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Path integral for a relativistic spinless Coulomb system
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Abstract

The path integral for the relativistic spinless Coulomb system is solved, and the wave functions are extracted from the
resulting amplitude.

PACS: 03.20.+i; 04.20.Fy; 02.40.+m

1. While the path integral of the nonrelativistic Coulomb system has been solved some 15 years ago [1] and
further discussed by many authors [2-14], so that it has become conference [15] and textbook material [16],
the relativistic problem has remained open - for particles of spin zero as well as spin-1/2 2. The purpose of
this note is to fill this gap for spin-zero particles.

2. Consider first a free relativistic spinless particle of mass M. If x#(A) describes its orbit in D spacetime
dimensions in terms of some parameter A, the classical action reads

Ap

Ad:Mc/d/\\/x’z()t), )

Aa

where ¢ is the velocity of light. This action cannot be used to set up a path integral for the time evolution
amplitude since it would not yield the well-known Green function of a Klein-Gordon field. An action which
serves this purpose can be constructed with the help of an auxiliary fluctuating variable p(A) and reads?

' E-mail: kleinert @einstein.physik.fu-berlin.de.

2 The problem of summing nonrelativistic fermion orbits in a Coulomb field has not even been satisfactorily formulated. There exists a
paper entitled “Exact path integral solution of the path integral of the Dirac-Coulomb problem” by Kayed and Inomata [17], but contrary
to what it suggested in its title, this paper does not address the above summation problem, circumventing it by using the Dirac equation
for the Green function as an input. With well-known operator manipulations, this is decomposed into ordinary Schrodinger equations for
the radial wave functions, for which equivalent path integral representations are derived by time-slicing. The final path integral involves
good old boson orbits,

3 For p(A) = 1, this was noted by Feynman and Hibbs [18].
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Ap
A=/d/\(2pA(4A)x’2(/\) + %Mczp(/\)). (2)
/\1/

Classically, this action coincides with the original A since it is extremal for

p(A) =/x"2(A) /c. (3)

Inserting this back into (2) we see that A reduces to Ag.
The action A is invariant under arbitrary reparametrizations

A— f(A). G

The action A shares this invariance, if p(A) is simultaneously transformed as

p—plf. (5)

The action A has the advantage of being quadratic in the orbital variable x(A). If the physical time is ana-
lytically continued to imaginary values so that the metric becomes Euclidean, the action looks like that of a
nonrelativistic particle moving as a function of a pseudotime A through a D-dimensional Euclidean spacetime,
with a mass depending on A.

3. To set up a path integral, the action has to be pseudotime-sliced, say at Ag = Ag, A,. .., Angr = Ap. If
€n = A, — Ay—y denotes the thickness of the nth slice, the sliced action reads

N+1 M
AY = Z(Qp p (Ax,)?2 + %Mcze,,p,,), (6)
n%n

n=]

where p, = p(An), Ax, = xp — Xp—1, and x, = x(A,). A path integral f(DDx/\/’ﬁD) e AR may be defined
as the limit N — oo of the product of integrals

1 N dPx, ( 1 ~>
——AY ). (7)
(\/27Tﬁ€bpb/M)D g( (\/ ZWﬁfnPn/M)D> P fi

This can immediately be evaluated, yielding

oo Metazs ) ®
(V2rhi Mo P\T T L %)
where the quantity
N+1
L= cZe,,p,, 9)
n=1
has the continuum limit
Ay
L=c/dAp(/\). (10)
A

Classically, this is the reparametrization invariant length of a path, as is obvious after inserting (3).
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If the amplitude (8) is multiplied by %/\C, where Ac = fifMc is the Compton wavelength of the particle, an
integral over all positive L yields the correct Klein-Gordon amplitude

1 Mc \P!
(xplxq) = W(ﬁ_ﬁ) KD/2—1(Mcxﬁc—2/ﬁ), (11)

where K, (z) is the modified Bessel function.

The result does not depend on the choice of p(A), this being a manifestation of the reparametrization
invariance. We may therefore write the continuum version of the path integral for the relativistic free particle
as

(x|%xa) =—/\c/dL/Dp¢[p]/ ( VP)Pe A, (12)
0

where @[ p] denotes a convenient gauge-fixing functional, for instance @[ p] = 8[ p — 1] which fixes p(A) to
unity everywhere.
To understand the factor 1/( \/ﬁ)D in the measure of (12), we make use of the canonical form of the action

(2),

Ap

Alp.x] = / ar( —ipx + 2D2° M) ). (13)

M
Aa
After pseudotime slicing, it reads
N+1 P2
N . 2
AV[p,x] = Z(—lpn(x,. = Xn-1) + prény + 1Mc Enpn>- (14)

n=1

At a fixed p(A), the path integral then has the usual canonical measure

N+1
DD —A[p,\]/ﬁ,\, H de H den e—AN[p,xl/ﬁ (15)
(277&)0 ") (2mh)D '

By integrating out the momenta, we obtain (7) with the action (6).

4. The fixed-energy amplitude is related to (12) by a Laplace transformation,

0
(xslxa)e = —i / Ax0 B/ x5y, (16)

x4

where x° denotes the temporal component and x the purely spatial part of the D-dimensional vector x. The
poles and cut of (x,|x,) £ along the energy axis contain all information on the bound and continuous eigenstates
of the system. The fixed-energy amplitude has the path integral representation

(xb|x,,)g-/dL/'Dp¢[p]/ Dxl e~ As/R (17
J (v/P)
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with the action

Ay

- M . _
AE-/dA<2p(Mx (A) = p(A)

a

E2
2Mc?

+ %Mc2p(/\)>. (18)

This is seen by writing the temporal part of the sliced D-dimensional action (6) in the canonical form (14).
By integrating out the temporal coordinates xg in (15), we obtain N &-functions. These remove N integrals
over the momentum variables p°, leaving only a single integral over a common p°. The Laplace transform

(16), finally, eliminates also this integral, making p* equal to —iE/c. In the continuum limit, we thus obtain
the action (18).

5. The path integral (17) forms the basis for studying relativistic particles in an external time-independent
potential V(x). This is introduced into the path integral (17) by simply substituting the energy E by E—-V(x).

For an attractive Coulomb potential in D — 1 = 3 spatial dimensions, the above substitution changes the
second term in the action (18) to

Ap

A = — / dAp(A)

Aa

(E+.«32/1x|)2

19
2Mc? (19)

The associated path integral is calculated with the help of a Duru-Kleinert transformation [1] as follows.

First, we increase the three-dimensional configuration space in a trivial way by a dummy fourth component x*
(as in the nonrelativistic case). The additional variable x* is eliminated at the end by an integral [ dxd/|x,| =
f dy, (see Egs. (13.114) and (13.121) in Ref. [16]). Then we perform a Kustaanheimo-Stiefel transformation
dx* = 2A(u)y du” (Eq. (13.101) in Ref. [16]). This changes x’#? into 4i%i"?, with the arrow indicating the
four-vector nature of #. The transformed action reads

4

Ap
_ ami® _, p(A) 24 g2 2_ €
AE—/d/\[zp(/\)u (D) + 505 ((Mc — E*)i® — 2Ee _u?)] (20)

d

We now choose the gauge p(A) = 1, and go from A to a new parameter s via the time transformation dA = fds
with f = #?. This leads to the Duru-Kleinert-transformed action

Sh

aM
DK _ 42
Ag _/ds[Tu (s)+2Mc2

4
((M2c4—E2)12'2—2Ee2—e—)]. 1)

u?
Sa

It describes a particle of mass 4 = 4M moving as a function of the “pseudotime” s in a harmonic oscillator
potential of frequency

w= 5o M2c* — E2, (22)

The oscillator possesses an additional attractive potential —e*/2Mc%i® which is conveniently parametrized in
the form of a centrifugal barrier

12
Vextra = hzﬁj%, (23)
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whose squared angular momentum has the negative value

lgxtra = —4&'2, (24)

where @ denotes the fine-structure constant a = e° /hc = 1/137. In addition, there is also a trivial constant
potential

E
Veonst = _Wez' (25)

If we ignore, for a moment, the centrifugal barrier Vexy,, the solution of the path integral can immediately be
written down (compare Eq. (13.121) in Ref. [16]),

oo 47

B o
(el = ~izp— e / AL P EL/MEN / dya (@ L|E0), (26)
1]

where (i1, L|i;0) is the time evolution amplitude of the four-dimensional harmonic oscillator.
There are no time-slicing corrections for the same reason as in the three-dimensional case. This is ensured
by the affine connection of the Kustaanheimo-Stiefel transformation satisfying
I“#W\ = g;weikaﬂeiu =0 (27)
(see the discussion in Section 13.6 of Ref. [16]).
A vy,-integration leads to

A M i 2 1
(xp|%0)E = -imgg dé’( ’ )210<2K \/—i\/ 1(rora +xbxa)> CXP(-KI f Z("b + ra)),
0
(28)
with the variable
p=e L (29)
and the parameters
e E a pw 1 Ea
- = =B et —p=—=2 30
YT hME T A1 " 2k he M hic v (30)
We now use the well-known expansion
Io(z cos(56)) -—Z(ZI+I)P,(COSO)I21+1(Z) (31)
1=0
and obtain the partial wave decomposition
(xXplxa)E = Z(rblram Z(rbmm Z Yim(26) Y (%), (32)
Ya m=—1

with the usual notation for Legendre polynomials and spherical harmonics. The radial amplitude is, therefore,

o0
kK 2M
(rolra)er =~ rbra—ﬁ-—/dy
0

1
2wy N — ). 33
S e exp[ —«cothy(ry +ra) 12141 (ZK\/rbra sinhy) (33)

sinh y
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At this place, the additional centrifugal barrier (23) is incorporated via the replacement
241 —-2+1= QI+ 12+ 2, (34)
(as in Eqgs. (8.146) and (14.237) in Ref, [16]). The integration over y yields

(rolra)es = —i A MI(—v+I+1)
PR "M ik 2T+ 1)1

W, 1112215 M, 1,1 (2K a) (35)

(compare Eq. (9.64) in Ref. [16]; see also p. 139 in Ref. [15]).

This fixed-energy amplitude has poles in the gamma function whenever v—/—1=0,1,2,... . They determine
the bound-state energies of the Coulomb system. Subsequent formulas can be simplified by introducing the
small positive /-dependent parameter

2
6,5[—7=l+%—\/(1+%)2—a2m2;:_1+0(a4). (36)

With this, the pole positions are given by ¥ =y =n— §;, withn=1+1,14+2,/+3,..., and the bound state
energies become

-1/2
Ey=+Mc? 1+-—L Y ~ +Mc? 1-4"2—~95‘1 3 0(a®)|. (37)
(n—68;)2 2n2 n3\2l+1 8n

Note the appearance of the plus-minus sign as a characteristic property of energies in relativistic quantum
mechanics. A correct interpretation of the negative energies as positive energies of antiparticles is straightforward
within quantum field theory; it will not be discussed here.

To find the wave functions, we approximate near the poles v = 7,

. ~-Dm 1
v +T+1)~ D _,
n! v —iy
I 2R E N 2M _E 11 (38)
V—ﬁlwﬁ[ 2M \ Mc? EZ——EEI’ KNMczaHﬁl,

with the radial quantum number n, = n — [ — 1. In analogy with a corresponding nonrelativistic equation (Eq.
(13.203) in Ref. [16]), the latter equation can be rewritten as

k= (39)
agv
where
- Mc?
y = ap——p— (40)

denotes a modified energy-dependent Bohr radius. Instead of being 1/a ~ 137 times the Compton wave length
of the electron #i/Mc, the modified Bohr radius which sets the length scale of relativistic bound states involves
the energy E instead of the rest energy Mc?.

With the above parameters, the positive-energy poles in the gamma function can be written as

(41)

(=)™ 1 ( E )22Mc2iﬁ

= M
— i (—v+Il+1)— = — —
ik Arn! ay
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Using this behavior and a property of the Whittaker functions (see Eq. (9.80) in Ref. [16]), we write the
contribution of the bound states to the spectral representation of the fixed-energy amplitude as

oS~ E \°2Mcik
("hlra)E.l—E ZI(W> EjE—'%anl(rb)Rnl(ra) +.... (42)

n={+

A comparison between the pole terms in (35) and (42) renders the radial wave functions

: ! FaDl g ~ -
Ry(r) = — ar/man) e r/maHM(“n+1+l,2[+2,2r h)
’ 5;1{2711(21-%-1)! (n—l—1)g( [dy) .

(n=1-1)
(A+0)

= T e~/ (2r [iyay) LI (2r/Fuan).

ag n

The properly normalized total wave functions are

1
(//nlm(x) =’;Rnf(r)ylm(i)~ (43)

The continuous wave functions are obtained in the same way as in the nonrelativistic case (see Egs. (13.211)-
(13.219) in Ref. [16]).

This concludes the solution of the path integral of the relativistic spinless Coulomb system.

More details on this subject can be found in Chapter 19 of the 2nd edition (1995) of the textbook [16].
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