IL NUOVO CIMENTO Vor. LXIX A, N. 1 1o SBettembre 1970

A Mixing Operator for the SU,xSU, Chiral Algebra (*).

¥. BuccerrA, H. KiriNgrr (™) and C. A. Savoy (™)
CERN - Geneva

E. CELEGHINI

Laboratoire de Physique Théorique et Hautes Fnergies - Orsay

E. SORACE

Istituto di Fisica dell’ Universita - Firenze

(ricevuto il 29 Aprile 1970)

Summary. A saturation scheme within an infinite set of states is
proposed for the chiral algebra. Mesons are classified in the (35, any I)
representations of SUgx 0,, while the (88, L =even) and (70, L = odd)
representations are chosen for baryons. A mixing operator exp [—i6Z] is
proposed which transforms the axial charges of the SU, solution into
the physical ones. The specific form we choose for Z gives rise to many
predictions. All the axial couplings of the lower positive-parity meson
states to m, p and o are obtained in terms of only one parameter and
the results are in fair agreement with experiment. In particular, the
B-meson is predicted to decay transversely, while the ¢,/g, ratio for the A,
is found to be —}. For the ¥ baryon oectet, we get D/F =32 and
G* =% G, (which implies I'a_,yr= 125 MeV) up to second order in the
mixing angle 8. For each SU;x O, multiplet all the decays into N'+=
are given in terms of only one parameter (at lowest possible order in the
mixing angle) in general agreement with experiment. Finally, we are
able to obtain strong restrictions on the chiral content of the 3% octet,
which are perfectly eompatible with nature.

(*) To speed up publication, the authors of this paper have agreed to not receive
the proofs for correction.
(**) On leave from Institut fiir Theoretische Physik der Freien Universitdt, Berlin.
(***) Fellow of Conselho Nacional de Pesquisas, Brazil, on leave from Instituto de
Fisica Tedrica, Sdo Paulo.
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1. ~ Introduction.

While duality people are dwelling in immense systems of particles (and
ghosts), saturation attempts to the algebra of vector and axial-vector charges
have, in the past, modestly limited themselves to considering only small sets
of baryon and meson resonances (I'3). Following the original suggestion of
GELL-MAXNN, inspired by the quark model, all saturation schemes are based on
a finite number of representations of SUgx O; (or SU, X 0;). The most exten-
sive discussion of baryons that can be found in the literature saturates with
SUs X O3 multiplets (56, L = 0), (70, L =1), (56, L = 2) (*), while meson con-
siderations have worked their way up to SU,Xx 0, multiplets (16, L =0) and
(15, L=1) (*). This limitation has a simple reason: particles have definite trans-
formation properties only under the groups SU, (or SU,), P and C, and there-
fore will, in general, congist of arbitrary mixtures of SU, X SU, (or SU; X 8U,)
representations compatible with the selection rules of the axial charge. Thus
baryons can mix arbitrarily, while mixed meson states possess the same G-parity
and, at the helicity zero level, the same normality N = P(—)’. In addition,
elastic matrix elements have to be proportional to the helicity of the particles.
These restrictions fortunately reduce the number of mixing angles in the case
of the (15, L =90) and (15, L = 1) meson scheme to two (m-A; at helicity 0
and p-B mixing at helicity +1) (®). In the baryon case, however, even with
further restrictions, six angles are needed in order to describe the mixing
between the (56, L =0) and the (70, L=1) (?).

It is well known that limited saturation schemes cannot account for many
empirical facts and theoretically accepted ideas about particle properties.
First, meson and baryon trajectories rise almost linearly up to high values
of spin and possibly indefinitely. Second, Adler-Weisberger relations in which
the highest members in a finite saturation scheme are taken as targets yield,
in general, too large coupling constants, since neighbouring resonances of
higher masses are missing in the intermediate states which would bring down
the individual couplings. Finally, it is well known that local commutation
rules of current densities require an infinite set of particle states if they are

(1) R. DasgeEN and M. GerrL-MaxN: Coral Gables Conference on Symmetry Prin-
ciples at High Energy, Vol. 3 (1966); R. Garto, L. Marant and G. PREPARATA: Physics,
3, 1 (1967); Phys. Rev. Lett., 18, 377 (1966); Nuovo Cimento, 44 A, 1279 (1966);
H. HARARI: Phys. Rev. Lelt., 16, 964 (1966); N. CaBieBo and H. RukeG: Phys. Leit.,
99, 85 (1966).

(2} I. BucceEnLa, M. Dt Maria and M. LusigNoLi: Nucl. Phys., 6 B, 430 (1968);
F. BuccerLa, M. De Maria and B, Trrozzi: Nucl. Phys., 8 B, 521 (1968); F. BUCCELLA,
E. CeLEGHINI and E. SoRACE: Left. Nuovo Cimento, 1, 556 (1969); 2, 571 (1969).

(3) C. BorprigmiNi, F. Buccerra, E. CeELEGHINI, E. SorAcE and L. TRIOLO:
Nota Interna No. 262, Istituto di Fisica dell’Universita, Roma.
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to yield realistic electromagnetic form factors of nucleons and their reso-
nances (*).

For these reasons, any group classification scheme of the particle states
will need, for the description of the internal excitations, at least a reducible
unitary representation of O;,. A single irreducible representation corresponds
to a quark model, in which an orbital angular momentum can be excited from
some value L, to co. Such a spectrum, however, is too small to accomodate
a possible occurrence of daughters of Regge trajectories. Therefore GELL-MANN
and ZwEIG have proposed the group O, allowing for orbital excitations with
H-atom degeneracy (°). At the present experimental situation, such a spec-
trum seems far too large to be taken seriously. A better candidate appears
to us: the spectrum of the three-dimensional oscillator described by an irre-
ducible representation of U,;. This spectrum can be labelled by a principal
quantum number n=20,1, 2, 3, ..., for each of which I can take the values
L=0,2,..,n for n=even and L=1,3,...,n for n=o0dd. Exciting a quark-
antiquark system 15 with these orbits one finds in the m-m channel exactly
the same multiplicity of particles as there are poles in the four-point Vene-
ziano amplitude, except that every second sealar meson is missing. It is curious
to note that the Veneziano amplitude for w-m does, in fact, not couple the
second scalar meson and gives relatively small values for the fourth, sixth, ete.,
g-megon (°). Ior the baryons, an L =0 multiplet for » =2 accounts comfor-
tably for the Roper resonance with the quantum numbers of the nucleon.

Whatever the exact group of internal excitations of the quark model may
be, the crucial problem is how to cconomize the mixing procedure without
introducing infinitely many parameters. In this work, we propose to use a
simple unitary «mixing» operator

1) T =exp[—i0Z]

with the generator

(2) Z=(WxM),—=iW.M_—W_M,).

The operator M is the generator of the Lorentz group, while W= transform

(*) This is the content of the theorem by F. CorsteEr and G. ROEPSTORFF: Phys.
Eev., 155, 1583 (1967). For a calculation of such form factors (as for example the dipole
formula for the nucleons) see: I. KLEINERT: Springer Tracts in Modern Physics,
Vol. 49 (1969).

(°) For a discussion of this model, see: H. HarARI: talk in the Proceedings of the
XIV International Conference on High-Energy Physics (Vienna, 1968).

(*) The Vencziano model for the =-x amplitude, with massless pions gives
B,=0, Ry=0.14, B, = 0.013, B;= 0.07, R;= 0.013, ..., where R, is the ratio between
the partial widths of ¢,—nw and o, 7w and we see that the even c-mesons are
indeed coupled much less than the others.
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like the o= members of the 15 (or 35) for SU, (or 8Uy), respectively. For the
mesons, W is taken to connect only 15 and 15 (or 35 and 35) symmetrically (%),
while for the baryons we assume it to contain only the transitions 56 = 70.

Our choice of Z makes the matrix elements of the axial charge (8) Xg,(h)
(h = helicity) satisfy the physical constraints. The reason is, briefly, that Z
is a positive G-parity, isosinglet, J* =17 operator. Therefore Xg,(h):

i) trivially will change the G-parity,

ii) fulfils the angular condition

(3) Xy (h) = —npn, (—)F > Xp(— D),

which is a consequence of the J*=1" character of the Lorentz generator in
the multipole expansion of X (k) (°).

In this paper we shall discuss the various general consequences of this
prescription of mixing which are independent of the particular choice of the
orbital group. We shall show how several mixing angles of earlier works (*?)
are predicted in excellent agreement with experiment. For example, the exper-

(") Here it coincides essentially with the W-spin of H. J. LipEIN and 8. MESHKOV:
Phys. Rev. Lett., 14, 670 (1965).

(¥) If particles « and f are moving collinearly in the z-direction with helicity &,
X (h) is defined ag the invariant matrix element of the axial charge at t=0:

{Bp' W |Q2aphy = 2(Py+ | P|) 3 X poB)
In terms of X(#) the decay of « into § and a massless pion =, is given by

(my— mg)® 1
e Lt
o -4 h

2
>

~l-’¢::—>[3+'n':: A —7;713
where A= (16mF2)"1==2.2 (GeV)=2. The chiral algebra says that X, is an SU, vector
commuting aceording to [Xg(k), Xp(h)]= if.ps s, where T is the isospin. For a detailed
discussion of X(h) see: S. WERINBERG: Phys. Rev., 177, 2604 (1968).

(*) The condition ii) follows by writing X gs(h) for states at rest,

Xpa(h) = ]/Wmi: {pOR|QTT exp [iMs log ;—%] OB

expanding the exponential and multipole analyzing the products @3*°My. In our
case the mixing generator Z, which is the third component of a vector operator under
J =L+ 8 obviously produces the same multipole properties as M;.

In particular, the elastic matrix element X4, is a pure vector, which is clear from the
equation above since mq=mg, and Q¢"°->@}, as a pseudoscalar, has no elastic transi-
tions. That this property is fulfilled by our mixed states is not quite as trivial to see.
Up to the lowest order we have verified this property.
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imental polarization of the A, — prw decay (*°)

@) e

’ = 0.48 4-0.13
AIP O

comes out to be %.
For the nucleons, the most important result is

(5) G =Gy,

Sl hw
l
[=J I

which gives (with ¢,=4) a width of

if one calenlates I’ by integrating over the A peak (1!). For the higher meson
and baryon resonance decays, see the text and Table IL.

The specific infinite-component properties of our mixing operator will be
discussed in a future paper.

2. — Meson system.

The quark-antiguark representation 15 of SU, consists of o, o, 7, the spin
components of which decompose under the chiral SU, X 8U, subgroup

Q =it(l+40), Q@ =i{7(l—0y),
according to
vl v}
e=1 ¢t |, = s |, 7T, = by
1 _,0:1

(19 J. BALLAM et al.: SLAC publication 627, submitted to Phys. Rev.
(1) The connection between G* and the ANT coupling constant defined by

= (g% [u) Kv'/Vav”
is G**= 4(g**/47) where
g 3p® ds  Imf
4n  a JE+M ¢
(M+p)d

One finds ¢**/4n~0.26. See: J. ExcLEs, G. HouLER and B. PrrERssoN: Karlsruhe
preprint, April (1968).



138 F. BUCCELLA, H. KLEINERT, C. A. SAVOY, E. CELEGHINI and E, SORACE

Here v,, t,,, and s denote the representations (§, %), (1, 0)F(0,1) and (0, 0)
respectively, and Z is the dual tensor ¥ = g,
The matrix elements of the axial charge

X—Qt—Q
are given by

<'U4|Xi|’va'> = <’U:'|Xi|’04> = 611,

(6)
<ZiIXJ'|t4IC> = <t4k|X1[zi> = iem 7

all other transitions being zero.

Suppose that the orbital excitations of the quark-antiquark system can be
clagsified by some reducible representation of 0, ,, labelled by [nLL,> (where
the principal quantum number n allows the same L to occur more than once).
Then the eigenstates of total angular momentum are given by

nL ( P) Jh} = (18, LL,)Jh) ( p)S'InLLQ y
[€)] [12]

(7)
[nLmdh) = wnLlLy 6,,9,,

Clearly the orbital wave functions |nLl;> have to be eigenstates of P and C.
Since the generator M is odd under both transformations, while L is even,
the scalar product L-M vanishes. Hence only triangular representations
with lowest spin zero can be mixed in |nLZL;>. In this case M has no matrix
elements between states of equal L.

Hxplicitly, one finds at the ;=1 level the following particles (A= helicity).

P~
i
o
=
i
ot
=
I
=/
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In order to allow any of these states to decay into the ground states (4 ),

mixing has to be introduced. Neglecting the contribution of higher states,
the most one can mix is, at the A =1 level,

(8) e =V1—pf—. o+ B, B =—fp+V1—p—.. B,
and at the h =0 level
(%) n =V1—o—..7+ ad,, Al=—agn+V1i—art—.. . A,.

This gives for the reduced matrix elements of the axial charge at first
order in the mixing angles (12)

Gen(0) = % Gpa(0) =0,
2
q P =1/ 5%, GBm 1) =— ?
0 ) V3cc (1) i
Gapo0) = —a, Ghe(l) = %
GAlp(l) = \—Tg ’

In order to connect the parameters o and f consider the mixing prescribed
by the operator 7':

T = exp[—i0Z], Z=iW.M_—W_M,).

The matrix elements of W= can be given most easily in terms of the transition
diagrams

9—1 90 -+ Pi!u_ _in - p-H
W\ / _ W\ /:V +
n n
(*?) They are defined by
B X o(h)|oe> = 5tB,aGam(h) , for I,=0,Ig=1
BIX o) |y = 84,01, O BalP) » for I,=1Ig=1,

with G, Hermitian.
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Similar diagrams hold for M, between I = 0,1 states, where (, is an
arbitrary reduced matrix element (%)

\1—1>_L|Iom>__i_11> ““1_>__|_10_>“,|“”>
M¥ G M mNG Gt
|0.o> [00)

Obviously Z annihilates p° while for p+! and = one finds

(11) —iZrm—= (W M_—W_M,) m|00) = C,(p*[l —1) — p'11)) =v2(, A2,
while

(12) —iZpt= (W M_—W_M_)p!00> = —C,w[11) =— C,B*.

Hence to lowest order in the mixing angle § we find
1
(13) b =——
x V2

From the experimental value 0.11 (~1/9) for G}

2, ois determined to be 1/v/3.
As a consequence, one predicts

1
> Gleh) = 5 (exp <0.48),
h
. 2
Gon = 3 (exp. >0.1),
(14)
S G2ulh) = (exp. 0.33),
h
0 1
> @ eh) = 5 (exp. 0.13),
A
and the polarization ratio of the A, decay
Guo(l)| 1 "
(15) ’GM(O) =3 (exp. 0.48 4-0.13) (19) .

(*?) The coefficients ¢ are defined by

L+ 1, Ly VU MHLL)Y = — V(L 4 Ly WL &= Ly+ 2) Oy,

1
vZ
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To lowest order in Z it is also easy to derive directly a set of branching ratios
among odd-I isospin-zero particles f, ¢ and their recurrences. Since an odd
power of Z applied to = always yields a state of the form (v!—wo?), and f,, o,
(fo =1, 0, = o) have the form

—_— 1”, _— r- L ]
fm—\/m /%( Lyt +VIF 18],
(16) ' )
_ 1 /21
Or—1 VoL -1 ) (v — V7 )——\/LS ,
we find ) ’
{Ton| X|m> _'l/ L
) o Xmy VL +1°

Similarly, for the odd parity, odd J>3 mesons g,.,,, (recurrences of p) and
P.;-=L—1 (p' and its recurrences), we find

(18) (o) X |7 . _] L+1 .

ZZ)IL-JX{JO N

If we compare this with the coupling given by the Veneziano model for =-m
scattering

L{2L —1)2
4420 —1)!!
oaaz b+ 1)2LA 1)1

even L ,y2
Gﬂ L+1I T - GﬂpL-}-l )

LRLYDI #

even L (2 |

G odd L
-1 npz—1’

1
7

(19)

We find for the ratios Gi,, [GRs, , and G, . (G,

DL+1/

(87 A% U A | Tz’
L=1 L=2 IL=3 L=4 L= o
Veneziano 1/6 3/8 7/15 405/784 e/4
Lowest order in Z 1/2 3/2 3/4 | 5/4 1

3. — Baryons.

The experimental quantum numbers of the baryons ean be classified ac-
cording to the SU;X 0, representations (56, L = even) for positive parity and
according to (70, L = odd) for negative parity (*4).

(1 R. H. Davrrz: Proceedings of the Oxford COonference on Elementary Particles
(1965).
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The decomposition of 56 and 70 into their chiral contents is given in Table I.
States of total angular momentum J are constructed analogously to the meson
case. For example, the (70, L =1) states of total J, Jy(=h) = 3,

lﬂ) 150, = [7008, 3151 (be., 8=3,J=13),
|7_0 2>L—1 == }7_(){87 %] %>1 ’
(20) I@_3>Lw1 = |7_0 (3, “g“] %>1 ’

IT_O 4>I.=1 = ]7_0[8’ %]%>1 ’
fﬂ) 5>L-1 = |@ (8, %] %>1 )

TasrLe 1. — Mairiz elements of W,.

8= § b —1% —%
Decuplets

56 (10,\ (6, 3)10 /(;” 6)10 /((1, 10)

V3 \ 2 V2
\ / R /

m (65 3)10 (3: 6)10

Ovctets

56 (69 3)8 (37 6)8
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are given in terms of the SU, <X SU, states

701} = (8,1),
]'_7_92}2(6,3),
(21) 170 3} = (3,3) ,
1@4}:(376%
}70 5}:(3,3)7
by
(22) 7065, — 4,470 B},
1 3 /3 3 3 |
= Vo —Vo Vs V=
_Vg 11 2 2
B TV V3 Vs vVis
na | L o1 11
A=n==1 75 Ve i Vis Vi
0 1 i1 1
V3 3 V6 6
0 o+ 1 1 1
Ve v V3 3

The W operator is a little more complicated in this ecase. Its transitions
have been recorded in Table 1.

Ag far as orbital excitations are concerned, we shall limit ourselves here
to states of (b6, L =0}, (70, L =1) and (66, L ==0,2). The relevant transitions
of the operator M, are pictured in Fig. 1 (3).

With these diagrams it is easy to compute the mixed chiral states contained
in (66, L=0), (70, L=1), (56, L=0,2). By means of the transformation
from physical states of total J to their chiral contents we can reduce all physical
matrix elements to those of

[ <(8, 1)s|X.[(8, 1)sy = F,,

2
(23) 1 <6, 3)s|X.l(6, 8)s) = Dut3 Fo,

(8, 8)s| X,|(3, 8)s) = — D,
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E
V3’
€(10,1) X,[(10,1) > =F,

(23) J 1
<6, 3)ulXal( 6,3)10> =3 B,

(3,88l X./( 3, 8)) =

Ca,

ol B

<( 6, 3)10[Xa]( 6, 3)8> ==

Fig. 1. - M matrix elements. The numbers in
the arrows are to be multiplied by the corre-
sponding reduced matrix elements Cj.
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where F, D, E, C are the usual SU, Clebsch-Gordan coefficients \/5(888a),
v/3(888,), 4/6(10810) and 4/2(8810), respectively.
Let us normalize the axial coupling by

- Ta
BLo=3|XoaToe= 1) = 1" 5 4G
Blp=3 X Jal,= 1> = \/ngxGﬁfx ’
such that the Adler-Weisberger relation becomes

(24) 2 Gpy 1) Gralh) — Z_%Gm,(h) Go(h) = g, -

We then find for the couplings at the h =1 level, up to second order in the
mixing angle,

=34,
(where G* = G\, G, = Gy) and
DIF =3 .

Inserting the experimental value G, = 1.25 one obtaing I'y , .= 125 MeV (1),
in excellent agreement with experiment.

The results for the (70, L = 1) resonances can best be discussed by com-
paring the mixing angles predicted by our mixing operator with those ob-
tained in ref. (2). If one writes, analogously to the meson case, the mixed
nuecleon state of h=1 in the form

56[8, 110 sma = V1 —o® — B2 — B2 —23|(6, 3)s) pmn -+
+ 918, 1)dacy + Bil(3, 3)edsa+ Bil(3, B)ed e + 1|3, 6)sdpea

(25)

the various mixing angles are given in terms of only one parameter, and one
gets

(26) ﬂi =0, f,= —30[1 - _ngl ’

which compare rather well with the numbers found in ref. ()
o = 0.116 B, = —0.285,

(27)

fy=—0.060, v =0402.

10 - Il Nuovo Cimenfo A.
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Fig. 2. - (n, L, L) states in Uy ;.

A detailed numerical comparison of these results and those for the higher
states (56, n =2, L =0,2) with experiment is given in Table TI.
For the mixing of the decuplet, we obtain by mixing at h =3

(28) 156[10, 31> se0 = V1 —126%[(10, 1)> 50 + 2V 3 01} (6, 310> 11 5
and at k=13

(29) 156[10, 31> 400 = V1 — 40}%(6, 3)100 zm0 — 2061](3, 6)100 11 -

This has two important consequences:

1) The opposite signs of the octet and decuplet mixing angles with the
(3,6)>,_, representation imply small transition rates for the negative-parity
decuplet decays into nucleon and pion, as observed experimentally.

2) The ratio of the mixing angles at the helicity # =% and k= } is such
that the diagonal matrix elements of the decnplet are proportional to the
helicity up to the second order in the mixing angle, as is required from the
angular conditions {®).

As in the meson case, we get some relations between the axial couplings
of the baryon octet to the higher states with s=1 and equal L, again at
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TasrLe II.
N J? Teor | e !W | G| MDI(M|FWf}
i (MGV) . ‘} NN ;lexp NN (th exp I th |
j ———— I ___A._..i._.__—.
1) 56, n=0, L= 0 (ground state)
N(939) 1+ L 1.562 1.562 0.67 2
A (1236) 3+ 120 - 1.04 1.0
2) 56, n=2, L=10
N(1470) 3t 300 0.6 | 0162 | 0-162 2
A - | | 0.104
3) 56, n=2, L =2
N(1688) | §* 140 0.6 | 0.097 0.097 1.07 %
N'(1860) 1 3+ 380 0.27 | 0.047 0.064 3
A(1890) | §* 255 0.17  0.026 0.01
A(1910) | 4* 325 0.25  0.016 0.020
A (1950) | F* 180 | 0.45 0.058 0.053
A (%) g | L 0.020
4) 70, n=1, L=1
N°(1520) 3~ 125 0.5 ° 0091 | 0.091 1.2 5
N(1535) 3~ 105 0.34 0.024 0.045 —0.34 —1
N(1670) 5- 140 0.42 0.070 0.021 —0.13 —1%
N'(1700) 1- 250 0.70 ~ 0.063 : 0.182 2
N(D 3= Lo0.002 ! —1
A (1650) 1- 190 0.27 0.021 0.023
A (1670) 3- 235 0.13 | 0.024 0.012
A (1405) i 40 1 - 0.200 0.154 |
A (1520) 3- 16 041 | 0.02 0.07 |

lowest orders in the mixing angle; in fact, it is easy to see that for both decuplets
and singlets of negative parity one finds the ratio

Gley . L

Gd:, L-+1°
while for positive-parity octets

Gy L1

4 L

and D/F = 3.

(15) See, R. LEvI-SETTI: talk in Proceedings of the Lund International Conference
on Elementary Particles (1969).
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There is another property of the mixing operator exp [—0Z], which we would
like to emphasize. First we write the most general expression for the chiral
content of the octet 1™ in the absence of exotic states, at h=} (?),

(30) 156 (8, $10 4e0 = %|(6, 3)g> a5 + &'[(3y 6)gPanp
-+ B(3, §)8>allL + ﬁ”(gﬁ 3)s anz + YIS, 1)z ¥ 1Ly 8V s s

ot p ot B B gy = 1

The following sum rules can be derived for the mixing angles:

9 9

ot = ¥ s, = 72 (S G, — 1),
3

2+ - J—— G2

(31) 18 ﬁ 4; Z¥oer )

0:2—{—]32—05’2—[3’2:1),

2 2

Z a2 2 T2 a2

3 + 3 ¥ .

Using the experimental widths and the diagonal matrix elements of the axial
charges, the right-hand sides are determined to be

o? - a'? = 0.67, ot + pr—a*— % =0.75,
(32)
%+ 7 =0.18, 2o+ 2 —2a'?—9p"" =0.00.

This implies

ar?ﬁlZ — 0'05 ,
(33)
20’ + 9% =0.05.

The exclusion of the (1, 8) and (3, 3)s SU, X SU, representations in the baryon
octet wave funection at h =1 is a specific property of our mixing operator
exp [--i0Z]. This happens since the two quoted representations appear only
in the (70, L = odd) and will never be reached by repeated application of the
Z-operator due to its property AS,= +1. Moreover the amount of (3, 6) is
expected to be small (see Table I). Both these predicfions are in agreement
with eq. (33).

Finally, we want to stress that «* (which gives the amount of the mixing
of the pion to the higher states) and a)® -+ §2-- 9% (which plays the same role
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for the baryon octet) are almost equal; in fact, we obtain
=14, o+ i+ yi=1031,

from the experimental widths of the f and the N(1520), respectively. This
universal character makes our mixing operator still more appealing.

4. — Concluding remarks.

In this work we have been concerned only with the axial coupling constants
of the particles. We have completely ignored the restrictions imposed upon
the mass spectrum by means of the superconvergence of the I,=2 wo—nf3
scattering amplitude, which gives (%)

(34) [X., [X,, m*]] = §6a[X., [X., m?]] .

The fact that Z transforms like a (4, §) (or (3,3)+ (3,3)) representation of
SU,x8U, (or SU,;x 8U,) makes us expect also the masses to behave reason-
ably well. This problem will be studied in detail elsewhere.

RIASSUNTO

Si propone uno schema di saturazione dell’algebra chirale all’interno di un in-
sieme infinito di stati. I mesoni sono classificati nelle rappresentazioni (35, L qual-
siasi) di §Ugx Oy, mentre per i barioni si scelgono le (56, . pari) e (70, L dispari). Un
operatore di mistura exp [— i60Z] viene proposto per trasformare le cariche assiali
di SUg in quelle fisiche. La forma speeifica scelta per Z da luogo a molte predizioni.
Gli accoppiamenti dei mesoni pitt bassi di paritd positiva a m, g ed « si esprimono in
termini di un solo parametro in buon accordo con i valori sperimentali. In particolare
81 prevede il decadimento traversale del mesone B, mentre par I'A, il rapporto g,/g,
risulta — . Per quanto concerne l'ottetto dei barioni %+, otteniamo & per D/F e &
per G*/G, (che corrisponde a 125 MeV per I'y_,xx) sino al secondo ordine nel parametro 6.
Per ciaseun multipletto di SU;x O; tutti i decadimenti in N°-+7 si ottengono in ter-
mini di un solo parametro (all’ordine pit basso possibile nell’angolo di mistura) in accordo
generale con i dati sperimentali. Infine siamo in grado di ottenere forti restrizioni sul

contenuto chirale delPottetto %+, del tutto compatibile con la realta fisica.

Pe3roMe He momydeHo.



