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Stability of a three-dimensional cubic fixed point in the two-coupling-constantf4 theory

H. Kleinert, S. Thoms, and V. Schulte-Frohlinde
Institut für Theoretische Physik, Freie Universita¨t Berlin, Arnimallee 14, D-14195 Berlin, Germany

~Received 21 February 1997!

For an anisotropic Euclideanf4 theory with two interactions@u(( i 51
M f i

2)21v( i 51
M f i

4# theb functions are
calculated from five-loop perturbation expansions ind542« dimensions, using the knowledge of the large-
order behavior and Borel transformations. For«51, an infrared-stable cubic fixed point forM>3 is found,
implying that the critical exponents in the magnetic phase transition of real crystals are of the cubic universality
class. There were previous indications of the stability based either on lower-loop expansions or on less reliable
Padéapproximations, but only the evidence presented in this work seems to be sufficiently convincing to draw
this conclusion.@S0163-1829~97!01946-2#
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I. INTRODUCTION

The most elegant approach to phase transitions in m
physical systems proceeds via field-theoretic renormal
tion-group techniques.1 The best-studied system is the isotr
pic Heisenberg ferromagnet withM classical spin compo
nents. Its critical behavior can be described correctly by
O(M )-symmetric vector field theory with a quartic intera
tion ( i 51

M (f i
2)2.

In a real crystal, such an interaction is never presenta
by itself. The crystalline structure gives rise to anisotropi
most prominently of cubic symmetry, which can be rep
sented by an extra field interaction( i 51

M f i
4 . This term

breaks theO(M ) symmetry by favoring magnetization
along the edges or the diagonals of a hypercube inM dimen-
sions. The extended theory interpolates between anO(M )
symmetric and a cubic system. It has been pointed out a
time ago2 that, depending onM , the O(M )-symmetric and
the cubic fixed point interchange their stability. ForM,Mc ,
the O(M )-symmetric, isotropic fixed point is stable. For
M.Mc the isotropy is destabilized and the trajectories
renormalization flow cross over to thecubic fixed point. Es-
timates using calculations up to three loops2–4 indicated that
Mc must lie somewhere between 3 and 4. Resummation
cedures based on Pade´ approximations5 suggestedMc to lie
below 3, thus permitting real crystals to exhibit critical e
ponents of the cubic universality class. The uncertainty
these estimates have prompted Kleinert a
Schulte-Frohlinde6 to carry the expansions up to five loop
They increased the evidence forMc,3 considerably, again
via Pade´ resummation.

For a simplef4 theory, the Pade´ approximation is known
to be inaccurate. At present, the most accurate renorma
tion group functions for that theory have been obtained
combining perturbation expansions with large-order e
mates, using a resummation procedure based on B
transformations.7–13

Intending the application of these more powerful resu
mation methods, the large-order behavior of renormalizati
group functions has recently been derived for theM -vector
model with cubic anisotropy, by Kleinert and Thoms.14

It is the purpose of this paper is to combine these lar
560163-1829/97/56~22!/14428~7!/$10.00
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order results with the five-loop perturbation expansions6 us-
ing a simple Borel type of resummation algorithm,7,8 whose
power has been exhibited in recent model studies by Kle
ert, Thoms, and Janke.15

The results to be presented in this paper allow us to c
clude with a reasonable certainty that an infrared-stable cu
fixed point exists at the physically most relevant val
M53. However, due to the vicinity of the isotropic fixe
point, the differences in the critical exponents are very h
to measure experimentally. Going beyond the Pade´ work in
Refs. 5 and 6, we also show explicitly the instability a
stability of the isotropic and the cubic fixed point, respe
tively.

II. RESUMMATION

A. The problem

The object of investigation is af4 theory with cubic an-
isotropy. The corresponding energy functional reads

H~fW !5E ddxF1

2
]mfBi]mfBi

1
8p2

3 S uB

4
Si jkl 1

vB

4
d i jkl DfBifB jfBkfBlG , ~1!

where fBi(x) ( i 51,2, . . . ,M ) is the bareM -component
field in d542« dimensions, anduB , vB are the bare cou-
pling constants. In particular, we shall consider the phy
cally most interesting case ofM53, and continue« to «51.
The tensors associated with the two interaction terms in
~1! have the following symmetrized form:

Si jkl 5
1

3
~d i j dkl1d ikd j l 1d i l d jk!,

d i jkl 5H 1 , i 5 j 5k5 l ,

0 , otherwise.

The symmetry of the action under reflectionf i→2f i and
under permutations of theM field indicesi implies the fol-
lowing form of the vertex functions, persisting to all orde
in perturbation theory:
14 428 © 1997 The American Physical Society
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56 14 429STABILITY OF A THREE-DIMENSIONAL CUBIC . . .
G i j
~2!;G~2!d i j ; G i j

~2,1!;G~2,1!d i j , ~2!

G i jkl
~4! ;Gu

~4!Si jkl 1Gv
~4!d i jkl . ~3!

The symmetry permits us to renormalize theM components
of the fieldfW and the composite field12 fW 2 with only a single
renormalization constantZf andZf2, respectively. The bare
field fW B , the composite field1

2 fW B
2 , and the two coupling

constantsuB andvB are related to the corresponding physic
objects by

fW B~x!5Zf
1/2fW ~x!, @fW B

2 #~x!5~Zf2!21@fW 2#~x!,

uB5m«Zu~Zf!22u, vB5m«Zv~Zf!22v, ~4!

wherem is a mass parameter. We employ dimensional re
larization with minimal subtraction. The square brack
aroundfW 2 indicate a renormalization of this composite o
erator. Recall that this renormalization is different from th
of the wave function which convertsfW B to fW . In fact it is
closely related to the mass renormalization of a theory w
massmÞ0. In the minimal subtraction scheme, the cor
sponding renormalization constants are related
Zf25Zm2(Zf)21.

The RG functions are defined in the usual way:

bu~u,v !5m]muuuB ,vB ,«,

bv~u,v !5m]mvuuB ,vB ,« ,

gf~u,v !5m]mlnZfuuB ,vB ,« ,

gf2~u,v !52m]mlnZf2uuB ,vB ,« . ~5!

The natural parameter for the anisotropy of the system is
ratio d5v/(u1v), and the isotropic case corresponds
d50. We shall use the new couplingsg5u1v andd for the
calculation of the fixed points from the resummedb func-
tions

bg~g,d!5bv@u~g,d!,v~g,d!#1bu@u~g,d!,v~g,d!#,

gbd~g,d!5~12d!bv@u~g,d!,v~g,d!#

2dbu@u~g,d!,v~g,d!#. ~6!

TheO(M )-symmetric and cubic fixed points can be obtain
by calculating the simultaneous zeros (g* ,d* ) of
bu@u(g,d),v(g,d)# andbv@u(g,d),v(g,d)#. For the physi-
cally interesting number of field components,M53, the
infrared-stable cubic fixed point is expected to appear v
close to theO(M )-symmetric one. Sinced is very small in
this region, it will be sufficient to restrict the resummatio
efforts to theg series accompanying each powerdn, so that
theb functions at the cubic fixed point will be approximate
by

05bu@u~g* ,d* !,v~g* ,d* !#' (
n50

N

Bn
u~N!~g* !d* n,
l

-
s

t

h
-
y

e

y

05bv@u~g* ,d* !,v~g* ,d* !#'d* (
n51

N

Bn
v~N!~g* !d* n21,

~7!

whereBn
(N)(g)[res@(k5n

Nbkng
k# indicates resummedg se-

ries.
From the five-loop perturbation expansion in Ref. 6, t

perturbation coefficientsbkn
u/v are known up to the orde

N56. For«51 and the number of field componentsM53,
the following expansions are known:

(
k50

6

bk0
u gk52g13.667g227.667g3147.651g4

2437.646g514998.62g6,

(
k51

6

bk1
u gk5g25.333g2115.667g32121.767g4

11341.05g5217821.1g6,

(
k52

6

bk2
u gk51.667g2210g31115.885g421664.86g5

127191g6,

(
k53

6

bk3
u gk52g3250.074g411064.62g5222916.2g6,

(
k54

6

bk4
u gk58.305g42350.528g5111183.1g6,

(
k55

6

bk5
u gk547.368g522966.14g6, b66

u g65330.76g6,

and

(
k51

6

bk1
v gk52g14g2210.778g3175.875g42776.26g5

19707.36g6,

(
k52

6

bk2
v gk52g216.222g3267.319g41944.05g5

215030.9g6,

(
k53

6

bk3
v gk521.111g3130.211g42639.243g5113549.6g6,

(
k54

6

bk4
v gk526.218g41233.262g527122.94g6,

(
k55

6

bk5
v gk5233.414g511973.58g6, b66

v g652228.19g6.

~8!
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14 430 56H. KLEINERT, S. THOMS, AND V. SCHULTE-FROHLINDE
In addition to the five-loop expansions, the large-order
havior of bkn

u and bkn
v were obtained explicitly in Ref. 14

with the result

bkn
u/v ——→

k→`

gu/v~n!~21!kk!k~d15!/21n@11O~1/k!#, k@n.
~9!

The resummation algorithm to be employed in this paper w
make use of all these informations.

B. The algorithm

As explained in detail in Ref. 15, it is possible to ree
pand a divergent perturbation series

Z~g,d!5 (
k50

`

(
n50

k

Zkng
kdn ~10!

in a special infinite set of Borel summable functionsI pn(g)
as

Z~g,d!5 (
n50

` F (
p5n

`

apnI pn~g!Gdn, ~11!

so that the approximation

Z~g,d!'Z~N!~g,d!5 (
n50

N F (
p5n

N

apnI pn~g!Gdn

5 (
n50

N

Zn
~N!~g!dn ~12!

has the same series asZ(g,d) up to the powersgNdN, while
reproducing the known large-order behavior of the pertur
tion expansion~10!:

Zkn ——→
k→`

g~n!~2s!kk!kbn@11O~1/k!#, k@n.
~13!

As shown by Janke and Kleinert in Refs. 7 and 8, the nat
choice for the functionsI pn(g) are certain confluent hyper
geometric functions, where for the case of two coupling c
stants a second index was introduced in Ref. 15. One po
bility was to use

I pn~g!

5S 4

sgD b0~n!11E
0

1

dw
~11w!wb0~n!1p

G@b0~n!11#~12w!2b0~n!12a13

3expF2
4w

~12w!2sg
G ~14!

with

b0~n!5bn1
3

2
. ~15!

Then the coefficientsapn are given by

apn5 (
k5n

p
Zkn

@b0~n!11#k
S 4

s D kS p1k2122a

p2k D , ~16!
-

ll

-

al

-
si-

where ck5G(c1k)/G(c) are Pochhammer’s symbols. Th
parametera is free to choose, and may be used to acco
modate any strong-coupling power ofZ(g,d)

Z~g,d! ——→
g→`

k~d!ga, ~17!

if this is known. Since in quantum field theory, this is not t
case,a will be chosen by the condition of best convergen
of the resummedg seriesZn

(N)(g) in Eq. ~12!, as explained in
the next section.

C. Optimal choice of strong-coupling powera

An idea of the relevance ofa is gained from the study o
corresponding models in quantum mechanics, where
strong-coupling behavior can be deduced from scaling ar
ments. Consider first anO(M )-symmetric anharmonic oscil
lator with g(xi

2)2/4 interaction, whereM is the number of

components of the vectorxW . Here the functionsZ0
(N)(g) in

Eq. ~12! represent the resummed ground-state ener
E(N)(g). In Fig. 1 we have illustrated the convergence
E(N) for the anharmonic oscillator with onex component
(M51) at a coupling constantg/450.1. We have plotted
E(N) versus the order of approximationN for various values
of the strong-coupling parametera. At large N, the curves
become increasingly independent ofa and approach a satu
ration value which coincides with the ground-state ener

FIG. 1. Convergence of the ground-state energyE of the anhar-
monic oscillator withg/450.1. ~a! Resummed ground-state ene
giesE(N) are plotted versus the order of approximationN for vari-
ous strong-coupling parametersa. ~b! The a dependence of the
function D (7) of Eq. ~18!. The optimala value is given by the
minimumaPMS

D 50.3408, very close to the exactly known value 1/
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56 14 431STABILITY OF A THREE-DIMENSIONAL CUBIC . . .
This exact result does not depend ona. Therefore, we
choose the strong-coupling parameter under the cond
that the curvature and the slope of the corresponding cu
depend minimally on the variation ofa, when approaching
the saturation region. This choice complies with the princi
of minimal sensitivity~PMS! which has been used with gre
success to optimize variational perturbation expansion16

Using the discretized form of the first and second derivati
the optimala value, to be denoted byaPMS

D , is found by
calculating the extrema or turning points of the judicial fun
tion

D~Ns!~g,a!5@~E~Ns21!2E~Ns22!!2

1~E~Ns!22E~Ns21!1E~Ns22!!2#1/2/E~Ns22!,

~18!

whereNs indicates the beginning of the saturation region.
our special example,Ns57 @see Fig. 1~a!#. In Eq. ~18! the
value of the coupling constantg is chosen such that the erro
of the resummation becomes small and the influence ofa is
isolated. Since the rate of convergence of the resumma
decreases for increasingg, we determine the optimala at a
small coupling constantg/450.1. In Fig. 1~b!, we have plot-
ted thea dependence ofDNs(g,a) for Ns57 andg/450.1.
The optimala value is found to beaPMS

D 50.341, which is
very close to the exactly known strong-coupling parame
a51/3.

We mention that for the zero-dimensional case which c
responds to a simple integral withgx4/4 interaction, the
above criterion yields the exact strong-coupling parame
a521/4 ~see Fig. 2!.

In most applications of quantum field theory, perturbati
series are too short to detect the formation of the satura
plateau with sufficient accuracy. We shall see in the follo
ing that for shorter series the criterion given above can
simplified without a significant loss of accuracy by negle

FIG. 2. Judicial functionD (7)(g,a) of Eq. ~18! to determine the
strong-coupling power a for the simple integral Z(g)
5*dxexp(2x2/22gx4/4), plotted as a function ofa for g/450.1.
The optimal parameteramin

D lies at the lowest value ofD (7)(g,a),
and is found to be equal to the exact one. It can be shown tha
a5aexact521/4, already the zeroth order of the resummation
gorithm used in this paper reproduces the exact value ofZ(g) ~Ref.
8!. This is the origin of the cusp andD (Ns)(g,a)50
at a521/4.
n
ve
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ing the curvature term in Eq.~18!. Then the slope term is
deduced from the two highest known partial sumsE(Nmax21)

andE(Nmax) by forming

D~Nmax11!~g,a!'
E~Nmax!~g,a!

E~Nmax21!~g,a!
21, ~19!

where it is important thatE(Nmax21) andE(Nmax) have gotten
over the large-fluctuating initial region. Thus the optimala
value, denoted now byaPMS, will be determined from
calculating the extrema or turning points o
E(Nmax)(g,a)/E(Nmax21)(g,a). As before, the coupling con-
stant is chosen to be smallg/450.1 to ensure a sensitive
determination of the optimala.

As the largest available order of approximation for th
RG functions in QFT isNmax56, we have plotted in Fig. 3
the a dependence of the ratioE(6)/E(5) for the numbers of
vector componentsM51 andM52 at a coupling constant
g/450.1. In the case ofM51, a minimum exists at
aPMS50.389. ForM52, there is no extremum, and the op
timal a value lies at the turning pointaPMS50.323. In both
cases the simplified criterion yields again results foraPMS
which are close to the exactly known strong-coupling para
etera51/3.

It is unnecessary to knowa to a higher accuracy than
that. In order to show this, we have compared the resumm

or
-

FIG. 3. Thea dependence of the ratioE(6)/E(5) in Eq. ~19! for
the O(M )-symmetric anharmonic oscillator at constant couplin
strengthg/450.1 and various numbers of field componentsM . ~a!
For the simple anharmonic oscillator (M51) the optimala value
aPMS50.389 lies at the minimum.~b! For the two-component os-
cillator (M52) the optimal valueaPMS50.323 lies at the turning
point.
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14 432 56H. KLEINERT, S. THOMS, AND V. SCHULTE-FROHLINDE
ground-state energiesE(N) of the anharmonic oscillator usin
various values ofa ~see Table I!. For the coupling constant
g/450.1 andg/451.0, the rate of convergence to the exa
energies depends only very little ona.

Consider now the case thatZ(g,d) in Eq. ~10! represents
the ground-state energyE(g,d) of the anisotropic quartic
oscillator with an interaction

Vint5
g

4
@x412~12d!x2y21y4#, ~20!

which we have studied in detail in Ref. 15 using the Bor
type resummation algorithm of Refs. 7 and 8. When
pressed in terms of the old coupling constantsu, v via
g5u1v andd5v/(u1v), the expression~20! corresponds
to the interaction term in the Euclidean action~1! for the
number of field componentsM52. It was found in Ref. 15
that the parametera is the same for each coefficientEn(g) in
the d expansion of the ground-state energyE(g,d)
5(n50

` En(g)dn, and having at eachn the same value
a51/3 as in the isotropic case. The approximationEn

(N)(g)
which follows from a resummation of the corresponding p
turbation series ing up to the orderN is becoming less
accurate for increasingn since theg expansions have fewe
and fewer terms. However, taking into account the smalln
of the anisotropyd, the d expansion may be truncated at
finite orderN. This yields the approximation

E~N!~g,d!5 (
n50

N

En
~N!~g!dn,

which was found to be very accurate in a wide region od
aroundd50. We have compared the result for the groun
state energy resummed ata51/3, which is known from Ref.
15, with the result obtained foraPMS50.323. Figure 4 shows
the d dependence of the approximated ground-state en
E(6)(g,d) for the two different values of the parametera and
various coupling constantsg/4. Forg/450.1, the two curves
for a and aPMS coincide. From Fig. 4 and Table I we ca
thus conclude that the error which is caused by an inaccu
determination ofa is negligible.

TABLE I. Convergence of the ground-state energyE0 of the
anharmonic oscillator withM51 for the strong-coupling param
etersaexact51/3 andaPMS50.389.

E0 g/450.1 g/451.0
N aexact aPMS aexact aPMS

1 0.561496 0.56235 0.83055 0.849631
2 0.558592 0.558614 0.78297 0.784942
3 0.559232 0.559254 0.812948 0.816638
4 0.559142 0.559142 0.801761 0.802012
5 0.559143 0.559143 0.802206 0.802487
6 0.559147 0.559147 0.805103 0.805518
7 0.559146 0.559146 0.803901 0.803937
8 0.559146 0.559146 0.803115 0.803072
9 0.559146 0.559146 0.803852 0.803924
exact 0.559146 0.803770
t

-
-

-

ss

-

gy

te

D. Application to quantum field theory

The above analysis of the anisotropic oscillator can n
be applied to the corresponding model in quantum fi
theory. The resummation of theb functions~7! is carried out
by combining the formulas~12!, ~14!, and ~16!, where the
functionZ stands now forbu andbv. The parametersb0(n)
ands follow from the large-order behavior~9!, and are the
same for bothb functions:

b0~n!5bn1
3

2
561n,

s51. ~21!

The optimal value of the parametera is chosen to cause
minimal sensitivity of the ratiosB0

u(6)/B0
u(5) andB1

v(6)/B1
v(5)

on a at the small value of coupling constantg/450.1 @recall
Eq. ~7!# in accordance with the above observations for
O(M )-symmetric anharmonic oscillator.

The optimal valuesaPMS are found to be

bu: aPMS51.348, bv: aPMS51.225. ~22!

FIG. 4. Ground-state energyE of the anisotropic oscillator with
the interacting potential~20!, as a function of the anisotropy param
eterd for two coupling constantsg/450.1 andg/451.0. Compari-
son is made between the approximationE(6) obtained once for the
exact strong-coupling parameteraexact51/3 and once for
aPMS50.323. In the caseg/450.1, differences are invisible at thi
graphical resolution. For comparison, results from another res
mation scheme, variational perturbation theory~VPT! ~Ref. 16!,
obtained in Ref. 15 are shown as well.
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56 14 433STABILITY OF A THREE-DIMENSIONAL CUBIC . . .
For the simultaneous solution of Eqs.~7!, we have first de-
termined for eachb function all zero-point functions
d ( i )(g) which are implicitly defined by

bu/v@g,du/v
~ i ! ~g!#50. ~23!

From the second equation in Eq.~7!, we have then read off a
trivial solutiondv

(1)(g)[0. Restricting attention to the regio
around the isotropic limitd50, we have found numerically a
second nontrivial solutiondv

(2)(g). For bu only one solution
du(g) was found. Having obtaineddv

(1) anddu the isotropic
fixed point follows from the condition

duiso* ~giso* !5dv iso* ~1!~giso* ![0. ~24!

The cubic fixed point is similarly obtained by calculating t
solution of the equation

ducub* ~gcub* !5dvcub* ~2!~gcub* !. ~25!

III. RESULTS

Table II contains the numerical values of the isotropic a
the cubic fixed points for increasing order of approximati
N. Starting from the orderN53 a cubic fixed point is ob-
tained which lies in the upper half of the plane of coupli
constantsu andv (d.0). Plotting the functionsdu(g) and
dv

(2)(g), yields the cubic fixed point (gcub* ,dcub* ) via the
crossing point. This is shown in Fig. 5 for the orders
approximationN52 and N56. The cubic fixed point is
found to lie very close to the isotropic one.

In order to convince ourselves of the stability of the cub
fixed point at the number of field componentsM53, we
calculate the eigenvaluesb1 andb2 of the matrix

B5S ]gbg ]dbg

]gbd ]dbdD U
g* ,d*

~26!

using the resummedb functions~6!. The result is contained
in Table III. If both eigenvalues are positive, the correspo
ing fixed point is infrared stable. ForM53, this is definitely
the case for the cubic fixed point. At the isotropic fixed poi

TABLE II. Numerical result for the isotropic and the cubic fixe
point for increasing order of approximationN. For N>3, a cubic
fixed point is found in the upper half of the coupling constant pla
(u,v), i.e., dcub* .0.

N giso* d iso* gcub* dcub*

2 0.560616 0 does not exist
3 0.440796 0 0.50208 0.291074
4 0.393506 0 0.400199 0.037862
5 0.4012 0 0.411057 0.063068
6 0.389037 0 0.39154 0.015309
d

f

-

,

on the other hand, one eigenvalueb2 is negative. As the
isotropic and the cubic fixed point interchange their stabi
at M5Mc , the result corroborates the suggestion in Refs
and 6 that the critical valueMc lies belowM53.

Thus we conclude that the critical behavior of magne
phase transitions in anisotropic crystals with cubic symme
is governed by the cubic, not by the isotropic Heisenb
fixed point. The corresponding critical exponentsh and n
follow from the resummed RG functionsgf andgf2 via the
defining relations

h5gf~g* ,d* !, n212252gf2~g* ,d* !. ~27!

e

FIG. 5. Determination of the cubic fixed pointg* , d* . The
nontrivial zerosdu anddv

(2) of theb functionsbu andbv are plotted
againstg @see Eqs.~7! and ~23!#. The values ofg* and d* are
found from the intersection point.~a! Up to the order of approxi-
mationN52, no cubic fixed point exists.~b! For the order of ap-
proximationN56, the cubic fixed point is given byg* 50.39154,
d* 50.015309.

TABLE III. Stability of cubic fixed point, as demonstrated b
the eigenvalues of the stability matrixB in Eq. ~26!, calculated from
the resummedb functionsbg andbd in Eq. ~6!. The isotropic fixed
point is unstable.

N b1
cub b2

cub b1
iso b2

iso

4 0.782796 0.0048920 0.784532 20.00502046
5 0.764835 0.00851725 0.763966 20.00886277
6 0.80609 0.00212717 0.80658 20.00214788
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Unfortunately, our result is only of fundamental interest a
has no easily measurable experimental consequences. D
the vicinity of the isotropic fixed point, the difference in th
n

,

m

in

.

iz
,

d
e to
critical exponents is smaller than one percent, so that
cubic universality class is practically indistinguishable fro
the isotropic class.
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