the evolution of an external universe we live

in. Finite-temperature Casimir effect takes place if there is thermalization

in compactified dimensions.

2 Free scalar field in a slowly evolving

Robertson-Walker-Friedmann universe

The action of a real scalar field on the background of an arbitrary gravita-

tional field is [5,6]

S =
∫

dD+1x|g|1/2
[

−1

2
gµν∂µϕ∂νϕ − V (ϕ)

]

(2.1)

with the signature of the D + 1-dimensional space-time metric gµν being

− + + . . .+. For a massive scalar field the most general harmonic potential
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V (ϕ) is

V (ϕ) =
ξRϕ2

2
+

m2ϕ2

2
(2.2)

where R is the scalar curvature of a spacetime, m is a mass of scalar field

ϕ and ξ is the coupling constant. A free particle has ξ = 0 [12]. Without

additional work we treat here the general case of arbitrary ξ. The value

ξ = (D − 1)/4D makes the massless scalar action conformally invariant.

We choose a Robertson-Walker-Friedmann (RWF) universe as a back-

ground and assume that it evolves so slowly that it can be assumed to be

static for the purpose of our calculation. Later in Appendix B we shall specify

precisely the condition under which the slowness assumption is valid. Thus,

the metric is taken to be

ds2 = gµνdxµdxν = −dt2 + a2dl2 (2.3)

where a is scale factor and dl2 is the metric of a D-dimensional space of

constant curvature. The space dimensionality treated in this paper will be

D = 3 with the geometry given by

dl2 = γαβdxαdxβ = dr2 + f 2(r)(dθ2 + sin2 θdφ2) (2.4)

where f(r) can be sin r, r, sinh r for the different spaces of constant curvature

with χ = +1, 0,−1, respectively. The Casimir effect takes place only for

χ = +1. (There are also special types of the Ricci-flat spaces (χ = 0)

and the spaces of the negative constant curvature (χ = −1) which have

the limited volume. It is clear that the Casimir effect takes place for these

geometries also.) The static universe with positive χ is also called Einstein

universe. There is, of course, no problem in generalizing the results to the

case of arbitrary D.
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The free energy of the system with the temperature kBT ≡ 1/β is

F = −kBT ln Z (2.5)

where the partition function Z may be defined by the formula

Z =
∫

Dϕe−Se

(2.6)

where Se is the euclidean action obtained from the Lorentzian one (2.1) by

the substitution t → −iτ . The functional integral is performed over all fields

ϕ which are periodic in the imaginary time τ with period h̄β. For the static

metric (2.3) with the spatial part (2.4), the action reads

Se =
1

2

∫

dτd3xγ1/2a3[(∂τϕ)2 +
1

a2
γαβ(∂αϕ)(∂βϕ) + M2ϕ2], (2.7)

where we have introduced the effective mass

M2 =
6χξ

a2
+ m2. (2.8)

To calculate the path integral (2.6), we expand the scalar field ϕ in to the

eigenfunctions of the Laplace-Beltrami operator ∆
(3)
2 [see formula (A.1) in

Appendix A]. Restricting our attention to the case of positive constant cur-

vature with χ = +1, we take the eigenfunctions in the form

ΦJ (x) ≡ Qn
lm(x) = Πn

l (r)Ylm(θ, φ), (2.9)

where Ylm(θ, φ) are the scalar spherical harmonics (see Appendix A). The

expansion is

ϕ(x) =
1

2

∑

J

[ϕJ(τ)ΦJ (x) + c.c.], (2.10)

The coefficient functions satisfy periodic boundary conditions:

ϕJ(τ = 0) = ϕJ(τ = h̄β) = 0. (2.11)

5



Substituting (2.10) into (2.7) and using the orthogonormality relations for

the spherical harmonics given in Appendix A we find the euclidean action

Se =
∑

J

1

2

∫

dτ [|ϕ̇J |2 + ω2
n|ϕJ |2], (2.12)

where the dot denotes the differentiation with respect to τ and ω2
n = M2 +

(n2 − 1)/a2, n = 1, 2, 3 . . . are the eigenfrequencies. The decomposition has

reduced the functional integral for the partition function (2.6) to a product

of simple path integrals of harmonic oscillators. It is then easy to calculate

the total free energy [11,12]

F = kBT
∑

n

n2 ln
(

1 − e
−

h̄ωn
kBT

)

+
∑

n

n2 h̄ωn

2
, (2.13)

the frequencies being

ω2
n =

6χξ

a2
+ m2 +

n2 − χ

a2
= m2 +

n2 + (6ξ − 1)χ

a2
, (2.14)

The multiplier n2 in the sums has its origin in the degeneracy of the

eigenvalues in the isotropic spaces. The second term is the divergent zero-

point energy. In a realistic theory of the universe, the divergence must be

canceled by the presence of an equal number of Fermi fields whose masses
∑

mF
i have to satisfy, together with those of all Bose fields

∑

mB
i , certain sum

rules (
∑

i m
F
i

2 =
∑

i m
B
i

2). When calculating the contribution of a single Bose

field only, the expression may be regularized by any standard method. This

will be done in the next section. In the case of an open universe with χ = 0

or −1, the sums in (2.13) are replaced by integrals [4,5] and the standard

regularization amounts to dropping the last integral [11].
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3 The finite-size effects on the field fluctua-

tions

To perform the sum in the free energy (2.13) we rewrite the expression as

F = kBT
∑

n

n2 ln

[

2 sinh
h̄ωn

2kBT

]

(3.1)

and the frequency (2.14) as

ω2
n = m2 +

n2 − n2
c

a2
(3.2)

with the constant

n2
c = (1 − 6ξ)χ, χ = 1. (3.3)

The parameter ξ is usually assumed to lie in the interval [6] 0 ≤ ξ ≤ 1
6
.

Thus, 0 ≤ nc ≤ 1 and nc = 0 for the conformal coupling (ξ = 1/6), nc = 1

for the minimal coupling (ξ = 0).

Due to its simplicity, we first consider a massive scalar field with conformal

coupling (nc = 0). Then we have from (3.2)

ω2
n = m2 +

n2

a2
. (3.4)

Using the dimensionless frequencies

ω̃2
n = m2a2 + n2, (3.5)

we rewrite the formula (3.1) as

F = kBT
∞
∑

n=1

n2 ln

[

2 sinh
h̄ω̃n

2Θ

]

, (3.6)

with the reduced temperature parameter

Θ ≡ kBT · a. (3.7)
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It measures the temperature in units of h̄/akB (using c = 1). To isolate the

finite-size effects, we add and subtract the a → ∞-limit and write

F = (F − F∞) + F∞ ≡ Ffs + F∞. (3.8)

The a → ∞-limit F∞

F∞ = kBT
∫

∞

0
dnn2 ln

[

2 sinh
h̄ω̃

2Θ

]

(3.9)

is divergent. After a standard zeta function regularization (which makes
∫

∞

0 dnn2ω̃n = 0) this becomes

F∞,ren = kBT
∫

∞

0
dnn2 ln





1 − exp





−

√

√

√

√

(

mh̄

kBT

)2

+

(

h̄n

Θ

)2










 (3.10)

= −a3

h̄3

(kBT )4

3

∫

∞

0
dxx4 1

√

(

mh̄
kBT

)2
+ x2

[

exp

(

√

(

mh̄
kBT

)2
+ x2

)

− 1

] .

The finite-size effects are contained in the finite sum-minus-integral expres-

sion

Ffs = kBT

[

∞
∑

n=1

n2 ln

(

2 sinh
h̄ω̃n

2Θ

)

−
∫

∞

0
dnn2 ln

(

2 sinh
h̄ω̃n

2Θ

)]

. (3.11)

Here it is convenient to use the Abel-Plana summation formula [3-5, 19]

[

∑

n=1

f(n) −
∫

∞

0
f(n)dn

]

=
1

2
f(0) + i

∫

∞

0

f(iν) − f(−iν)

[exp(2πν) − 1]
dν, (3.12)

which is correct if f(ν) is regular for Reν ≥ 0 (on the imaginary axis, f(ν)

may have poles and branch points which are passed during the integration

on the right, i.e., with Reν > 0). Then

Ffs = kBT i
∫

∞

0

f(iν) − f(−iν)

[exp(2πν) − 1]
dν (3.13)
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with

f(n) = n2 ln

(

2 sinh
h̄

2Θ

√
m2a2 + n2

)

(3.14)

= n2 ln







h̄

Θ

√
m2a2 + n2

∞
∏

p=1



1 +

(

h̄

2πpΘ

)2
(

m2a2 + n2
)











.

The function f(n) has logarithmic branch points on the imaginary axis

with constant discontinuities starting at n =
[

m2a2 + (2πpΘ/h̄)2
]1/2

for

p = 0, 1, 2 . . . . The integral (3.13) becomes therefore a sum

Ffs = kBT2π
∫

∞

0
dnn2

∞
∑

p=0

′θ

[

n2 − m2a2 −
(

2πpΘ

h̄

)2
]

1

exp(2πn) − 1

= kBT2π
∞
∑

p=0

′

∫

∞

np

dnn2 1

exp(2πn) − 1
, (3.15)

where the integrals start at

np ≡
[

m2a2 +
(

2πpΘ

h̄

)2
]1/2

(3.16)

and the prime on the sum indicates that the term with p = 0 should be

counted with the weight 1/2. Going back from the momentum quantum

number n to “physical” wave vectors k = n/a we see that (3.15) corresponds

to a Planck distribution form with the effective temperature Teff = h̄/akB.

The appearance of such an effective temperature is typical for the Casimir

effect [10,3].

The total renormalized free energy is

Fren = Ffs + F∞,ren =
kBT

4π2

∞
∑

p=0

′

∫

∞

2πnp

x2dx

ex − 1
(3.17)

−a3

h̄3

(kBT )4

3

∫

∞

0

x4dx
√

(

mh̄
kBT

)2
+ x2

[

exp

(

√

(

mh̄
kBT

)2
+ x2

)

− 1

] .
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The internal energy density of the fluctuations is found from

ρ =
1

V
U =

1

2π2a3

∂(βFren)

∂β
= ρfs + ρ∞,ren, (3.18)

where V = 2π2a3 is the volume of the closed RWF universe. Explicitly:

ρfs = 8π2 (kBT )4

h̄3

∞
∑

p=1

p2

(

(

mh̄
2πkBT

)2
+ p2

)1/2

exp

(

4π2Θ
h̄

·
√

(

mh̄
2πkBT

)2
+ p2

)

− 1

(3.19)

ρ∞,ren =
1

2π2

(kBT )4

h̄3

∫

∞

0

x2 ·
√

(

mh̄
kBT

)2
+ x2dx

exp

(

√

(

mh̄
kBT

)2
+ x2

)

− 1

. (3.20)

It is convenient to deduce from (3.18) - (3.20) the energy density in the high-

temperature limit kBT >> h̄/a (Θ/h̄ >> 1). It is clear that the main

contribution comes from the term p = 1.

To find the pressure of the fluctuation we use the formula

P = −∂Fren

∂V
= − 1

6π2a2

∂Fren

∂a
= Pfs + P∞,ren, (3.21)

where

Pfs =
1

3
ρfs +

2

3

(kBT )4

h̄3

(

mh̄

kBT

)2 ∞
∑

p=0

′

(

(

mh̄
2πkBT

)2
+ p2

)1/2

exp

(

4π2Θ
h̄

·
√

(

mh̄
2πkBT

)2
+ p2

)

− 1

,

(3.22)

P∞,ren =
1

6π2

(kBT )4

h̄3

∫

∞

0

x4dx
√

(

mh̄
kBT

)2
+ x2

[

exp

(

√

(

mh̄
kBT

)2
+ x2

)

− 1

] .

(3.23)
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In high-temperature limit Θ/h̄ ≫ 1 we should keep the terms with p = 0, 1

in (3.22). They give the main contribution to P .

An alternative form

The formula (3.17) is not yet useful in the low-temperature limit Θ/h̄ ≪ 1.

For this purpose we use the Poisson summation formula [12-15] according to

which

∞
∑

p=−∞

σ(p) = 2π
∞
∑

p=−∞

c(2πp) (3.24)

if σ(p) and c(p) are connected by the Fourier transform

c(α) =
1

2π

∫ +∞

−∞

σ(x)e−iαxdx. (3.25)

In our case

σ(p) =
∫

∞

2πnp

x2dx

ex − 1
(3.26)

so we can rewrite the (3.15) as

Ffs =
kBT

4π2

∞
∑

p=0

′σ(p) =
kBT

2π

∞
∑

p=0

′c(2πp). (3.27)

The expression for c(0) is easily obtained

c(0) =
h̄

4π3Θ

∫

∞

2πma

√

x2 − (2πma)2x2dx

ex − 1
(3.28)

and (3.28) is proportional to the free energy of the vacuum fluctuations Fvf :

Fvf =
∞
∑

n=1

n2 h̄ωn

2
−
∫

∞

0
n2 h̄ωn

2
dn =

h̄

a

1

(2π)4

∫

∞

2πma

√

x2 − (2πma)2x2dx

ex − 1
,

(3.29)
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where for the regularization Fvf we use the Abel-Plana summation formula

(3.12). Eqn. (3.27) takes the form

Ffs = Fvf +
kBT

2π

∞
∑

p=1

c(2πp), (3.30)

where for p 6= 0

c(α) =
1

πα

[

− d2

dz2
+ (2πma)2

]

∫

∞

2πma

sin
(

z
√

x2 − (2πma)2
)

ex − 1
dx|z= αh̄

4π2Θ

.

(3.31)

Thus, the alternative expression for the total renormalized free energy is

Fren = Ffs + F∞,ren with Ffs being defined by (3.30), (3.31).

This is the most convenient expression for dealing with the masless case

which will be done below. Being interested in the low-temperature limit, it

is preferable to find yet another representation of the same expression.

The low-temperature limit for non-zero mass

For m 6= 0, the integral (3.31) cannot be calculated exactly and it is more

easy to obtain the low-temperature limit for Ffs directly from the formula

(3.11), which can be written in the form

Ffs = kBT
∞
∑

1

n2 ln

[

1 − exp

(

− h̄ω̃n

Θ

)]

+ Fvf − F∞,ren. (3.32)

Adding to this F∞,ren we have in the low-temperature limit

Fren = kBT
∞
∑

1

n2 ln

[

1 − exp

(

− h̄ω̃n

Θ

)]

+ Fvf

≈ −kBT exp

(

− h̄ω̃1

Θ

)

+ Fvf . (3.33)

Substituting (3.33) into formula (3.18) we obtain

ρ =
h̄

2π2a4

∞
∑

1

n2ω̃n

exp
(

h̄ω̃n

Θ

)

− 1
+ ρvf
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≈ h̄ω̃1

2π2a4
exp

(

− h̄ω̃1

Θ

)

+ ρvf , (3.34)

where ρvf is the well-known expression for the energy density for the vacuum

fluctuations of the massive scalar field [3-6,9,10]:

ρvf =
h̄

a4π(2π)5

∫

∞

2πma

√

x2 − (2πma)2x2dx

ex − 1
. (3.35)

For the pressure we have from (3.21) and (3.33)

P =
h̄

6π2α4

∞
∑

1

n4

ω̃n

[

exp
(

h̄ω̃n

Θ

)

− 1
] + Pvf

≈ h̄

6π2a4ω̃1
exp

(

− h̄ω̃1

Θ

)

+ Pvf , (3.36)

where

Pvf =
1

3
ρvf +

(ma)2h̄

24π2a4

∫

∞

2πma

x2dx
√

x2 − (2πma)2(ex − 1)
. (3.37)

The integral in (3.37) is convergent one.

The massless case

The formulas obtained above are simplified considerably in the case of radi-

ation (m = 0). The formula (3.17) for Fren reads

Fren =
kBT

4π2

∞
∑

p=0

′

∫

∞

4π2Θ

h̄
p

x2dx

ex − 1
− a3

h3

π4

45
(kBT )4. (3.38)

The energy density of the fluctuations is

ρ = 8π2 (kBT )4

h̄3

∞
∑

p=1

p3

exp
(

4π2pΘ
h̄

)

− 1
+

π2

30

(kBT )4

h̄3 . (3.39)

The second term here is usual black-body energy density. The first term

contains the finite-size effects. In principle, it opens up the possibility to
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obtain information on global topology of our universe by measuring the mi-

crowave radiation. Unfortunately, as it will be shown later, the corrections to

the black-body energy-density are exponentially small at the present moment

for the standard model of the hot Friedmann universe. If we demand the con-

stancy of the total energy carried by the fluctuations during the evolution of

the universe, i.e., ρ · a4 = const [20], then we have from (3.39)

kBT · a = Θ = const. (3.40)

This is the usual relation between the temperature of the radiation and the

scale factor.

It is convenient to deduce from (3.39) the energy density in the high-

temperature limit kBT ≫ h̄/a, which in the present units amounts to

Θ/h̄ ≫ 1:

ρ ≈ 8π2 h̄

a4

(

Θ

h̄

)4

exp
(

−4π2Θ

h̄

)

+
π2

30

h̄

a4

(

Θ

h̄

)4

. (3.41)

To find the pressure of the fluctuations we use the formula (3.21) and obtain

P =
ρ

3
, (3.42)

where ρ is defined by formula (3.39). This is the usual equation of state for

radiation.

As was stressed above, the formulas of the type (3.39) are not yet useful in

the low-temperature limit Θ/h̄ << 1. For this purpose we use the expression

(3.30) where in the massless case:

Fvf =
1

240

h̄

a
(3.43)

and [15]

c(α) = − 1

πα











4π3

[

1 + exp
(

− αh̄
2πΘ

)]

exp
(

− αh̄
2πΘ

)

[

1 − exp
(

− αh̄
2πΘ

)]3 − (4π2Θ)3

α3h̄3











. (3.44)
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The expression (3.43) is the well-known free energy of the vacuum fluctua-

tions of the massless scalar field in the closed Friedmann universe [3-6,9,10].

As a result we have the alternative formula for the free energy

Fren =
1

240

h̄

a
− kBT

∞
∑

n=1

1

n

[

1 + exp
(

−nh̄
Θ

)]

exp
(

−nh̄
Θ

)

[

1 − exp
(

−nh̄
Θ

)]3 . (3.45)

Then the low-temperature limit Θ/h̄ << 1 becomes simply

Fren ≈ 1

240

h̄

a
− kBT exp

(

− h̄

Θ

)

. (3.46)

This could have been derived directly from (3.32), (3.33). Substituting (3.45)

into (3.18) we obtain the alternative form for the energy density

ρ =
h̄

480π2

1

a4
+

h̄

2π2

1

a4

∞
∑

n=1

[

1 + 4 exp
(

−nh̄
Θ

)

+ exp
(

−2nh̄
Θ

)]

exp
(

−nh̄
Θ

)

[

1 − exp
(

−nh̄
Θ

)]4 (3.47)

which converges fast for low temperatures. It is easy to see from this formula

that the requirement of a constant total energy gives again the condition

(3.40) kBT · a = const. In the low-temperature limit kBT << h̄/a we obtain

the approximation

ρ ≈ h̄

480π2

1

a4
+

h̄

2π2

1

a4
exp

(

− h̄

Θ

)

. (3.48)

For the pressure of the fluctuations we can get with the help of (3.21) the

equation of the state (3.42) where ρ is defined now by formula (3.47).

Non-conformal coupling

Let us consider finally the scalar field with an arbitrary coupling 0 ≤ ξ ≤ 1/6.

We study only the massless case, for simplicity. The generalization of the

formulas obtained to the case m 6= 0 is straightforward.
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The frequency in this case is ω2
n = (n2 − n2

c)/a
2 and after rotation in

complex nc-plain nc → iνc is reduced to

ω2
n =

ν2
c

a2
+

n2

a2
≡ m2(a) +

n2

a2
(3.49)

or

ω̃2
n = a2 · ω2

n = ν2
c + n2, (3.50)

where m(a) = νc/a plays the role of the scalar field mass which depends

on the scale factor. Now we can use directly the formulas derived for the

massive scalar field with conformal coupling. At the end, we rotate νc back

to its proper imaginary value νc → −inc.

The expression for the non-regularized free energy takes the form

F = kBT
∞
∑

n=1

n2 ln



2 sinh
h̄
√

ν2
c + n2

2Θ



 . (3.51)

Performing the regularization similar to (3.6)-(3.15) we have finally

Ffs = kBT2π
∫

∞

0
dnn2

∞
∑

p=0

′θ

[

n2 + n2
c −

(

2πpΘ

h̄

)2
]

1

exp(2πn) − 1

= kBTπ (1 + 2pc)
∫

∞

0

n2dn

exp(2πn) − 1

+kBT2π
∞
∑

p=pc+1

∫

∞

√

( 2πpΘ

h̄ )
2

−n2
c

dnn2 [exp(2πn) − 1]−1 (3.52)

where

pc =

[

h̄nc

2πΘ

]

(3.53)

is the largest integer ≤ h̄nc/2πΘ). It is clear from the formulas (3.52), (3.53),

that pc can be treated as infrared cut-off.
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The renormalized a → ∞ limit of (3.51) is

F∞,ren = − a3

3h̄3 (kBT )4
∫

∞

0

x4dx
√

(

h̄νc

Θ

)2
+ x2

[

exp

(

√

(

h̄νc

Θ

)2
+ x2

)

− 1

]

a→∞→ −π4

45

a3

h̄3 (kBT )4. (3.54)

This is the usual black-body free energy, a result which was predictable since

the mass term m(a) tends to zero for a → ∞. Thus, F∞,ren has the same

form for any coupling ζ .

The renormalized expression for the free energy can be found as the sum

Fren = Ffs + F∞,ren. (3.55)

Then, with the help of the formulas (3.18) and (3.21), we obtain for the

energy density ρ

ρ = 8π2 (kBT )4

h̄3

∞
∑

p=pc+1

p2

(

p2 −
(

nch̄
2πΘ

)2
)1/2

exp

(

4π2Θ
h̄

·
√

p2 −
(

nch̄
2πΘ

)2
)

− 1

+
π2

30

(kBT )4

h̄3 (3.56)

For the pressure we find the usual equation of state for the radiation: P =

1/3ρ. The requirement of a constant total energy during the evolution of the

universe gives again the condition (3.40).

The formulas (3.52), (3.56) are useful to estimate the high-temperature

limit Θ/h̄ >> 1. The main contribution in the sums is given by the term

with p = pc + 1. The presence of the “mass” in this model does not permit

an exact calculation of the coefficients c(α) in (3.31). To obtain an estimate

in the low-temperature limit Θ/h̄ << 1, we write, by analogy with (3.33),

the expression for the Fren in the form

Fren = kBT
∞
∑

n=n∗+1

n2 ln

[

1 − exp

(

− h̄ω̃n

Θ

)]

+ Fvf , (3.57)
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where we introduced the infrared cut-off similar to (3.53): n∗ = [n] and

n∗ = { 0, nc < 1

1, nc = 1.
(3.58)

The energy Fvf is the free energy of the vacuum fluctuations

Fvf =
h̄

a

1

(2π)4

∫

∞

0

√

x2 + (2πnc)2x2dx

ex − 1
. (3.59)

The corresponding energy density is

ρvf =
h̄

a4π(2π)5

∫

∞

0

√

x2 + (2πnc)2x2dx

ex − 1
(3.60)

with the pressure satisfying Pvf = 1
3
ρvf . In the low-temperature limit Θ/h̄ <<

1, we find

ρ =
1

2π2a3

∂

∂β
(βFren) ≈

h̄(n∗ + 1)2ω̃∗

n+1

2π2a4
exp

(

− h̄ω̃∗

n+1

Θ

)

+ ρvf (3.61)

and the pressure satisfies once more the equation of state P = ρ/3. The

requirement of a constant total energy ρ · a4 = leads again to the condition

(3.40).

It is remarkable that the finite-size effects do not change this formula.

Application to our universe

It is interesting to estimate the value of the reduced temperature Θ for our

universe. If we assume that the standard model of the hot universe [20],

which most cosmologists believe describes the evolution of the now observable

universe, we take for the present state the value a ∼ 12, 48·1027cm. Using the

temperature of the microwave radiation T ∼ 2, 70K, we find Θ/h̄ ∼ 1, 5 ·1029.

Approximately the same sign of Θ is estimated for the relict neutrinos and

gravitons [20]. Thus, at the present state of the evolution, our universe
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for these radiations is in high-temperature limit and the finite-size quantum

effects are certainly unobservable. This estimate of the reduced temperature

shows us that, in the standard model of the hot universe, it is impossible

to use formula (3.39) to answer the question about the global topology of

our universe on the basis of the observed microwave radiation. The static-

universe approximation was used in this paper to extract pure finite-size

effects. As is shown in Appendix B, the slow-evolution approximation is good

at the present time for the standard model of the hot universe. Obviously,

the approximation breaks down for a → 0.

In conclusion, we stress that the finite temperature effects may become

relevant if the thermalization was achieved during radiation dominated era.

During the inflation and presumably also in the compactified dimensions

of a multidimensional universe, there is presumably no thermalization and

therefore no finite temperature Casimir effect.
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Appendix A: Scalar spherical harmonics

In this appendix we describe the main properties of the scalar harmonics on

the three-sphere S3 with the metric (2.4). More detailed information about

their properties and eigenfunctions in the case of the hyperbolic and flat

3-spaces of constant curvature it is possible to find in the [5,6,12,21,22].

The Laplace-Beltrami operator for the metric (2.4) is

∆
(3)
2 =

1√
γ

∂

∂xα

(

√
γγαβ ∂

∂xβ

)

(A.1)

and its eigenfunctions are the spherical harmonics ΦJ

∆
(3)
2 ΦJ = −(n2 − 1)ΦJ (A.2)

with collective index J = {n, l, m} where n = 1, 2, 3, . . . ; l = 0, . . . , n − 1;

|m| ≤ l. The functions ΦJ can be expressed in terms of the usual spherical

harmonics Ylm by the next way

ΦJ ≡ Πn
l (r)Ylm(θ, φ), (A.3)

where Πn
l are the “Fock” harmonics [25]

Πn
l (r) = sinl r

dl+1(cos nr)

d(cos r)(l+1)
. (A.4)

The orthonormality reaction is
∫

d3x
√

γΦ∗

J(x)ΦJ ′(x) = δJJ ′ = δnn′δll′δmm′ , (A.5)

where Φ∗

J is the complex conjugation of ΦJ and Φ∗

J = (−1)mΦJ̄ , J̄ =

{n, l,−m}. Note also the equality holds [5]
∫

d3x
√

γγαβ∂αΦJ∂βΦJ ′ = (n2 − 1)δJJ ′. (A.6)

The information given in this appendix about the spherical harmonics is all

that is needed to get (2.12).
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Appendix B: Stabilization of the Fried-

mann universe

In Chapters 2 and 3, the time evolution was assumed to be sufficiently slow to

justify the calculation of the Casimir effect in a static metric. The standard

model of the universe is not a static one [20]. The scale factor a is a time-

dependent function and the scalar field in the case of conformal coupling is

reduced to the harmonic oscillator with a time dependent frequency ω(η)

[5,6]

ω2(η) = m2a2(η) + n2, (B.1)

where η is conformal time which is related to the synchronous time t by the

formula adη = dt. The slow-evolution approximation is good if the adiabatic

parameter δ of the oscillators [5] satisfies the condition

δ ≡ (1/ω2)dω/dη = (m2a/ω3)da/dη << 1. (B.2)

It is clear that in our present universe this parameter is extremely small.

As an estimate we obtain, for particles with electron mass me in a typical

cosmological model [20] compatible with presend-day astronomical observa-

tions, the value δ ≤ 2 · 10−39.

Static solutions are important also in multidimensional cosmology where

models with compact static inner spaces represent solutions with spontaneous

compactification [18].
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In this Appendix we show that the quantum fluctuations of scalar field

are capable of stabilizing the solutions of Einstein’s equations and yielding a

static universe. Thus, in this case, the initial assumption of a slowly evolving

universe becomes completely self-consistent.

The Einstein equations with a cosmological constant Λ in the case of the

RWF metric and in the presence of a perfect-fluid stress-energy tensor are

[20]

1

a2

(

da

dt

)2

= − χ

a2
+

Λ

3
+

8π

3
ρ, (B.3)

2

a

d2a

dt2
= − 1

a2

(

da

dt

)2

− χ

a2
+ Λ − 8πP,

where ρ and P are density of mass-energy and pressure of the perfect fluid.

It is easy to see that by taking

ρ =
1

8π

(

3χ

a2
− Λ

)

, (B.4)

P =
1

8π

(

Λ − χ

a2

)

,

the universe can have a steady state. The parameters of the universe are

Λ = 4π(ρ + 3P ),

a2 =
χ

4π(ρ + P )
. (B.5)

Inserting ρ and P from the earlier results, the equations can be solved self-

consistently.

It was shown in Chapter 3 that with the parameters of the standard

model of the universe the quantum fluctuations are at present time in the
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high-temperature limit and the Casimir effect gives an exponential small

correction to the energy density and pressure of the fluctuations. Thus, for

a quantitative estimate of ρ and P it is enough to take for the regularized

expression of (2.13) the formula (which is valid in all three cases χ = 0,±1)

Fren = kBT
∫

∞

0
n2dn ln

(

1 − e
−

h̄ωn
kBT

)

= − h̄

3

∫

∞

0

n3 ∂ωn

∂n
dn

exp
(

h̄ωn

kBT

)

− 1
(B.6)

where ωn is defined by (2.14). For the mass-energy density, we have in a

closed universe

ρ =
1

2π2a3

∂(βFren)

∂β
=

h̄

2π2a3

∫

∞

0

n2ωndn

exp
(

h̄ωn

kBT

)

− 1
. (B.7)

It is not difficult to calculate P using formulas (3.21), (B.6) and the connec-

tion ∂ωn/∂a = −(n/a)∂ωn/∂n:

P = − h̄

6π2a2

∫

∞

0

n2 ∂ωn

∂a
dn

exp
(

h̄ωn

kBT

)

− 1
= − 1

2π2a3
Fren. (B.8)

Consider two particular cases: high- and low-temperature limits, in which

the temperature of the universe kBT is much or much smaller than the mass

of scalar particles. Note through that the parameter Θ/h̄ >> 1 in all cases.

I. High-temperature limit: kBT >> h̄m.

This is the limit of ultra-relativistic particles: ωk ≈ k = n/a where the

equation of state is P = ρ
3
. For the energy density we get (in restored

dimension) from (B.7)

ρ
(

g

cm3

)

=
π2

30

(kB)4

h̄3c5
(B.9)
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in agreement with (3.41) (up to the exponentially small Casimir correction).

The standard model of the universe gives for the present state the esti-

mates [20] Λ ≤ 10−56cm−2 and a ≥ 1028cm. From formulas (B.4) and (B.5)

we have ρ = Λ
8π

and a2 = 3
2

1
Λ
. If we take now for ρ the expression (B.9) then

we obtain the parameters Λ ∼ 10−56cm−2 and a ∼ 1028cm for T ∼ 400K.

Thus, if ultra-relativisitic particles exist at the present time in the thermody-

namical equilibrium state with the temperature T ∼ 400K, they can stabilize

the universe. The temperature T ∼ 400K gives the upper limit for the mass of

the particles to consider them as ultra-relativistic ones: m < 10−8me, where

me is the electron mass. Such super-light particles are predicted in some

types of unified theories, supersymmetry and supergravity [23]. Of course,

this consideration is rather rough. We have shown here only the possibility

in principle of a stabilization of our universe.

II. Low-temperature limit: kBT << h̄m.

In this case ωk ≈ k2/2m + m and for the mass-energy density we have

ρ =
3
√

2π

8π2
h̄m4e

−
h̄m

kBT

(

kBT

h̄m

)5/2

+

√
2π

4π2
h̄m4e

−
h̄m

kBT

(

kBT

h̄m

)3/2

≡ ρ1 + ρ0, (B.10)

where ρ1 is the kinetic energy density and ρ0 is the rest mass density and

ρ1 << ρ0 in this limit.

For the pressure we can get the relation P = (2/3)ρ1 which coincides

with the equation of state for Fermi and Bose gases of elementary particles

[24]. As ρ0 >> ρ1, P we can omit ρ1 and P in the Einstein equations
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(B.4) and for the parameters of the static universe we get the formulas Λ =

4πρ0, a
2 = χ/(4πρ0) which for χ = +1 coincides with the formulas for the

Einstein universe in the matter dominated era. It is impossible to get from

formulas (B.10) and (B.5) the more or less real parameters of the observable

universe at present time. The point is that formula (B.10) relates to particles

(and antiparticles) which are in thermodynamical equilibrium state and their

energy density and number of particles (antiparticles) for kBT << h̄m is

exponentially small. The parameters of real universe under low temperatures

are defined by usual neutral matter which is not in equilibrium state already

[25].

If the scale parameter a is such that δ << 1 we can use also the above

formulas for ρ and P change also. If a → as, ρ → ρs and P → Ps where as, ρs

and Ps are connected with each other by formulas (B.5), then the stabilization

of the universe near as will take place. But this state is a metastable one

[20].
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