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Abstract

For many physical quantities, theory supplies weak- and strong-coupling expansions of the types Za,,a" and
a Zb,,(a‘z"’)". respectively. Either or both of these may have a zero radius of convergence. We present a simple
interpolation algorithm which rapidly converges for an increasing number of known expansion coefficients. The accuracy
is illustrated by calculating the ground state energies of the anharmonic oscillator using only the leading large-order coef-
ficient by (apart from the trivial zeroth-order expansion coefficient ay = 1/2). The errors are less than 0.5% for all g. The
algorithm is then applied to find energies and masses of the Frohlich-Feynman polaron. While our energies are very close
to Feynman's variational results (although more accurate), our masses are quite different from his, calling for a calculation
of at least one more weak- or strong-coupling expansion coefficient to decide which are correct.

PACS: 03.20.41; 04.20.Fy: 02.40.+m

1. Recently, the Feynman-Kleinert variational ap-
proximation to path integrals | 1] has been extended
10 a systematic variational perturbation expansion
[2]. This expansion converges uniformly and rapidly
(for the anharmonic oscillator exponentially fast like
exp(—const x N'/Y), where N is the order of the
approximation [3)?. Due to the uniformity of the

"E-mail: kleinert@einstein.physik.fu-berlin.de.

2 As far as energy values and not entire path integrals are con-
cerned, similar expansions have been proposed and investigated
in Ref. [4]. Rigorous proofs of convergence were first given in
Ref. | 5], which did not. however, explain the exponentially fast
convergence at strong couplings discovered in Ref. |6]. (Ref. [6]
contains references to earlier less accurate calculations of strong-
coupling expansion coefficients from weak-coupling perturbation
theory, in particular Refs. {7]. Those works did not extract the
exponential law of convergence from their data.) This was under-

convergence, it has given rise to an efficient method
for extracting strong-coupling expansions from a
weak-coupling expansions [10,6,8].

For many physical systems, there exists an inde-
pendent knowledge of expansion coefficients for weak
and strong couplings. Important examples are most
lattice models of statistical mechanics (see for exam-
ple Refs. [11]). The purpose of this note is to pro-
pose a simple algorithm by which the variational per-
turbation expansion can be used to find a systematic
convergent interpolation between the weak- and the
strong-coupling expansions.

The algorithm is completely general and holds for
any physical system whose quantities possess expan-

stood understood only recently in Ref. [ 8] and proved rigorously
in Ret. [9].
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sions in some coupling constant « of the type > a,a”
for weak, and of the type a” 5~ b, (a~2/4)" for strong
couplings, where either or both of these expansions
may have a zero radius of convergence.

A typical example is the ground state energy of the
anharmonic oscillator with p = 1/3.¢4 = 3. It illus-
trates the power of the algorithm. We calculate the en-
ergy for all coupling strengths using only the leading
large-order coefficient by, apart from the trivial coef-
ficient ag = 1/2. The errors are everywhere less than
0.5% (see Fig. 1).

To make a prediction, we apply the algorithm to the
Frohlich-Feynman polaron [12,13]. Its ground state
energy is known with three terms in the weak-coupling
cxpansion, and two terms in the strong-coupling ex-
pansion; for the polaron mass, the corresponding
numbers are 2 and 1. Apart from these exactly known
expansion terms, there exists Feynman’s famous vari-
ational solution whose leading expansion coetticients
are exact, and which interpolates energy and mass for
all coupling constants. The Feynman energy is an up-
per bound to the correct one. Numerically, it is known
to be quite accurate. For the mass, the knowledge is
more scarce. It will turn out that our interpolation for
the mass displays an interesting drastic shape discrep-
ancy with Feynman’s (see Figs. 2 and 3), calling for
a calculation of at least one more weak- or strong-
coupling coefficients to decide which shape is correct.

2. Following the method explained in Ref. [ 3], we
rewrite the weak-coupling expansion of order &

N
EN = Z (1,,(1" (h

n=0

ds

a "
Ey=0") a, (—) . (2)
‘ E "

where w is an auxiliary parameter whose value is even-
tually set equal to 1. whereas p.g are two parame-
ters determined by general properties of the strong-
coupling expansion to be specified below. Then we
replace w by the identical expression

W — P~ w? - (F ()

and reexpand E% in powers of A, treating w? — (2°

as a quantity of order a. The reexpanded series is
truncating after the order n > N.
The resulting expansion has the form

N

Wy (a. 2) :!)”Zanf,,(ﬁ)(%) , (4)
n=1
where
N-n , 2\ J
. B sp—gn)\ i, o
fnu))_z< j =D{1-45)

Jj=0

(5)

Forming the first and second derivatives of Wy (a, £2)
with respect to (2, we calculate the positions of the
extrema and the turning points. The smallest among
these is denoted by 2y. The resulting Wy(a) =
Wy (a, 2y) constitutes the desired approximation to
the energy.

It is easy to take this approximation to the strong-
coupling limit @ — oc. For dimensional reasons, {2y
increases with a like 2y =~ a!/9cy, so that

Wyla. Qy) = a4 w'?, (6)
where
N 1 n
H',('\ﬁ” :Zanfn(oo) (—q) . )
n=0 N

The full strong-coupling expression is obtained by
writing Wy(a, 2) = Pwy(&, 0?/0%), with & =
/(¥ and expanding wy in powers of w? /2%, which
behaves for @ — oc like (1/02)(a/w")‘2/". The re-
sult is

) a\ "
Wyla) =al? {bo(c) + bi(¢c) <—)
w4

o —4/q
+b2(c)<—) +} (8)
w9
with
1 /
ba(c) = ;ﬁwx”(a.O)a‘z"*”)/m:,/d, 9

and the superscript (n) denotes the nth derivative with

respect to &°.
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The parameters p and ¢ in expansion (2) are now
determined to render the correct leading and the suc-
cessive powers of a in the strong-coupling expansion
(8).

The leading coefficient ¢y in the optimal frequency
£2, is found by searching for the extrema of the leading
coefficient by(c) as a function of ¢ and choosing the
smallest of them.

Explicitly
—n ”( 1[
wer=a S (17 7)(3)
=0 j=0 n
x (— 1)/ Tnerlaman, (10)

Next we have to correct for the fact that tor large but
finite a, the tral frequency {2 has corrections to the
behavior a'/“c. The coefficient ¢ will depend on « like

cla) =c+ (f_>—2/</ + ) (E—>w4/q +

w4 w4
(rn

requiring a reexpansion of ¢-dependent coefficients &,
in (8). The expansion coefficients y, are determined
by extremizing b,,(c). The final result can again be
written in the form (8) with &, replaced by b,, which
are determined by the equations shown in Table 1. The
two leading coefficients receive no correction and are
omitted.

It is now obvious that the knowledge of any
strong-coupling coefticients by, b can be exploited
to determine approximately further coefficients ay , |.
dyi2.-..and thus carry Wy (a) to higher orders. We
merely have to solve Eq. (10) for as many b, as arc
available.

3. The weak-coupling expansion of the anharmonic
oscillator looks like (1) with @ = g/4 (for a potential
is g,r4/4). The lowest coetficient «q is trivially de-
termined by the ground statc energy ot the harmonic
oscillator, being equal to 1/2.

The strong-coupling behavior is known from gen-
eral scaling arguments to start out like g'  followed by
powers of g AR Insputlon of (8) shows
that this corresponds to p = | and ¢ = 3. The lcading
cocfficient is known extremely accurately | 6,14], by =
0.667986259 155777 108270962 016919860 . ..

This is now used to determine an approximate «,

S [ e . logg/4
3 2 -1 : e T TETTT

T0 995

Fig. 1. Plot of the ratio of the interpolation energy with respect
to the exact energy as a function of the coupling constant. The
accuracy is everywhere better than 99.5%. For comparison, we also
plot the variational perturbation result using the exact a1 = 3/4.

(forgetting that we know the exact value a$* = 3/4).
The energy (4) reads for N =1

I ay
) =i+ — 12
W (a, 12) ( + n>a°+n (12)

Eq. (10) yields, for n =0,
by = %C(I() + H_: (13)
2

Minimizing by with respect to ¢ we find ¢ = ¢} =
2(ar/2ap)"? with by = 3agc) /4 = 3(adai/2)'/3/2.
Inserting this into (13) fixes a; = 2(2/3bp)?/ad =
0.773970 .. ., quite close to the exact value. With our
approximate a, we calculate W;(a, £2) at its mini-
mum, where

5
= :—wcosh[ acosh(g/g'®"y] for g > g©@
v 8/
2 - 0
= wasl Larccos(g/g'”)]  for g < g%
V'
(14)
with g0 = 2w’ag/3v/3a,. The result is shown in

Fig. 1. Since the difference with respect to the exact
solution would be to small to be visible on a direct plot
of the energy, we display the ratio with respect to the
exact energy W) (a)/E*. The accuracy is everywhere
better than 99.5%. For comparison, we also display
the much worse (although also quite good) varia-
tional perturbation result using the exact a$* = 3/4.

4. Let us now turn to the polaron model. The Hamil-
tonian operator reads
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Table |

Equations determining the coefticients by in the strong-coupling ¢xpansion from the functions b,(¢) and their derivatives. For brevity, we

have suppressed the argument ¢ in the entries

" b

—Cp—|

2 ha = ¢ |I)’I + ;( |hr> IJ’I /h[’)’
? ‘ ’ P2 3 3
3 by = cabl by cpeabl — Sephl + %vl‘h:_ by + b + %cfb(“] ))/h(’,'
+ by - t".[)'; + t':]hlz ey /7/l + 0 %('i“ ey )/7” | ( /7; + L'gblll + (‘]bé’ + L‘](':[)((]}] 7 lb(lz C’?h(()d) )/b(l)/
ﬂ']('gh’l' + 3(']/7/:/ 5t I('3/)[) g( ]/)] : Th” '
x \ of the energy of the polaron is known up to the order
+ E hwoa Ay + E chzk * +h.c.) N gy p p
"mh [15],
(15

where my is the effective mass of the electron in the
conduction band, p is the electron momentum, w,, is
the frequency of optical phonons which are created
and annihilated by a; and a;. and

oo e (47701)1:“ J )” o)
Pl il
k [k 1% ( 2w,

specifics the electron—-phonon interaction in the vol-
ume V. The Frohlich coupling constant

e | mpc” [ 1 1
a= 5 | (17)
he V 2hw, (sx &) )
involves the fundamental constants e. ¢, i and the elec-
tronic and static dielectric constants e, and g. re-
spectively. This form of Vi assumes the size of the
polaron to be large with respect to the lattice spacing.
It further ignores spin and relativistic effects and the
dispersion of the electron band.
In natural units with it = ¢ = my, = w,, = 1, the parti-
tion function of the polaron in thermal equilibrium at
a fixed temperature 7 is described by the path integral

)it

Z(p) = /"D.r(r)cxp(j : /drx?

[z}
< //de'T —~——> (18)
2‘ (1) - x(7")]

where 8 = 1/T is the inverse temperature (at Boltz-
mann constant kg = 1). The weak-coupling expansion

EY = —a — 0.0159196220a*
~ 0.000806070048a” — O(a™). (19)

For strong couplings the energy is [17]

E* = -0.108513a’ — 2.836 — O(a™?). (20)

The polaron mass has the corresponding expansions
[18,17]

m* =1+ La +0.02362763a’ + O(a*), (21)
m* =0.0227019a* + O(a?). (22)

Feynman was the first to find a uniform all-coupling
constant expressions from a variational approximation
to the path integral (18),

o

EF Mm4—(v— w)‘
« 7 dre™"
V; Isz + (L'2 _ w2)(1 _ E*“')/U] 1/2
0
(23)

and

m =

1
- —=al
3w

drree™”
X/[a)37+(u27w2)(1fe*‘“')/v]l/z’ (24)
0

the latter being evaluated at the parameters v(a),
w(a) obtained in minimizing EF. For weak coupling,
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Feynman'’s expressions are exact only to the order «.
They have the expansions [ 15]

E'Y = —a — 0.012345a° — 6.34366 x 107*a"
—4.64315 x 107 %a* —3.957 x 107%° —

(25)
m™ =1+ Lo +2.469136 x 10"’
+3.566719 x 102 4+ 5.073952 x 10™*a*
o (26)

For strong couplings, the expansions are

E' =~ —0.106103a® — 2.829422 - 4.863866/a”
—34.195252/a* + . ... (27)

m' & 0.020141a — 1.012775a” + 11.85579 + . .. .
(28)

With the help ot the interpolation algorithm based on
the variational perturbation expansion we shall find
new expressions for E and m which share with Feyn-
man’s the validity for all a, but are more reliable at
small and large « by possessing the presently most
precise weak- and strong-coupling expansions (19),
(20) and (21), (22).

5. We now apply our interpolation algorithm the
expansions (19) and (20) for the energy. To make
the series start out with a” as required by the general
ansatz (2), we remove an overall factor —a from E
and deal with —E/a.

Then we see from (20) that the correct leading
power in the strong-coupling expansion requires tak-
ingp = 1,9 = 1. The knowledge of by and b, allows us
to extend the known weak coupling expansion (19) by
two further expansion terms. Their coefficients as, a4
are solutions of the equations

35 15a,  2a:  ay
bo= ——age ~ay + — 2 2D 4 29
0T g T T T T A TS (29)
35 5as .
b= 2%, 4 (30)

The constant ¢ governing the growth of 2y for & —
oc is obtained by extremizing by in ¢, which yields
the equation

35 15 aj 4(13 4114

3 e day das 31
12897 8 2 & & G

The simultaneous solution of (29)-(31) renders
ce =0.09819868, a3 = 6.43047343 x 1074,
ay = —8.4505836 x 1073, (32)

The reexpanded energy (4) reads explicitly (for E
including the earlier removed factor —a)

35 35 35
Wil 0) = agar| — g — =2
sl £2) “““( 128" " 320 " 6ar
7 5

v 128!27> o

vt 15,53
ma | ——+ —= — —=
2\ 80 T4 8P

2 1 1
+a3a4(ﬁ+ 5;) fa4a55. (33)

Extremizing this we find (24 as a function of & (it
turns out to be quite well approximated by the simple
function 24 ~ c4a + 1/(1 + 0.07a) ). This is to be
compared with the optimal frequency obtained from
minimizing the lower approximation W»(«, £2),

-

4 / 4 2

9 a 2

!2§=1+—-2x‘+\/<1+—(2x2> -1, (34)
3ay 3ag

which behaves likes coa + | + ... with ¢ =
Vv 8ay/3ay = 0.120154. The resulting energy is
shown in Fig. 2, where it is compared with the Feyn-
man variational energy. For completeness, we have
also plotted the weak-coupling expansion, the strong-
coupling expansion, the lower approximation W, («),
and two Padé approximants which were given in Ref.
[ 16] as upper and lower bounds to the energy.

6. Consider now the polaron mass, where the strong-
coupling behavior (22) fixes p = 4, g = 1. The coeffi-
cient by allows us to determine an approximate coef-
ficient a3 and to calculate the variational perturbation
expansion Wa(«). From (10) we find the equation

b0=*(llt‘3/8+a3C, (35)

whose minimum lies at ¢3 = /8a>/3ap (this value
follows, of course, also directly from (37)), where
by = \/32a3/27a;. Using by from (22), we obtain
ay = (27a1b3/32)'/% ~ 0.0416929.
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Fig. 2. The polaron energy obtained from our variational interpo-
lation (solid line) between the weak-coupling expansion (dashed)
and the strong-coupling expansion (short-dashed) to be compared
with Feynman's variational approximation (fat dots), which 1s
known to be an upper bound to the energy. The dotted curves
are Padé approximants which were given in Ref. [16]| as up-
per and lower bounds. The dot-dashed curve shows the varia-
tional perturbation theory W2 («). which does not make use of the
strong-coupling information.

u 2 4 ii 5 Hi 12 l

Fig. 3. The polaron mass curve interpolating optimally between the
weak- (dashed) and strong-coupling expansions (short-dashed ).
To see better the differences between the strongly rising functions,
we have divided out the asymptotic behavior my = | + hya®
before plotting the curves. The fat dots show Feynman'’s variational
approximation. The dotted curves are Padé approximants which
were given in Ref. [ 16] as upper and lower bounds to the mass.

From (4) we have
Wila, w) =au+a1a( A

+ ma” + ayar 0. (36)

This is extremal at

2 4as /'J das 7‘ .
=1+ —x +4/| 1+ x4 - 1. (37)
) 3(11 V 3(21

The approximation Wi(a) = Wi(a, {23) for the po-
laron mass is shown in Fig. 3, where it is compared

with the weak and strong-coupling expansions and
with Feynman’s variational result. To see better the
differences between the curves which all grow fast
with «, we have divided out the asymptotic behavior
mas = 1 + boa* before plotting the data. As for the
energy, we have again displayed two Padé approxi-
mants given by Ref. [ 16] as upper and lower bounds
to the energy. Note that our interpolation differs con-
siderably from Feynman'’s and higher order expansion
coefficients in the weak or the strong coupling expan-
sions will be necessary to find out which is the true
behavior of the model.

Our curve has, incidentally, the strong-coupling ex-
pansion

m® = 0.0227019a* + 0.125722a°
+1.15304 + O(a " ?), (38)

the a’-term being in sharp contrast with Feynman’s
expression (28). On the weak-coupling side, a com-
parison of our expansion with Feynman’s in Eq. (26)
shows that our coefficient a3 =~ 0.0416929 is about
ten times larger than his.

Both differences are the reason for our curve form-
ing a pronounced peak in Fig. 3, whereas Feynman’s
has a valley. It will be interesting to find out how the
polaron mass really behaves. This would be possible
by calculating one or more terms of either the weak-
or the strong-coupling expansion.

Our interpolation algorithm is more flexible and
accurate than Padé’s. First, we can account for an
arbitrary fractional leading power behavior o as
a — o0. Second, the successive lower powers in
the strong-coupling expansion can be spaced by an
arbitrary amount 2/g. Third, our functions have in
general a cut in the complex a-plane approximating
the cuts in the function to be interpolated [19]. Padé
approximants, in contrast, have always an integer
power behavior in the strong-coupling limit, a unit
spacing in the strong-coupling expansion, and poles
to approximate cuts.

Note added. While this paper was being prepared,
we found a method of incorporating the exact large-
order behavior into the present expansion scheme
[20].
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