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The assumption that the trace of the energy momentum tensor 6(x) =0,"x) is a
good interpolating field of the (hypothetical) s-meson (1) has recently turned out to
be a powerful tool in relating the propertics of this meson to the dimensional content
of the Hamiltonian density (2-3),

Let 6,)(z) consist of a sum of an SU, x SU, singlet fy,(x) and a term 6,(x), which,
together with the divergence of the axial vector current o, A%(x), forms a represen-
tation (%, 3) of chiral SU, x SU,. This means that the axial current Aq(x) has the fol-
lowing ecommutation rules with 6,(x) and o, At (x):

(1) [:Ao(w): au A‘u(y)]la“o* wo — T ?'64("3) (53(3" - 3/) s

(2) [“10(‘”)9 04(y)]m.,=7/., = 'i'a,u ‘4H(x) (53(l' h y)

Let furthermore 6,(x) be a scalar operator of dimension d and assume that all parts
in Oy(x) having a dimension different from four are Lorentz and chiral scalars.

Then it can be shown (%) that §,(x) appears in the trace of the energy-momentum
tensor O(x) in the form (4 —d)6,(x). As a consequence, the commutator (2) leads to

(3) [Ao(®)s 00 Tagmsy = (4 ~— ) 2, Al() 83 (w — )

(1) H. A, KASTRUP: Phys. Rev., 150, 1183 (1966), and references therein.

(" 8. P. DE ALwis and P. J. O’DoNNELL: Toronto preprint (1970).

(*) H. KLEINERT and P. H. Wgisz: CERN preprint, to be published in Nuel. Phys..
(*) M, GELL-MANN: Hawaii Summer School (1969).

() H. KLEINERT and P, H. WEIsz: CERN preprint, to be published in Nucl. Phys..
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and ean be used to write a Ward identity relating the three-point function
(4) (¢, P) = fdw dy exp [— i(ge — py)] 0| T(6(z) A,u(y) & 4,(0))|0>,

(5) (02, P2, (¢ — P)?) ::fdm dy exp [ ilgrz — py) 10| T(0(x) 0, A¥(y) O, A47(0))|0>,

to the propagators

(6} Aq) =fdw exp [— tqx] CO|T(0, A¥{x) &, AY(0))]0>,

(7) Ao, (q) ;fdx exp [— tqx] {O|T(6(x) 6,(0))]0> ,

by

(8) Perulg, P) = — (g% % (g — P)?) + (4 —d) Al —P) — Joo,(D) -

We perform a maximal smoothness parametrization (°):

(9) (g2 p2 (g — P)?) = — A(P) Alqg — ) I'{g* P* (¢ — ?)?) ,
, P . .
(10) T.(q, p)y = A(p) (g —P) ;r;’;i— I'(g?, p? (g —P)?) — duw(p) Ag—Pp) 7. P) »
'TC
with
m% a
11 I(q2, p, k2) = o — [Fymi + I+ >+ 85 = »
1 m<2:r —1
(12) g p = ——-=|p—26—5¢|Cx >
q° —mg =

where 4,,(g) 1s the propagator of the axial vector:

, Tuds = G ™® Qa(m)

(13) Autg) = | ame 10— S
and
2
(14) 0, =fdm2 ealm?)
m4

If we assume these integrals to be saturated by a single A,-meson

(15) oa(m®) = mh/v5 6(m* —my) ,

(¢ H. J. ScHNITZER and S. WEINBERG: Phys. Rev., 64, 1824 (1968).
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we find from ecq. (8) the onrw and Aow vertices in terms of two parameters x and 8 (7):

2
Iy— —4+(1+a)d, rlz[(4—-d)m—";—ﬁ], r,— f— de,
(16) \ ?
mG
oc=(2——dx)—2.
1

This result corresponds exactly to what one would obtain from good old hard-pion
techniques (%): eqs. (16) contain the maximal information that can be extracted from
chiral current commutation rules. Define the coupling constants ¢grn and ¢,.. by

m
c -
L onn = Jonn 5 o + Gagrdun tto

and introduce the c-meson—graviton coupling
3
mU

<0|6(0) o> = —2.
Y

Then equation (16) leads to

x me
Gonn = By|1 + 5(1_2 T—VZ ’

v
Gaor = — 2Py 2 .
m.

G

(17)

It is the purpose of this letter to point out that the knowledge of the dimensiocn of 6,(x)
is sufficient to determine the free constants § and = and thus to fix the ratio [/ Oy [, J—
Since 6,(x) has dimension d it follows from SU, x SU, (eqs. (1) and (2)) that also 9, A#
has dimension d.
1f

(18) D (@) = 20,,()
denotes the current density of dilatations, this means that
(19) [ Do), 0y AH(P)lrg-yy = (@2 + d) D, A (@) ¥z — y) .

As a conscquence we can derive a Ward identity for the funection

(20) 0x(q, P) = ifdw dy exp [—i(qx — py)1<0|T(Z (=) 8, AH(y) B, 4*(0))|0>

(’) The parameter x is defined by the ratio of the propagators Agg (0)/dA(0)==x.
(®*) Among the vast literature one may conveniently consult R. ARNOWITT, M., H, FRIEDMANN and
P. NATH: Phys. Rev., 174, 2008 (1968).
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in the form

(21) q*0(q P) = (g% % (¢ —P)*) —(d—4 — (g —P) &) Hg—p) + dA(p) .
The corresponding low-encrgy theorem at ¢ = 0 gives the results (3)

(22) 0, u2, n2) = 2u?,

(23) F((), ,ILZ, pZ) lpzﬂ‘uaz 1 —d.

Ap2

Inserting I, from eq. (l1), and our parametrization eq. (16) proves our assertion

(f=wx=1).

The result implies

(24) gAcTF:ﬁ‘Q;VAfTE; 1

Gonr My 1 + (d — 2)(:”012-;//”135) .

The important observation is that this ratio is essentially independent of the dimension
of the symmetry breaker 6,(x). (Since one usually assumes (°) 1<<d <4 and since
m2jml < 1.)

If one neglects the small d-dependent termn we recover the well-known ratio of
Gilman and Harari (19).

Notice that the additional information supplied by broken scale invariance on this
ratio is nontrivial. Without it the ratio B/x could have been of the order of m2/mZ
causing a strong d-dependence in ggpx.

(®*) K. WILsoN: Phys. Rev., 179, 1499 (1969).

(1) F. GILMAN and H. HARARI: Phys. I2ev., 165, 1821 (1967). Using this ratio and the experimental
mass and width mg~ 700, I'g ~ 400 McV we find ggm-;/4n ~1.7, ggAgn/4.71 ~13.8, I'agr =50 MeV. Insatu-
ration schemes of the algebra SU, xSU, by m, 0, A and ¢ mesons one obtains gaom/donrt = 2(mA/mp)
(8. WEINBERG: PPhys. Rev., 177, 2613 (1967)). In larger schemes containing also the f-meson (F. Buc-
CELLA, H. KLEINERT, C. Savoy, E. CELEGHINI and E. SORACE: Nuovo Cimento, 69 A, 133 (1970)) one finds

gaom ™A l/m? +2ma

Jorntr mg 3"”2

Since m;" Ry 3m§ ~ 3mZ this amounts to a I'agn width about % larger than that of Gilman and Harari.
It is interesting to note that the Veneziano amplitude determines gagrin terms of g ApTe and hagr to be

2
gagne 1 mghaer

gA =
oT Mo 2 Mmea
(where gaom and hagn are defined by &= gagn ouA¥ xm+hagr oy oM 4 x 8,7n). For reference see C. Sa-
vox: Lett. Nuovo Cimento, 2, 870 (1969); J. L. RosNeEr and H. Suura: Phys. Rev., 187, 1905 (1969);
. CARRUTHERS and F. CoOPER: Phys. Rev. D, 1, 1232 (1970). Inserting longitudinal and transverse
coupling constants

2 2

o mA—i—mg o dma
gL:_hApTE_l_ngpTc g g9 7= —YJAgn 2 2.2
My — Mg (m’y — mg)

we find gagr ~ 3 (gr + gr)(m3/me). GILMAN and HARARI give gr ~0, g; =4/fx, hence gaon ~ 2mg/mcfn-
Comparing this with their value ggnrx = mo/y/2 fq one obtains gagr/gonn ~ 24/2 mé/mg, which is

approximately the same ratio as before,
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In addition to the Aocw coupling the more academic vertex cAA is delermined as
well by our Ward identitics. Just for completeness we note that we can write a Ward
identity for the three-point function

(25) Tuw(gs P) = @'fdw dy exp [ é(qe — py)]1 <0 T(6(x) 4 ,(y) 4,(0))]|0>

in terms of the propagator

(26) Aug) = 2 A(q)
mn
reading
(27) PET(¢ P) = T,(q; (g —P)) + (4 —d) A, (g —Pp) -

After a maximal-smoothness assumption for the cAA vertex, this yields for the coupling
constant gg,, (defined by & = fggaamacd, A#)

Jorn mamg L+ (d— 2)(m&/m2)

2 ;2
1
(28) gaAA: 9 valn

Our results can be compared with the couplings given by the linear o-model with axial
and veetor fields introduced & la Yang-Mills. We find

¢ My mp mfr
(29) Gonre = — 3 3 1+(Z—-2)—5
fﬂ mc

and exactly the same ratios (24) and (28) except that d is replaced by Z:mi/mg
everywhere (11). We conclude that if we want to rcproduce the results of this model
according to our methods we have to assign the dimension d = Z to pion and o fields
when the Yang-Mills fields A, and o are present.

The dimension Z can be read off the result eq. (29) in another independent way.
Trom eq. (17) (for =2 = 1) we know that the factor in front of the brackets has
to be identified with the graviton-s coupling y:

3
Mg Mg Mg 1

In the effective Lagrangian this constant is recovered in the following way: One takes
the terms that can contribute to 6(x) linearly in the ficld o'= o — (0|c|0> =0 — 0y

2 Z .
(31) 3:...*’—;-‘1(02+n2)+£—1(a2+ 22+ mifeZ o,

(31) These results can be read directly off the Lagrangian eq. (6.3) of 8. Gasrorowicz and D. A.
GEFFEN: Rev. Mod. Phys., 41, 542 (1969) after having the terms — (u3/2) 0 4 73) + (A4 (o + @*)?
in order to go over to the linear c-model. Note that the magnitude of gorr is about half the value
following from the Adler-Weisberger sum rule. The reason is clearly that the mn scattering amplitude
following from the chiral Lagrangian is in general not unsubstracted.
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If ¢ and = have dimension Z, this leads to a tracc of the energy-momentum tensor (%)
(32) 0@ = ...+ (4—2Z)u3(0® + 72) — A1 — Z) (o + n2)t— (4 — Z)ymEfnZ "} 0,

which gives, upon inserting ¢ = 0, + ¢’, a linear term

(33) @)= ...— Z(pE— Ao [ Z¥ o' = ... — Z¥m} fro,

comparing with the defining relation
m
(34) #x) = ..+ —o,

we obtain indeed the result (30).

Notice that this assignment of dimension Z different from the canonical dimension
one (12) has nothing to do with the concept of anomalous dimensions as discussed by
WirsoN on the basis of exactly scale-invariant theories (13). Wilson’s dimension is
connected with the Sehwinger term in the commutator

d
(35) i [8:(x), @(Y)lrgmve = O, P(X) 0¥ (X — ¥) — 3 oY) o, (x—y),

where 6,,,(x) is the local energy-momentum tensor with finite matrix elements (14). In
our phenomenological Lagrangian we are free to assign any dimension d to tlc pion
field. This can be done, at the canonical level, by adding the term

d
(36) _E(ayav“guv D) (02+ mc?)

to the canonical energy-momentum tensor. A detailed investigation of this energy-
momentuim tensor shows that every step in our calculation can be carried through in
this model for d= Z. If, however, d is chosen differently a term Z-2(d— Z)(o,7)?
appears in the trace of the energy-momentum tensor destroying the validity of the max-
imal smoothness parametrization of eq. (11).

* % %
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