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Stability of a three-dimensional cubic fixed point in the two-coupling-constant¢* theory
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(Received 21 February 1997

For an anisotropic Euclideap* theory with two interactionfu(=M ; $?)2+v=M , ¢] the B functions are
calculated from five-loop perturbation expansionglind—e¢ dimensions, using the knowledge of the large-
order behavior and Borel transformations. ker 1, an infrared-stable cubic fixed point fsd=3 is found,
implying that the critical exponents in the magnetic phase transition of real crystals are of the cubic universality
class. There were previous indications of the stability based either on lower-loop expansions or on less reliable
Padeapproximations, but only the evidence presented in this work seems to be sufficiently convincing to draw
this conclusion[S0163-182807)01946-2

I. INTRODUCTION order results with the five-loop perturbation expansiars
ing a simple Borel type of resummation algoritffiwhose
The most elegant approach to phase transitions in mangower has been exhibited in recent model studies by Klein-
physical systems proceeds via field-theoretic renormalizaért, Thoms, and Janke.
tion-group techniquesThe best-studied system is the isotro-  The results to be presented in this paper allow us to con-
pic Heisenberg ferromagnet withl classical spin compo- clude with a reasonable certainty that an infrared-stable cubic
nents. Its critical behavior can be described correctly by afixed point exists at the physically most relevant value

O(M)-symmetric vector field theory with a quartic interac- M =3. However, due to the vicinity of the isotropic fixed
tion =M (¢_2)2 point, the differences in the critical exponents are very hard
I I N

=1 to measure experimentally. Going beyond the ‘Padek in

I_n a real crystal, S.UCh an interac_tion iS. never p.resentablﬁefs. 5 and 6, we also show explicitly the instability and
by itself. The crystalline structure gives rise to anlsotrop|esStability of the isotropic and the cubic fixed point, respec-

most prominently of cubic symmetry, which can be repre'tively.
sented by an extra field interactioB” ;¢!. This term
breaks theO(M) symmetry by favoring magnetizations
along the edges or the diagonals of a hypercubd idimen-
sions. The extended theory interpolates betweer©éMl) A. The problem

;ymmetric and a cubic_system. It has been pointed_out along The object of investigation is &* theory with cubic an-
time agé that, depending oM, the O(M)-symmetric and  jsotropy. The corresponding energy functional reads
the cubic fixed point interchange their stability. Fd<M,
the O(M)-symmetric, isotropic fixed point is stable. For -

- - " actori H($)= | d%
M>M_ the isotropy is destabilized and the trajectories of
renormalization flow cross over to thoeibic fixed point. Es-
timates using calculations up to three lob@sndicated that 87 ug UB s 1
M. must lie somewhere between 3 and 4. Resummation pro- + 3 ZS‘JK' + 4 ik beidsjderdei|, (1)
cedures based on Padpproximations suggestedv,, to lie ) i
below 3, thus permitting real crystals to exhibit critical ex- Where ¢gi(x) (i=1,2,... M) is the bareM-component
ponents of the cubic universality class. The uncertainty ofi€ld in d=4—¢& dimensions, andig, vg are the bare cou-
these estimates have prompted Kleinert andPling constants. In particular, we shall consider the physi-
Schulte-Frohlind&to carry the expansions up to five loops. cally most interesting case & =3, and continue to e=1.
They increased the evidence fbt,<3 considerably, again The tensors associated with the two interaction terms in Eq.

Il. RESUMMATION

1
5 9uPBidudai

via Paderesummation. (1) have the following symmetrized form:
For a simpleg* theory, the Padapproximation is known

to be inaccurate_. At present, the most accurate renqrmaliza- Si :E(5ij5kl+5ik5“ + 81 85

tion group functions for that theory have been obtained by 3

combining perturbation expansions with large-order esti-

mates, using a resummation procedure based on Borel 1, i=j=k=I,

transformationd 2 Sk =1
Intending the application of these more powerful resum- ’

mation methods, the large-order behavior of renormalizationThe symmetry of the action under reflectigh— — ¢; and

group functions has recently been derived for Mevector  under permutations of thiel field indicesi implies the fol-

model with cubic anisotropy, by Kleinert and Thoms. lowing form of the vertex functions, persisting to all orders
It is the purpose of this paper is to combine these largein perturbation theory:

otherwise.
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r@-r@s. . reh peyg. ) N
i i ij ij 0=B”[u(g*,5*),v(g*,5*)]*5* E BE(N)(g*)b‘*nfl,
n=1

Fi(j4k)INFEJ4)SjkI +T 8 - 3 (7)

The symmetry permits us to renormalize tidlecomponents  whereB")(g)=re§3,_,NBx.0"] indicates resummeg se-

of the fieIdJ) and the composite fieldlgp? with only a single  ries.

renormalization constait, andZ 2, respectively. The bare From the five-loop perttjrbation expansion in Ref. 6, the
field (2,87 the composite ﬁek%g,é and the two coupling perturbation coefficient3y,’ are known up to the order

constantsig andv g are related to the corresponding physicalN="6. Fore=1 and the number of field componeris=3,

objects by the following expansions are known:
N N N N 6
$e(0)=Z52h(x), [$a1(X)=(Z42) [ $°1(%), > Blogk=—g+3.6612—7.661°+47.651*
k=0
U= Zy(Zy)"%U, ve=u-Z,(Z4) v, (4)

—437.64@°+4998.62°,

whereu is a mass parameter. We employ dimensional regu-
larization with minimal subtraction. The square brackets

aroundcfs2 indicate a renormalization of this composite op-
erator. Recall that this renormalization is different from that

of the wave function which convertdg to . In fact it is
closely related to the mass renormalization of a theory with
massm=0. In the minimal subtraction scheme, the corre-
sponding renormalization constants are related by
Zgo=Zm2(Z4) "t

The RG functions are defined in the usual way: +2719%°,

6
> BLg¢=g—5.333%+15.669°— 121.767"
k=1

+1341.05°—17821.14°,

6
> BLg=1.661%— 1093+ 115.88%* — 1664.86°
k=2

ﬁu(u7v):Ma,u,u|UB,l}B,8’

Mo

Bigk=2g%—50.074y*+ 1064.63°— 22916.3°,
k

3
BU(U,U):,LL(?MU|UB’UB’8 ’

6
Yo(U,0)=pd INZ gy v o 24 Biag*=8.309"—350.528°+11183.1°,

'y¢2(u,v)=—M8M|n2¢2|uB’UB’S. (5 6
ks0“=47.368)°—2966.14°, Bgg°=330.76°,

The natural parameter for the anisotropy of the system is the k§=:5 Pisd % 4 Poed Y
ratio s=v/(u+v), and the isotropic case corresponds to
5=0. We shall use the new couplingssu+v andé forthe  @n
calculation of the fixed points from the resummgdunc- 6
tions >, Bug“=—g+4g%—10.778°+ 75.87%"— 776.26°
k=1

B%(g,6)=pB"lu(g,d),v(9,6)]+ B[u(g,6),v(g,d)], .
+9707.3¢°,

95°(9,8)=(1-8)°[u(9,6),v(9,0)] .
—6B"[u(g,6),v(g,9)]. (6) k}_‘,z BY0%= — g2+ 6.222y3— 67.319*+ 944.0%5

The O(M)-symmetric and cubic fixed points can be obtained
by calculating the simultaneous zerosg*(6*) of
B[u(g,d),v(g,d)] and B’[u(g,d),v(g,d8)]. For the physi-
cally interesting number of field componentd=3, the
infrared-stable cubic fixed point is expected to appear ver
close to theO(M)-symmetric one. Sincé is very small in

—15030.9°,

y; Biagk=—1.1119%+30.2119%— 639.243°+ 13549.§°,
=3

this region, it will be sufficient to restrict the resummation 6
efforts to theg series accompanying each pow#t so that > BLgk=—6.218)"+233.2625— 7122.94°,
the B functions at the cubic fixed point will be approximated k=4
by
6
N kES Bisgk=—33.414°+1973.58°, BLg°=—228.19°.

0=B“[u<g*,5*>,v<g*,6*>]~n20 BUN(g*)6*", ®
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In addition to the five-loop expansions, the large-order be-
havior of By, and B}, were obtained explicitly in Ref. 14, 0559155 ) g/4 =0.1
with the result EN)
Koo 0.55915
ulv s Y0 () (= 1)RKIKETDRE 1+ O(1/k)], ks>n. Bones |ooofoodeeomoeeen
9) 0.559145
Qlexact = 1/3
The resummation algorithm to be employed in this paper will 0.55914 o = 0.55
make use of all these informations. — 015
0559135 a=>
B. The algorithm 3 A s . 2 n 5
As explained in detail in Ref. 15, it is possible to reex- N
pand a divergent perturbation series ’
K
2(9,0)=2 2, Zing*s" (10 0.0000114
k=0 n=0 Cexact = 1/3
A —
in a special infinite set of Borel summable functidps(g) A(7?'00°°113 apys = 0.3408
as 0.0000112
2(9,0)= 2, { apnlpn<g>} o, (12) e
n=0 | p=n
L 0.000011
so that the approximation 0.25 0.3 0.35 04 0.45
N N @
2(9,8)~zM(g,8)= > {E apnlpn(gﬂ 5"
n=0 | p=n FIG. 1. Convergence of the ground-state endfgyf the anhar-
N monic oscillator withg/4=0.1. (a) Resummed ground-state ener-
_ E Z(N)(g)5n (12) giesE™ are plotted versus the order of approximatrfor vari-
Ao " ous strong-coupling parametess (b) The @ dependence of the

. NN function A() of Eq. (18). The optimala value is given by the
has the same series g, 6) up to the powerg™ 5", while  nininum od, = 0.3408, very close to the exactly known value 1/3.
reproducing the known large-order behavior of the perturba-

tion expansion(10): wherec,=TI'(c+k)/T'(c) are Pochhammer's symbols. The
parametera is free to choose, and may be used to accom-
modate any strong-coupling power B{g, 8)

K—s o0
Zin —— y(N)(— o) *kIKP[ 1+ O(1K)], k>n.
(13

As shown by Janke and Kleinert in Refs. 7 and 8, the natural (17

choice for the functions,,(g) are certain confluent hyper-

geometric functions, where for the case of two coupling condf this is known. Since in quantum field theory, this is not the

stants a second index was introduced in Ref. 15. One posstase,a will be chosen by the condition of best convergence

bility was to use of the resummed seriesZ{V(g) in Eq.(12), as explained in
the next section.

g—o

2(9,6) — «()g*,

lon(9)

( 4 )bo(n)+l 1
_ £ fd
og 0

4w

xXexgp ————
F{ (1-w)?ag

with

(1+w) bo(n)+p C. Optimal choice of strong-coupling powera
w)w

W
I‘[bo(n) 4 1](1_W)2b0(n)+2a+3

An idea of the relevance af is gained from the study of
corresponding models in quantum mechanics, where the
strong-coupling behavior can be deduced from scaling argu-
ments. Consider first a®(M)-symmetric anharmonic oscil-
lator with g(xiz)2/4 interaction, whereM is the number of
components of the vector. Here the functionZ{V(g) in
Eq. (12) represent the resummed ground-state energies
EN)(g). In Fig. 1 we have illustrated the convergence of
EN) for the anharmonic oscillator with one component
(M=1) at a coupling constard/4=0.1. We have plotted

(14

3
bo(N) =t 5 (15)

Then the coefficients,, are given by
" Za (4)k

=2 — | —

P &h [bo(nm+ 1]\ o

ptk—1-2a«a
p—k

s

EM versus the order of approximatidh for various values
of the strong-coupling parameter. At large N, the curves
become increasingly independent®fand approach a satu-

ration value which coincides with the ground-state energy.
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1.00001075
0.00008 a) M =1
0.00006 a Oexact = 1/3
Qin = exac =-1/4
K Ain ¢ / E©/E® apms = 0.389
0.00004
0.00002
g/4=0.1
0 1.000007
-0.35 -0.3 -0.25 -0.2 -0.15
o
(84
1.00015
FIG. 2. Judicial functiom\(")(g, ) of Eq. (18) to determine the by M =2
strong-coupling power « for the simple integral Z(g) —1/3
= [dxexp(—x2/2— gx*/4), plotted as a function of for g/4=0.1. E6) /56 Qexact = 1/
The optimal parametet5;, lies at the lowest value of(")(g,a), / apms = 0.323
and is found to be equal to the exact one. It can be shown that fc
a= agyac= — 114, already the zeroth order of the resummation al-
gorithm used in this paper reproduces the exact valu& gj (Ref.
8). This is the origin of the cusp andA®™9J(g,a)=0
ata=-1/4. 0.99995

05 025 0 025 05 075 1

This exact result does not depend en Therefore, we «
choose the strong-coupling parameter under the conditio
that the curvature and the slope of the corresponding curve
depend minimally on the variation af, when approaching  FiG. 3. Thea dependence of the rat®&®/E® in Eq. (19) for
the saturation region. This choice complies with the principlethe O(M)-symmetric anharmonic oscillator at constant coupling
of minimal sensitivity(PMS) which has been used with great strengthg/4=0.1 and various numbers of field componekts (a)
success to optimize variational perturbation expansi®ns. For the simple anharmonic oscillatoM(= 1) the optimala value
Using the discretized form of the first and second derivative apys=0.389 lies at the minimumb) For the two-component os-
the optimal  value, to be denoted by’éms, is found by cillator (M=2) the optimal valuexpys=0.323 lies at the turning
calculating the extrema or turning points of the judicial func-point.
tlon ing the curvature term in Eq18). Then the slope term is

AN (g, @) =[(ENs D — E(Ns=2)2 deduced from the two highest known partial su{¥max1)

andE(Nmad by forming
+ (E(Ns)_ 2E(Ns—1) 4 E(NS—Z))2]1/2/E(NS—2),

E(Nmax)(g,a)

(18 (Nmayt1) ~—
A (g,a) E(Nmaxil)(g,a)

1, (19)

whereN; indicates the beginning of the saturation region. In
our special example\,=7 [see Fig. 1a)]. In Eq. (18) the  where it is important thaE(Nma 1) and E(Nmad have gotten
value of the coupling constagtis chosen such that the error over the large-fluctuating initial region. Thus the optinaal
of the resummation becomes small and the influence isf  value, denoted now bypys, will be determined from
isolated. Since the rate of convergence of the resummatiogalculating the extrema or turning points of
decreases for increasing we determine the optimat ata ~ ENmad(g, a)/ENma (g, ). As before, the coupling con-
small coupling constarg/4=0.1. In Fig. 1b), we have plot- stant is chosen to be smajl4=0.1 to ensure a sensitive
ted thea dependence aANs(g,a) for N=7 andg/4=0.1.  determination of the optimat.

The optimala value is found to berpys=0.341, which is As the largest available order of approximation for the
very close to the exactly known strong-coupling parameteRG functions in QFT iN,,,=6, we have plotted in Fig. 3
a=1/3. the o dependence of the rati&(®)/E®) for the numbers of

We mention that for the zero-dimensional case which corvector component® =1 andM =2 at a coupling constant
responds to a simple integral withx*/4 interaction, the ¢/4=0.1. In the case ofM=1, a minimum exists at
above criterion yields the exact strong-coupling parameterpys=0.389. ForM =2, there is no extremum, and the op-
a=—1/4(see Fig. 2 timal « value lies at the turning pointpys=0.323. In both

In most applications of quantum field theory, perturbationcases the simplified criterion yields again results dgfys
series are too short to detect the formation of the saturatiowhich are close to the exactly known strong-coupling param-
plateau with sufficient accuracy. We shall see in the follow-eter a=1/3.
ing that for shorter series the criterion given above can be It is unnecessary to know to a higher accuracy than
simplified without a significant loss of accuracy by neglect-that. In order to show this, we have compared the resummed
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TABLE I. Convergence of the ground-state eneiy of the

anharmonic oscillator wittM =1 for the strong-coupling param- 12t < apMs
etersagy,.= 1/3 andapys= 0.389. 12 Qexact
Eo g/4=0.1 g/4=1.0 £6) 118 VPT
N (exact apps Qexact apps 1.16
1 0.561496 0.56235 0.83055 0.849631 114
2 0.558592  0.558614 0.78297 0.784942 112 g/4=01
3 0.559232 0.559254 0.812948 0.816638 1.1
4 0.559142 0.559142 0.801761 0.802012 108
5 0.559143 0.559143 0.802206 0.802487 T3 -2 -1 0 1 2
6 0.559147 0.559147 0.805103 0.805518 )
7 0.559146 0.559146 0.803901 0.803937 9
8 0.559146 0.559146 0.803115 0.803072
9 0.559146  0.559146  0.803852  0.803924 175
exact 0.559146 0.803770 15
E® 125
ground-state energidgsN) of the anharmonic oscillator using 1
various values ofr (see Table)l For the coupling constants 0.75 ———  Cexact
g/4=0.1 andg/4=1.0, the rate of convergence to the exact 05 VPT
energies depends only very little @n '
Consider now the case tha{g, §) in Eq. (10) represents 0.25 > ; -~ : : :

the ground-state energ(g,d) of the anisotropic quartic
oscillator with an interaction

g FIG. 4. Ground-state enerdy of the anisotropic oscillator with
Vint:Z[X4+ 2(1-8)x?y?+y4], (200 the interacting potentigR0), as a function of the anisotropy param-
eter § for two coupling constantg/4=0.1 andg/4=1.0. Compari-

. L L . son is made between the approximatlf? obtained once for the
which we have studied in detail in Ref. 15 using the Borel-_ strong-coupling parametetro .. =1/3 and once for

type resu_mmatlon algorithm of Ref_s. 7 and 8. Whgn ex'apMs=0.323. In the casg/4=0.1, differences are invisible at this
pressed in terms of the old Coupllng constanisv via graphical resolution. For comparison, results from another resum-
g=u+v andé=v/(u+v), the expressioi20) corresponds ation scheme, variational perturbation thedWPT) (Ref. 16,

to the interaction term in the Euclidean actioh for the  gptained in Ref. 15 are shown as well.

number of field componentdl =2. It was found in Ref. 15
that the parameter is the same for each coefficiea(g) in

the & expansion of the ground-state enerdy(g,d) ] ) ) ]
—>*_En(g)d", and having at eacm the same value The above analysis of the anisotropic oscillator can now
a=1/3 as in the isotropic case. The approdmateff(g) & TR 0 BRSO R B LR 1o
which follows from a resummation of the corresponding per—by combining the formulag12), (14), and (16). where the

turbation series ing up to the orderN is becoming less X
; ; : : function Z stands now foB" and 8¥. The parameterky(n)
accurate for increasing since theg expansions have fewer ) 0
9 €9 exp gndo follow from the large-order behavig®), and are the

and fewer terms. However, taking into account the smallnes for both3 functions:
of the anisotropys, the 6 expansion may be truncated at a same for boths functions:
finite orderN. This yields the approximation

D. Application to quantum field theory

3
N bo(n)=,8n+§=6+n,
EM(g,0)= 2, E;V(9)0"
(21)

q
Il
'—\

which was found to be very accurate in a wide regionsof
arounds=0. We have compared the result for the ground-

S The optimal value of the parameter is chosen to cause
state energy resummedat= 1/3, which is known from Ref. minimal sensitivity of the ratio8U®)/BY® andB2©)/Bv(®)
15, with the result obtained farpys=0.323. Figure 4 shows y 0 0 1 1

. . « at the small value of coupling constagd=0.1[recall
th(%)5 dependence of ¢ he approximated ground-state energg&. (7)] in accordance with the above observations for the
E'®/(g, 8) for the two different values of the parameteand . . :

. ' _ O(M)-symmetric anharmonic oscillator.
various coupling constantg4. Forg/4=0.1, the two curves The ontimal valuesro are found to be
for a and apyg coincide. From Fig. 4 and Table | we can P PMS
thus conclude that the error which is caused by an inaccurate
determination ofw is negligible. B apys=1.348, B': apys=1.225. (22
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TABLE Il. Numerical result for the isotropic and the cubic fixed
point for increasing order of approximatidw. For N=3, a cubic 05
fixed point is found in the upper half of the coupling constant plane
(u,v), i.e., 85,,>0.

Ju 0
N gi*so 5;;0 g:ub :ub 51()2)
2 0.560616 0 does not exist 05
3 0.440796 0 0.50208 0.291074
4 0.393506 0 0.400199 0.037862 -1 N =2
5 0.4012 0 0.411057 0.063068
6 0.389037 0 0.39154 0.015309 0.4 05 0.6 0.7 0.8

For the simultaneous solution of Ed3), we have first de-
termined for eachg function all zero-point functions
59 (g) which are implicitly defined by

B""[g,84),(9)]1=0. (23

From the second equation in ET), we have then read off a
trivial solution 8)(g)=0. Restricting attention to the region
around the isotropic limie= 0, we have found numerically a
second nontrivial solutiow,gz)(g). For 8" only one solution

-0.2
5.(g) was found. Having obtained™ and &, the isotropic 0375 038 0385 039 0395 04 0405 041
fixed point follows from the condition g
FIG. 5. Determination of the cubic fixed poigf*, 5. The
* * 0\ (D) n* \—

Slisol Jiso) = Fyiso (Gise) =0- @4 ontrivial zerosd, and 8{? of the 8 functionsB" andB” are plotted
The cubic fixed point is similarly obtained by calculating the 29ainstg [see Eqs(7) and (23)]. The values ofg* and 5* are
solution of the equation found from the intersection pointa) Up to the order of approxi-

mationN=2, no cubic fixed point existgb) For the order of ap-
proximationN=6, the cubic fixed point is given bg* =0.39154,

=0.01 .
Shoutl Iun) = Oyam (Tt (25  0"=0015309

on the other hand, one eigenvalbg is negative. As the
IIl. RESULTS isotropic and the cubic fixed point interchange _thei_r stability
atM =M., the result corroborates the suggestion in Refs. 5

Table Il contains the numerical values of the isotropic and®nd 6 that the critical valud!: lies belowM =3. ,
the cubic fixed points for increasing order of approximation  1nus we conclude that the critical behavior of magnetic
N. Starting from the ordeN=3 a cubic fixed point is ob- phase transitions in anisotropic crystals with cubic symmetry
tained which lies in the upper half of the plane of couplingiS governed by the cubic, not by the isotropic Heisenberg
constantsy andv (5>0). Plotting the functions,(g) and ~ fixed point. The corresponding critical exponenjsand »
52)(g), yields the cubic fixed point g, 85,) via the follow from the resummed RG functiong, andy,: via the
crossing point. This is shown in Fig. 5 for the orders of d€fining relations
approximationN=2 and N=6. The cubic fixed point is
found to lie very close to the isotropic one.

In order to convince ourselves of the stability of the cubic
fixed point at the number of field componers=3, we n=7v4(9*.5), v I-2=—yu(g*.5). (27
calculate the eigenvaludry andb, of the matrix

TABLE IIl. Stability of cubic fixed point, as demonstrated by
the eigenvalues of the stability matiin Eq. (26), calculated from
( 9g8° 35,39) the resummegs functionsg, and 8 in Eq. (6). The isotropic fixed
B=

199,85 075,85 (26) point is unstable.
g*,o* N bclzub bgub bilso bi250
using the resummeg@ functions(6). The result is contained 4 0.782796 0.0048920 0.784532 —0.00502046
in Table Ill. If both eigenvalues are positive, the correspond-s 0.764835 0.00851725  0.763966 —0.00886277
ing fixed point is infrared stable. FdA = 3, this is definitely g 0.80609 0.00212717 0.80658 —0.00214788

the case for the cubic fixed point. At the isotropic fixed point,
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Unfortunately, our result is only of fundamental interest andcritical exponents is smaller than one percent, so that the
has no easily measurable experimental consequences. Duedabic universality class is practically indistinguishable from
the vicinity of the isotropic fixed point, the difference in the the isotropic class.
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