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Some time ago, an operator formalism was devised which permits writing the Vene-
ziano (N 4 2)-point function (!) in terms of vector ereation and annihilation operators
t .
af‘“} , a,;"’” (n=1,2,3,...) in the form

(1) Vyra= <OV (py) Diai}) V(ps) D(az) ... Vipx)|0>

with vertex operators

2 Vip) = exp [—pa’ , atb=> - _a™',
(2) (p) = exp [—-pa'] exp [pa] : Z N’
and propagators

1
(3) D(s) _ﬁfdww~—oc(a)r-2'na+a—1 (1 —z)*

1]

(=po+ ... + P, e=-—0p+ 1, oy=1ntercept of the trajectory).
By expanding the factor (1 —ux)-¢, D(s) can be integrated to give

o [+ ¢—1 1
(4) Dis) = ( ) - R .
Lo=0 lo — OC(S) “Z na(fﬂ)+a(n) + l()

fi=1

(1) S.FUBiNI, D. GORDON and G, VENEZIANO: Phys. Lett,, 29 B, 679 (1969); Y. NaMBU: talk presented
at the Inlernational Conference on Symmelries and Quarl: Models, Wayne University, June 1969, Enrico
Fermi Institute preprint KFI 69-64.
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This representation suffers from several unaesthetical features:

1) The vertices are momentum dependent.
2) The prepagator contains an infinite sum unless ¢ = 0.

3) The N + 2 external momenta p,, Py, ..., Py, do not enter on equal footing
(po and py., are missing).

It is the purpose of this letter to exhibit, for any intercept o«,, a local Lagrangian
whose multiperipheral Feynman graphs coincide with the ecorresponding Veneziano
funections and whieh has the properties that

1) all vertices become constants,
2) the propagator takes a conventional form.

We are not able, however, to remove the intrinsic asymmetry of particles in the
multiperipheral configuration between the external legs and the particle propagating
through the whole graph.

In addition, we briefly discuss the difficulties associated with using the local con-
served current supplied by our Lagrangian to couple the electromagnetic field.

Let b', b create and destroy a sealar quantum. Then it is possible to build the
representation D7, of 0, ; by means of the following generators:

(5) 83=b+b+-26~, St—=6'VEb +e, S =Vbbtob,

satisfying the commutation rules
(6) Sy S, = 4 8y, [8,81=--28,.

Consider the free Lagrangian

(7) L () = y'(x) L(30) p(z)

with (?)

(8) Hmz—ﬁwhﬂ%—ﬁﬁﬂd&e%zI—ZVﬂfﬁwmszWﬁ
—t ot

where

(8) q=%+21

and I” is the vector operator

1 t
® T g+ e

(*) I we drop the zero-mode part and leave only one vector mode this Lagrangian is exactly the
one discussed by H. LEUTWYLER: Phys. Lettf,, 31 B, 214 (1970).
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In order to keep track of divergences due to the number of vector quanta going to

infinity, like that in ¢;, let us truncate all Z and use z
n=1 =]
The Lagrangian (7) yields a wave equation

(10 L(p)ipy> = 0.
If we transform all states by a unitary transformation

(11) B> =T® |py.  T(p)=exp[p.la —a)k],

we find for |[p)’

(12 L(p) |py =0
with

i e 1
(13) Dip) = =5 4 20,8, Vad =18, - T2 T naoa

The zero-mode content in §; can be diagonalized by a second unitary transformation
(14) p>'=tlpy, t=explitS,], coshé= 2,

such that |p> solves a wave equation L(p)|p> =0 with

2

(15) Lip) = 7% —ag— 3 natam gty

The states at rest are given by the basis states of the Hilbert space ERYE

ot nart 4t
(16) P =0, o> = o lp> =ap” ap? ... o™ (1) |0)

with masses

(]

m
(17) ~2—:~foc0+ann+l0,

x, &». The solution of eq. (10) is

where 1, arc the number of quanta a;‘")* in the state

(18) [P,y = T(p)t|pa. > = a'(pa, 1,) |0> .

We introduce spinors
(19) Wy (poly) = <o Lg|pady)
and ean write down a loeal field

{20) w“rl;(m) = z |Zizn|“(17°‘lo)“a’z;(p“lo) exp [—ipx] + neg. freq.

D.xle
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satisfying the equal-time commutation rules

[w(w)a w(y)]m,,=yo - 0 b4 [.T[(w), “(y”xowo = 0 ’

21 - i —
( ) {Tl,’(.%’), w(y)]mu=yn = i(SJ(x *.’Y) 4 .7'5(.7]) - Tp+ ((31 a() + %z '\/27?/ FO) L)

where Z,, is a wave function renormalization constant determined by the condition

(22) W pol 1)y Py + 3V 20 Ly u(padg) = Z38 8,00, 20
o o 0 mw‘zo
Clearly, the Wick contraction of the field w(z) becomes
(23) o) wiy) ¢ fd ! [— ap( )1
‘ i) yly) = P = eXp |—p(r—y)]}.
- (2a)! L{p)

Let us couple this infinite-component field to an external scalar field ¢(x) by a loeal
interaction

Q p? pN*\ pN
(24) L) = g1 3 va.o() Vi of@) 9(@)
x

Then the N-th-order Feynman graph correspond- o —>
ing to the multiperipheral configuration shown in ’ b v P
Tig. 1 18 given by Fig. 1.
(25) T (ige, ¥ <p, 00] 2 Lol gt | 00>

2 == (Tgey) . LI ¢ ey ,

T R T ) Y ) T T ) P

where 2 is the operator projecting onto states with no sealar quantum (3)

(26) Q=73 |ady= 0> <aly=0].

Let us rewrite

(27) ipady> = T(p)t|pady> ,
(28) ! = T(m)t ! tr-1
L~ T gy T

and observe that

1} T commutes with £.

(*) That such a projection operator is needed to include the sum 2 in (4) via a scalar mode was first

]
noticed by D. AMATI, C. BoUCHIAT and J. T.. GERvAIS: Lell. Nuovo Cimento, 2, 399 (1969).
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2)

2 1 12 1
(29) TYr,) T(74,) = V(;— 7,44) €Xp I:!; z _] = V(p;1q) exp IZ% z _} .

n 7
3) The matrix elements of the O, , rotation {=exp [i{S,] are ()
(30) eSS 5“,“@;‘/12(3) \
where for I;>1,

i PR —~(e+lot 1) lo—1o
(31) v (L) = 1 ot (g - e—1): cosh e sinh S
koo (Go—Il3 ¥ 1!l + c—1)! 2 2

'F(—ZO, L—c—1y, 1+ 15—, —Sinh?g) .

In particular,

by+e—1 cJrete £ o
(32) o Ty[tjo 0 == Sy [cosh ~} l:Sillh %] .
Iy 2 2

This matrix element behaves asymptotically, for large { = log 4¢;, like

lh+ec—1
(33) 60;’0: ( ) efc
lo

Then the Feyuman amplitude (25) becomes

(34) Tyro= (zgcl) (v f,f)z) z ( i(%‘;oV (@Cc/ﬁo)2'.. (bggﬁq),o)z'

0,8, LD

1
— P2 — ay— > na™ta 4 1,

N,uz .
rexp|—- Z {Pe 00| V{py) V(pe) oo V(pwa) [px 00> .

Let us now go to the limit of infinitely many vector modes, v — co. In this limit
Z 1/n~logv and since u?/2=c¢—1 we see that all infinities cancel and T,., reduces
to the Veneziano function Vig,.

Our local Lagrangian suggests the introduection of an electromagnetic coupling via
the local conserved current

(35) j,u(x) = 1/)-I.( \Cl’b + z\/Q?l F(m (x) .

() U, BARGMANN: Ann, Math., 48, 568 (1947).



290 H. KLEINERT

Unfortunately this current has two bad properties:

1) It is only defined as long as the number of vector modes »is finite (3). The reason
is that every form factor appears as a finite funetion in ¢ multiplied by exp [t > 1/n].

2) The form factors contain no poles in ¢ at the position of the vector particles
of the theory as one would expeet from a dual current.

Both properties can only be remedied by multiplying the matrix elements of the
current by a common form factor G(f) exp[—t> 1/n]. where G(f) has the structure of
the standard Veneziano-type form factors ()). If one does this one looses, however,
almost all predictive power and our current j#(z) can merely serve to determine the
ratios of the form factors for different external states.

In conclusion we see that we do not cscape the introduction of two different types
of particles. As already discussed by NaMBU (1), this may be due to an incompatibility
of Feyvnman-graph techniques with duality. For the construction of a dual carrent
the minimal loeal current is no possible candidate. A form factor is needed ruining
locality.

¥ kK

The author is grateful to Prof. D. Amari, V. ALESSANDRINI and D. Orive for many
useful discussions.

(*) For finite » it shares all nice propertiecs of canonical currents., In particular, if one intro-
duces SU,, it satisfies the algebra of charge densities and Compton amplitudes pick up fixed poles
at J=1,

(®) R. JENGo and E. REMIDDI: CERN preprint; P. D1 VeEccrIA and ¥. DRAGO: Frascati preprint;
P. H. FramproN: EFI preprint.



