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Bogoliubov approximation of many-particle systems with a similar convergence. The relation
with the effective action approach based on bilocal Legendre transforms is exhibited. � 1998
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I. INTRODUCTION

Variational perturbation theory [1] is a systematic extension of a variational
method developed some years ago by Feynman and Kleinert [2], and others [3],
and converts divergent perturbation expansions for energy levels and free energies
of a quantum mechanical anharmonic oscillator into exponentially fast converging
expansions for all coupling strength [1, 4]. This is achieved by perturbing around
an oscillator with a trial frequency 02, which is optimized at each order N of the
expansion. The optimal value 0N is defined by the requirement that it minimizes
the dependence of the energy on 0. Up to the high order N=15, the odd
approximants are optimal at a unique minimum of the energy as a function of 0.
For even orders there exists no minimum, but the 02-dependence can nevertheless
be minimized at a unique saddle point. A somewhat worse approximation is
obtained by evaluating even approximations at the minimum of the previous odd
approximation.

In this note we reformulate and generalize the procedure in such a way that
it becomes applicable to field theories of many-body systems. We derive a set of
equations which systematically improve the standard Hartree�Fock�Bogoliubov
approximation to many-body systems.
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II. REFORMULATION AND GENERALIZATION OF
VARIATIONAL PERTURBATION THEORY

For the anharmonic oscillator with a euclidean action

A=A|+Aint#
1
2 | d{ [x* 2 ({)+|2x2 ({)]+| d{ _g3

3!
x3 ({)+

g4

4!
x4 ({)& , (1)

variational perturbation theory may be summarized as follows: The free energy of
a quantum mechanical system is written as

F=F 0+F int, (2)

where F 0 is the free energy of the harmonic oscillator

F 0=&
1

2;
Tr log(G0). (3)

The parameter ; is the inverse temperature ;=1�kBT, with kB=Boltzmann con-
stant, and G0 ({, {$) denotes the imaginary-time correlation function

G0 ({, {$)=(&�2
{+|2)&1 ({, {$) (4)

of the harmonic oscillator, its explicit finite-temperature form being, in natural units
with �=1,

G0 ({, {$)=G| ({&{$)=
1

2|
cosh |( |{&{$|&;�2)

sinh(|;�2)
, (5)

which has the limit e&| |{&{$|�2| for T � 0. The associated free energy is found from
the formula

F 0=&
1

2; |
�

0

d{
{

Tr[e&{G0
&1]. (6)

The right-hand side is regular at {=0 if the trace is evaluated in dimensional
regularization, yielding for the harmonic oscillator

F 0=
1
;

log[2 sinh(;|�2)], (7)

which tends to the ground-state energy |�2 for T � 0.
The second term in (2) is the free energy caused by the interactions. It possesses

a divergent expansion in powers of the interaction strength calculated by the rules
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of perturbation theory. Introducing the notation ( } } } ) | for the thermal expecta-
tion values within the harmonic oscillator of frequency |, expansion reads

;F int=(Aint) |&
1
2!

( (Aint)2) |, c+
1
3!

( (Aint)3) |, c& } } } . (8)

The subscript c indicates that the cumulants of the expectation values have to be
taken, i.e.

( (Aint)2) |, c = ( (Aint)2) |&(Aint) 2
| , (9)

( (Aint)3) |, c = ( (Aint)3) |,&3( (Aint)2) | (Aint) |+2(A int) 3
| ,

b

For the x3- and x4-interaction at hand, the perturbation expansion (8) may be dis-
played most easily in terms of connected Feynman diagrams. Using Wick's rule we
find, up to the order N=3,

(10)

where vertices represent coupling constants g3 �3!, g4 �4!, depending on the number of
lines emerging. The lines stand for the harmonic-oscillator correlation function G0 .

The interactions change G0 ({, {$) to G({, {$), which may also be expanded into
a power series in the coupling strengths g3 �3!, g4 �4!. The diagrams contributing to
G({, {$) are efficiently obtained from the interaction diagrams in (10) in two steps:
First one differentiates the interaction diagrams with respect to G0 , which is most
easily be done graphically by removing a single line in all possible ways. From the
resulting diagrams one further removes all those which are one-particle-reducible,
i.e., which fall apart when cutting a single line. The remaining one-particle-
irreducible diagrams yield the self-energy 7({, {$). In a second step one forms

G({, {$)=[(&�2
{+|2) $({&{$)+7({, {$)]&1 ({, {$), (11)

or simpler

G&1({, {$)#G&1
0 ({, {$)+7({, {$). (12)

This corresponds to summing up all self-energy diagrams in a geometric series

G � G0&G0 7G0+G07G07G0&G07G0 7G07G0+ } } } . (13)
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For the development to come it will be useful to consider F=F 0+F int as a func-
tional of the harmonic-oscillator correlation function G0 ({, {$), to be indicated by
a functional argument G0 .

A variational perturbation expansion is obtained from the expansion (10) by the
following steps:

1. We use (12) to rewrite F[G0] in (3) trivially as F[(G&1&7)&1]. This is
expanded into a power series in 7 up to the same order N to which the perturba-
tion series for F int is known. With the interaction (10), we go to 73.

2. The truncated expression

FN[G, 7]= :
N

n=0

1
n!

F (n)[G]7n (14)

is extremized in G, varying 7=7[G] as a functional of G in accordance with (12)
which implies:

$7
$G

=&G&2. (15)

Variational perturbation theory is based on the observation that the complete
expansion of F[(G&1&7)&1]#F[G0] is certainly independent of G. The trun-
cated expansion FN[G, 7[G]], on the other hand, does depend on G. At any given
order N, the final result is approached best by choosing a correlation function
G=GN for which FN[G, 7[G]] has the smallest G-dependence.

For the free energy (3) of the anharmonic oscillator, the expansion of
F 0[(G&1&7)&1] yields, up to N=3,

;F 0[G, 7]= 1
2 Tr log G&1& 1

2 Tr(G7)& 1
4 Tr(G7)2& 1

6 Tr(G7)3& } } } . (16)

The same reexpansion is performed for the interaction energy (10), most easily
graphically. The replacement G0 � (G&1&7)&1 replaces each propagator into a
geometric series

G0 � G+G7G+G7G7G+G7G7G7G+ } } } , (17)

which in the Feynman diagram corresponds to an exchange

(18)

where the lines on the right-hand side stand for the full propagator, and a point
indicates the insertion of a self energy 7. If we denote Tr log G by a single loop, the
expansion (16) can be represented graphically by

(19)
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In this way we find for the total free energy up to order N=3 the graphical
expansion

(20)

Let us first optimize the expansion for N=1. The free energy F1[G, 7] reads
graphically

(21)

and analytically,

;F1 [G, 7]=&
1
2

Tr log G&
1
2

Tr(7G)+3
g4

4! |
;

0
d{ G2({, {). (22)

Extremizing this in G with the help of (15), we obtain the equation for the self-
energy

7({, {)=$({&{$)4 } 3
g4

4!
G({, {). (23)

The self-energy is obtained from the interaction term in F1 [G, 7] by a differentia-
tion with respect to G[{, {$], which in the graphical representation (21) removes
from the interaction graph a single leg in all possible ways,

(24)

This equation is solved recursively together with (12). We recognize the recursive
procedure typical for the self-consistent Hartree�Fock�Bogoliubov approximation.
The factor 3 in (22) and (23) accounts for the three characteristic contributions to
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the approxima+tion found by those three authors. The three contributions corre-
spond to the three Wick contractions in the expectation value

(Aint) |=
g4

4! |
;

0
d{(x4 ({)) |=3_

g4

4! |
;

0
d{(x2) 2

| . (25)

In the anharmonic oscillator, the temporal locality of the interaction �;
0 d{ x4 ({)

does not permit us to distinguish the three contractions. The difference becomes
visible only when considering a more general action in which a two-dimensional
harmonic oscillator has a bilocal interaction. Written in terms of complex coor-
dinates x({)=x1 ({)+ix2 ({), this reads

Aint= 1
2 |

;

0
d{ |

;

0
d{$ x*({) x*({$) V({&{$) x({$) x({). (26)

Instead of the expectation value (25), we now find three different contractions

(Aint) |= 1
2 |

;

0
d{ d{$ [(x*({) x({))| V({&{$)(x*({$) x({$)) |

+(x*({) x({$)) | V({&{$)(x*({) x({$)) |

+(x*({) x*({$)) | V({&{$)(x({) x({$)) |]. (27)

The first term was introduced by Hartree, the second corresponds to the exchange
interaction considered by Fock, and the third is responsible for pairing effects
explored first by Bogoliubov. Graphically, these interaction terms are represented
by

(28)

The lines carry an arrow pointing towards the complex-conjugate variable x*({):

(x*({) x({$)) |=w� , (x({) x({$)) |= �w� , (x*({) x*({$)) |=w��w . (29)

For the interaction (26), the lowest-order self-energy is bilocal. To show this
explicitly, let x({) be a real variable, the arrows disappear and the last two terms
in (27) coincide. A graphical differentiation of the vacuum diagrams (28) yields a
self-energy

7({, {$)=$({&{$) |
;

0
d{$ V({&{$) G({$, {$)+2V({&{$) G({, {$). (30)
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This can be displayed graphically as

(31)

For such a bilocal equation, a recursive solution proceeds by assuming some simple
initial 7({, {$) and solving the eigenvalues equation

(&�2
{+|2&7) ,k ({)=(&�2

{+|2),k&|
;

0
d{$ 7({, {$) ,k ({$)=*k,k ({). (32)

From the solutions, a Green function G({, {$) is obtained via the spectral represen-
tation

G({, {$)=:
k

1
*k

,k ({) ,k ({$). (33)

This is reinserted into Eq. (30) to find a new self-energy 7({, {$), and so on.
The variational procedure can now easily be carried to order N=3. For this we

first simplify the graphical expansion (20) by separating the self-energy into the
just-derived first-order expression 71 and a remainder

7=71+7R . (34)

Graphically, this amounts to the replacement

(35)

The cross symbolizes 7R . Then we obtain

;F3 [G, 7]=;F1 [G, 7]+; 2F3 [G, 7R], (36)

with the much simpler set of graphs

(37)
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Extremizing F3 [7, G] with respect to G, we find

$
$G

;F3[G, 7[G]]=
1
2

7R . (38)

The diagrams in ; 2F3[G, 7R] are differentiated again by removing successively a
line from each graph. In addition, the functional derivatives of 7R creates a four-
point function which we denote by a crossed vertex with four legs. As a result, we
obtain for 7R the diagrammatic expansion:

(39)

The solution proceeds iteratively: We first ignore all diagrams with crosses on the
right-hand side and find the lowest approximation to 7R :

(40)

This is functionally differentiated with respect to G to obtain the crossed vertex

. The two equations are is reinserted into (39), and so on.

Note that the diagrams of the lowest-order approximation (40) to 7R in this
iteration scheme are obtained from the diagrams (10) in the initial free energy by
removing a single line from all two-particle-irreducible diagrams, which are those
not falling apart when cutting two lines. Such a self-energy was found in an earlier
attempt to systematically extend the Hartree�Fock�Bogoliubov approximation
[5], which is superceded by the present scheme, as will be discussed in Section IV.

III. MANY-BODY SYSTEMS

The above theory can easily be generalized to become applicable to field theories
of many-body systems. There the typical action reads
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A=|
;

0
d{ {| d 3x[�*(x, {) _&�{&

p̂2

2
&V1 (x)& �(x, {)

&
1
2 | d 3x d 3x$ �*(x$, {) �(x$, {) V2 (x$&x) �*(x, {) �(x, {)= . (41)

where V1 (x) and V2 (x$&x) are time-independent one- and two-body potentials
and p̂ is Schro� dinger's momentum operator &i���x. The free part of the free energy
is now

F 0 [G0]=\
1
;

Tr log G &1
0 (42)

with the Green function

G0=_�{+
p̂2

2
+V{ (x)&

&1

, (43)

where the upper and lower signs in (42) hold for bosons and fermions, respectively.
For simplicity, we consider only a fermion system without pairing correlations of

the Bogoliubov type, at zero temperature. Let ,k (x) denote the eigenfunctions of
the time-independent Schro� dinger equation

_p̂2

2
+V1 (x)& ,k (x)=*0

k,(x). (44)

At zero temperature, all energy levels below a certain Fermi energy =F are filled, all
others are empty. Then the zeroth-order Green function has the decomposition

G0 (x, {; x$, {$)=(T� {�� (x, {) �� -(x$, {$))

=3({&{$) G (+)
0 (x, {; x$, {$)\3({$&{) G (&)

0 (x, {; x$, {$), (45)

where T� { is the time-ordering operator, and

G (+)
0 (x, {; x$, {$)=(�� (x, {) �� -(x$, {$))= :

*k>=F

e&*k
0 ({&{$),k (x) ,k*(x$),

(46)

G (&)
0 (x, {; x$, {$)=(�� -(x$, {$) �� (x, {))= :

*k<=F

e*k
0 ({&{$),k (x) ,k*(x$).

Since the argument of the trace of the logarithm in (42) contains only a single time
derivative and is otherwise {-independent, it can be simplified. In the operator form
of the interaction (41), all field operators �� -(x, {) are normally ordered to the
left of all �� (x, {). The equal-time limit of Green functions in the associated Wick
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contractions has the time { slightly before {$, i.e. {={$&=. Then only the occupied
states contribute to G0 (x{; x$, {):

G0 (x, {; x${)=\(�� -(x$, {$) �� (x, {)) =\ :
*k<=p

,k (x) ,k (x$)#\\0 (x, x$). (47)

On the right-hand side we have introduced the bilocal generalization of the particle
density \0 (x), which is equal to the diagonal values \0(x, x).

For fermions filling all states up to an energy =F , the free energy (42) is now
given by the sum of the eigenvalues

F 0 [G0]= 1
2 :

*k<=F

*k . (48)

From the appropriate generalization of the first-order free energy (22), we obtain
in analogy to (23) the self-consistent equation for the self-energy

7(x, {; x$, {$)=$({&{$) $(3) (x&x$) | d 3x$ V2 (x&x$) \(x$)&V2 (x&x$) \(x&x$)
(49)

#$({&{$) 7(x, x$).

For this self-energy we have to solve the time-independent equation

_p̂2

2
+V1 (x)& /k (x)+| d 3x$ 7(x, x$) /k (x$)=*k /k (x), (50)

whose solutions provide us via (47) with a new bilocal particle density \(x, x$), to
be used for solving again (50), and so on. For fermions, the Hartree�Fock energy
is

FHF= :
*k<=F

*k& 1
2 :

*k, *$k<=F

| d 3x d 3x$[/k*(x) /k (x) V2 (x&x$) /k$ (x$) /k$ (x$)

&/k*(x) /k (x$) V2 (x&x$) /*k$ (x) /k$ (x$)]. (51)

With the help of our method, this result can be improved systematically by calculat-
ing higher-order diagrams of the graphical expansion (20) and extremizing the free
energy in 7. This will yield a self-energy which starts out like (49) and contains in
addition bilocal terms in the time. Such equations are of course much harder to
solve than the Hartree�Fock�Bogliubov equations, and the solutions cannot be
discussed in general, requiring a separate detailed discussion for each physical
system. The important lesson we have learned from the anharmonic oscillator
which is also a theory with a quartic interaction energy is that the expansion will
converge exponentially fast for all coupling strengths.

144 H. KLEINERT



File: DISTL2 578911 . By:CV . Date:25:05:98 . Time:14:36 LOP8M. V8.B. Page 01:01
Codes: 2533 Signs: 1647 . Length: 46 pic 0 pts, 194 mm

If pairing effects are important, we may conveniently work with quasi-real
doubled fields [5�8]

.=\ �
�*+ , with .� #c.-=., c=_1=\0 1

1 0+ , (52)

and the free part of the free energy is

F 0 [G0]=&
1

2;
Tr log[G0], (53)

with

G&1
0 =\�{+p̂2�2+V1 (x)&+

0
0

-�{& p̂2�2&V1 (x)+++ , (54)

where we have allowed for the presence of a chemical potential +, to study grand-
canonical ensembles. This is necessary to observe pairing phenomena, since these
do not conserve particle number.

The free energy can again be expanded in powers of g with a graphical expansion
as in the case of the complex x({) variables, the resulting free energy being a func-
tional F[G0]. In this we set

G&1
0 =G&1&7, (55)

with

7=\U+V1

2-

2
&U&V1+ . (56)

The off-diagonal elements are the bilocal gap functions. The lowest-order
approximation is the Hartree�Fock�Bogoliubov approximation.

All self-consistent equations can of course be derived also for time-dependent
phenomena at zero temperature. We merely have to work with a real time rather
than a euclidean one, and calculate the trace of the logarithm in Eqs. (3), (42), (53)
for bilocal time-dependent Green functions, with real times in the self-energy equa-
tions (23), (49), and in an obvious extensions of the latter to systems with pairing,
in which case the above framework provides us with time-dependent Hartree�
Fock�Bogoliubov equations.

For large-amplitude collective excitations, the solutions are found most simply
since such phenomena require only a semiclassic treatment of the above equations.
For any periodic state one chooses some initial self-energy 7 and solves the eigen-
value equation

(iG&1
0 &7) /k (t)=*k /k (t), (57)
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where /k (t) are antiperiodic wave functions whose Fourier decomposition contains
only the Matsubara-like frequencies |n=(2n+1)?�T and *k , the corresponding
Bloch�Floquet indices. Then one determines [5, 6]

G(t, t$)=:
k

:
n

i
|n&*k

exp[&i|n (t&t$)] /k (t) /k (t$)

=:
k

1
exp(i*k T )+1

exp[&i*k (t&t$)] /k (t) /k (t$), (58)

the sum over |n producing a Fermi-like distribution containing the period T of
oscillations like an imaginary inverse temperature. This Green function (58) is
inserted into (57) for a next iteration. The static case follows by taking the limit
T � �, where the sum reduces to the states below the Fermi surface and /k (t)
become time-independent wave functions.

The resulting G can be inserted into the real-time version of the free energy,
which is the effective action 1[G]=&F[G, 7[G]] |;=&iT . A static solution with
an infinite period T determines the energy E[G] via the relation 1[G]=&TE[G].
For an arbitrary period T, one finds the semiclassical resolvent R(E)=1�(H&E)
by calculating the Fourier transform [9]

|
dT
2?

exp(i1[G]+ET )#
�W(E)

�E
exp[iW(E)], (59)

where T is the period. Running through the same orbit many times and inserting
a phase &1 for each turning point gives

R(E)=
�W
�E

:
�

n=1

exp[inW(E)]=
�W
�E

exp[iW(E)]
1+exp[iW(E)]

, (60)

which has pole at W(En)=2?(n+1�2) [9].
If an imaginary-time solution passes through a potential barrier, exp(&TE)=

exp[i1[G]] gives the amplitude of penetration [10].

IV. GRAPHICAL COMPARISON WITH HIGHER EFFECTIVE
ACTION VARIATIONAL APPROACH

It is useful to compare our new procedure with the earlier systematic extension
of the Hartree�Fock�Bogoliubov approximation [5�7] based on the method of
bilocal Legendre transformations. We shall demonstrate in the next section that,
although that earlier method is quite appealing, it does not carry to higher orders
the most important virtue of the Hartree�Fock�Bogoliubov approximation, the
uniform validity for all coupling strengths, including the strong-coupling limit.
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Because of the historic significance of the Legendre transformation method, we shall
exhibit the precise relation between that and our new procedure.

Legendre transformations provide us with an effective action functional 1[G],
whose extrema yield the bilocal density matrix G of the interacting quantum
system [11, 12]. Effective actions are an important theoretical tool for formulating
extremality principles in quantum field theory and statistical mechanics [13], and
their history goes back to the extremality principles of Lee and Yang [11]. They
were generalized to bilocal variables by de Dominicis, Martin, and others [12].
The functional 1[G] is specified in terms of a graphical expansion according to the
number of fermion loops. We sketch this formalism in real time, where then the
lowest contributions lead directly to the time-dependent Hartree�Fock�Bogoliubov
equations. Higher corrections are found from a graphical iteration procedure.

To be specific, consider a fermion system. The starting point is an action of the
form (41) with an arbitrary two-body force. This will be written in terms of the
quasi-real doubled field (52) as

A[.]=
1
2

.G&1
0 .&

1
4!

v...., (61)

with G&1
0 being now c times the matrix G&1

0 of Eq. (54). More explicitly, the matrix
elements of G0 contain the free correlation functions

G(x, t; x$, t$)#\(Tt �: (x, t) �; (x$, t$))0

(Tt �-
: (x, t) �; (x$, t$)) 0

(Tt �: (x, t) �-
;(x$, t$)) 0

(Tt �-
: (x, t) �-

; (x$, t$)) 0+ , (62)

where :, ; are spin indices, all being suppressed in (61) and the subsequent
formulas.

To the action (61) we add a bilocal source term and form the generating
functional

Z[K]# |D. exp[i[A[.]+ 1
2.K.]], (63)

where

K#c \ }
*-

*
&}T+ ,

and .K. is short for � dt dt$ .a (t) Kab (t, t$) .b (t$). The superscript T denotes func-
tional transposition, i.e. if spin indices are displayed: K T

ab (t, t$)=Kba (t$, t),
+T

:; (t, t$)=+;: (t$, t). Note that the potential v with four doubled indices is anti-
symmetric.

Formally, Z[K] can be calculated by removing the interacting part from the
integral via functional derivatives, writing

Z[K]=exp \&
i
6

v
$

i $K
$

i $K+ Z0 [K], (64)

147SYSTEMATIC IMPROVEMENT OF HFB APPROXIMATION



File: DISTL2 578914 . By:CV . Date:25:05:98 . Time:14:36 LOP8M. V8.B. Page 01:01
Codes: 2386 Signs: 1366 . Length: 46 pic 0 pts, 194 mm

where Z0 [K] is given by a Gaussian functional integral, which can be performed
to give

Z0 [K]=| D. exp _ i
2

.iG&1
K .&=exp _1

2
Tr log iG&1

K & , (65)

with G&1
K =G&1

0 +K. Obviously, GK is the Green function of the noninteracting fer-
mions in the presence of an external field K. Expanding Z in powers of v results in
the standard diagrammatic rules of perturbation theory. If we form the logarithm
generating functional

iW[K]=log Z[K], (66)

this contains all connected vacuum graphs built from four-vertices and propagators
GK . Because of the fermion nature of . these are one-particle-irreducible, they
coincide with those in Eq. (10), if we drop there all diagrams with three vertices.

Given W[K], it is easy to find the exact density matrix of the system

1
2

G=
$W[K]

$K
. (67)

An effective action 1[G] of the system is now introduced as the Legendre trans-
form

1[G]#W[K]& 1
2 Tr(KG) | K=K[G] (68)

such that (67) implies

$1[G]
$G

=&
1
2

K. (69)

At the end, the auxiliary source K is set equal to 0. Then Eq. (69) states that the
physical density matrix extremizes 1[G], thus providing us with an extremal
principle.

Let us evaluate the lowest contributions explicitly: At the one-loop level we have

W (1) [K]= &
i
2

Tr log iG&1
K (70)

and (67) yields G=GK . Reinserting this into (68), we obtain

1[G]#1 (0) [G]+1 (1) [G]=
i
2

Tr(G&1
0 G)&

i
2

Tr log iG&1. (71)

The extremum of this is the density matrix of the free fermion system G=G0 .
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We now add to W[K] the lowest two-loop correction in (10),

W (2) [K]=&1
8vGK GK . (72)

Exhibiting upper and lower spin component, as well as other particle indices, this
contains again Hartree, Fock, and Bogoliubov contributions, whose explicit spin-
up and spin-down configurations with the

& 1
24 g:;#$ [(GK): a ; A (GK)# a $ A &(GK): a $ A (GK)# a ; A &(GK): a # a (GK); A $ A ] . (73)

By differentiating W2 [K]=W (0) [K]+W (1) [K]+W (2) [K] with respect to K
according to (67), we obtain

G=GK&
i
2

GK (vGK) GK , (74)

which is solved for K by

K=iG&1&iG&1
0 + 1

2 vG, (75)

to be reinserted into W2 [K], yielding via (68)

1 (2) [1]=G=&1
8vGG. (76)

Extremizing 12 [K]=1 (0) [K]+1 (1) [K]+1 (2) [K] yields

G=i[iG &1
0 & 1

2vG]&1, (77)

corresponding to the time-dependent Hartree�Fock�Bogoliubov equation (23).
Let us indicate how the method developed in Refs. [5�7] would proceed to

higher-loop approximations. Most efficiently, one would use the obvious functional
identity

| D.
$

$.
. exp _iA[.]+

i
2

.K.&=0, (78)

and work out the differentiations leading to the functional differential equation

(iG&1
0 +K ) W , K+

i
3

v(W , KK+iW 2
, K)&

i
2

=0, (79)
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where subscripts separated by a comma indicate functional differentiation with
respect to that variable. Using the relations (67) and &iW , KK=G , K �2=
K&1

, G �2=&1 &1
, GG �4, this becomes

(iG&1
0 &21 , G)G&

1
3!

v(i1 &1
, GG+G2)&i=0. (80)

After separating out the trivial part, 1 (0)[G] the interacting part of 1[G] is found
to satisfy the coupled equations

1 int
, G[G]G=&

1
4

vGG+
i

12
vG4:, (81)

:=&41 int
, GG (1&2iGG1 int

, GG)&1=&41 int
, GG+2i1 int

, GGGG:. (82)

The quantity : represents the exact four-particle vertex function of the theory. The
equation is pictured in Fig. 1. This equation generates precisely those vacuum
graphs which do not fall into pieces by cutting two lines, i.e. the two-particle-
irreducible diagrams. Up to two loops, we have

1[G]=#1 (0) [G]+1 (1)[G]+1 int [G], (83)

with the diagrams

(84)

In general, effective action has the expansion

1[7, G]=&
i
2

Tr log(iG&1
0 &7)&

1
2

Tr(G7)&
1
8

vGG+ :
�

n�3

1 (n) [G], (85)

with 1 (n) collecting all two-particle-irreducible graphs with n loops. The extremality
condition 1G [G]=0 produces a Green function

G=i[G&1
0 &7[G]]&1, (86)

with a self-energy improving upon the Hartree�Fock�Bogoliubov approximation
(77):

1
2

7[G]=&1 int
G [G]=

1
4

vG&
i

12
vG3:=

1
4

vG& :
�

n�3

1 (n)
,G [G]. (87)

Equation (86) was first used by Dyson [13] with the prescription that 7[G] contains
all those one-particle-irreducible self-energy graphs. Precisely the same diagrams are
included here, since removing one line from all two-particle-irreducible diagrams
produces all one-particle-irreducible diagrams. Thus the method of Legendre trans-
forms is the perfect tool to derive Dyson's equation.
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FIG. 1. Recursion relation for two-particle-irreducible graphs in the effective action 1 int[G].

It is a general belief that a set of better and better approximations to the final
result can be obtained by calculating all two-particle-irreducible diagrams in
1[G, 7] up to a certain order in the coupling strength and minimizing that expres-
sion in G. As we shall see in the next section, however, this belief is disappointed
even by the simplest system with a quartic self-interaction, the classical anharmonic
oscillator.

From the above diagrammatic analysis, the relation of the Legendre transform
method to our systematic extension of the Hartree�Fock�Bogoliubov approxima-
tion is now obvious: If the iteration of the new equation (39) for the self-energy is
interrupted after the first step (40), we fall back onto the earlier approach. The
example in the next section will show that the full iteration of Eq. (39) is essential
for the possibility of going to the strong-coupling limit in each approximation.

V. COMPARISON OF CONVERGENCE OF
THE TWO SYSTEMATIC EXTENSIONS

To illustrate the improvement brought about by the new systematic extension of
the Hartree�Fock�Bogoliubov approximation with respect to the previous higher
effective action approach consider the classical partition function of an anharmonic
oscillator, which is given by the simple model integral,

Z=|
�

&�

dx

- 2?�;|2
e&;(|2x2�2+ gx4�4!). (88)

It is easy to expand this in powers of g as Z=��
k=0 z(k)g$k, where g$#g�;|4. The

coefficients are

z(k)=
(&1)k

6kk!
1(2k+1�2)

1(1�2)
, k=0, 1, 2, ..., (89)

starting out like (&)k times 1, 1
8 , 35

384 , 385
3072 , 25025

98304 , 1616615
2359296 , 260275015

113246208 , 929553625
100663296 ,

835668708875
19327352832 , ... . For large k, they grow like (&1)k (2�3)k k!�k? - 2. The series is
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divergent, but Borel-summable. It possesses an absolutely convergent strong-
coupling expansion in powers of 1�- g$. This is found by rewriting (88) as

Z=(g$�6)&1�4 1

- ? |
�

0

dy

- y
e&y�- g$�6 e&y2

(90)

and expanding the first exponential in a Taylor series. The result is the strong-
coupling series

Z=(g$�6)&1�4 :
�

k=0

!k \ 1

- g$�6+
k

, (91)

with coefficients

!k=
1

2 - ?
(&1)k 1(k�2+1�4)

k!
. (92)

The series may be expressed in terms of well-known mathematical functions as

Z=e3�4g$ W0, &1�4 (3�2g$)=
1

- 2? \ 3
g$+

1�2

e3�4g$ K1�4 (3�4g$), (93)

where W0, &1�4 (z) is Whittaker's function and K1�4 (z) the modified Bessel function.
For g � �, Z behaves like a power of g$:

Z ww�
g � �

`0 (g$�6)&1�4, (94)

with coefficient

`0=
1

- ? |
�

0

dy

- y
e&y2

=
1(1�4)

2 - ?
r1.0227657. (95)

The free energy F of the model integral is defined by Z#e&;F. It has the power
series expansion

;F=:�

n=1

fn \ g
;|4+

n

(96)

with expansion coefficients fn being equal to 1
8 , & 1

12 , 11
96 , &17

72 , 619
960 , &709

324 , 858437
96768 ,

& 54193
1296 , 18639247

82944 , respectively.
In order to set up our variational approximations to this divergent expansion we

observe that the free propagator of the model integral (88) is

G0#a2=
1

|2 (97)
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According to Eq. (17), the interacting correlation function G is introduced by
replacing

G0 � (G&1&7)&1=G+G7+G7G. (98)

In this model, it will be convenient to express G in terms of a variational frequency
0 by setting the self-energy equal to

7#02&|2. (99)

Then the interacting correlation function G becomes simply

G=
1

02 , (100)

and the replacement rule (98) turns into

| � - 02+|2&02=0 _1+
1
2

|2&02

02 &
1
8 \

|2&02

02 +
2

& } } } & . (101)

The variational approximation ;FN is found by inserting this into the perturbation
expansion for ;F and re-expanded everything into powers of |2&02 up to the
order N. For the free part ;F 0 of the energy (16), the result is

;F 0=
1
2

log
02

|2+
|2&02

202 &
(|2&02)2

404 +
(|2&02)3

606 } } } +
(|2&02)9

18018 + } } } . (102)

Whereas in general, ;F is a functional of G and 7, it reduces in this simple model
to a function of 0. The first three powers in |2&02 correspond to the Feynman
diagrams (19).

By reexpanding the series (96) in this way, we obtain the successive interaction
energies F int

N , with F int
3 corresponding to the Feynman diagrams (20):

;F int
1 (0)=

g
804 ,

;F int
2 (0)=g \&1

406+
3

804+&
g2

1208 ,

;F int
3 (0)=

11g3

96012+ g2 \ 1
3010&

5
1208++ g \ 3

808&
1

06+
3

404+ ,

;F int
4 (0)=&

17g4

72016+ g3 \ &11
16014+

77
96012++ g2 \ &5

6012+
2

010&
5

408+
+g \ &1

2010+
15

808&
5

206+
5

404+ ,

;F int
5 (0)=

619g5

960020+ g4 \ 17
9018&

17
8016++ g3 \ 77

32016&
11

2014+
77

24012+
+g2 \ 5

3014&
35

6012+
7

010&
35

1208++ g \ 5
8012&

3
010+

45
808&

5
06+

15
804+ ,
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;F int
6 (0)=&

709g6

324024+ g5 \&619
96022+

6809
960020++ g4 \&17

2020+
170

9018&
85

8016+
+g3 \ &77

12018+
693

32016&
99

4014+
77

8012+
+ g2 \ &35

12016+
40

3014&
70

3012+
56

3010&
35

608+
+g \ &3

4014+
35

8012&
21

2010+
105
808&

35
406+

21
804+ ,

;F int
7 (0)=

858437g7

96768028+ g6 \ 709
27026&

9217
324024++ g5 \ 6809

192024&
619

8022+
6809

160020+
+g4 \ 85

3022&
187

2020+
935

9018&
935

24016+
+ g3 \ 231

16020&
385

6018+
3465

32016&
165

2014+
385

16012+
+g2 \ 14

3018&
105

4016+
60

014&
70

012+
42

010&
21

208+
+g \ 7

8016&
6

014+
35

2012&
28

010+
105
408&

14
06+

7
204+ ,

;F int
8 (0)=&

54193g8

1296032+ g7 \&858437
6912030 +

4292185
32256028+

+ g6 \&9217
54028 +

9926
27026&

64519
324024+

+g5 \&6809
48026 +

88517
192024&

8047
16022+

88517
480020+

+ g4 \&935
12024+

340
022&

561
020+

3740
9018&

935
8016+

+g3 \&231
8022 +

2541
16020&

4235
12018+

12705
32016&

1815
8014+

847
16012+

+g2 \&7
020+

140
3018&

525
4016+

200
014&

175
012+

84
010&

35
208+

+g \&
1

018+
63

8016&
27

014+
105

2012&
63

010+
189
408&

21
06+

9
204+ ,
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;F int
9 (0)=

18639247g9

82944036 + g8 \54193
81034&

921281
1296032+

+ g7 \4292185
4608032&

858437
432030+

4292185
4032028+

+g6 \64519
81030&

46085
18028+

24815
9026 &

322595
324024+

+g5 \ 88517
192028&

47663
24026+

619619
192024&

56329
24022+

619619
960020+

+g4 \187
026&

12155
12024+

2210
022 &

2431
020 +

12155
9018 &

2431
8016+

+g3 \ 847
16024&

693
2022+

7623
8020&

4235
3018+

38115
32016&

1089
2014+

847
8012+

+g2 \ 10
022&

77
020+

770
3018&

1925
4016+

550
014&

385
012+

154
010&

55
208+

+g \ 9
8020&

10
018+

315
8016&

90
014+

525
4012&

126
010+

315
408&

30
06+

45
804+ . (103)

For brevity, we have set ; and | equal to 1 on the right-hand sides.
By extremizing ;FN=;F 0+F int

N for N=1, 2, 3, ..., 9, we obtain the free energies
as functions of g shown in Fig. 2. We see that the convergence is quite fast. In addition,

FIG. 2. Relative deviations of the approximate free energies ;FN from the exact free energy ;F ex as
a function of the dimensionless coupling constant g$= g�;|4. The length of the dashes is proportional
to the order N. The deviations saturate at large g$ implying a uniform convergence.

155SYSTEMATIC IMPROVEMENT OF HFB APPROXIMATION



File: DISTL2 578922 . By:CV . Date:25:05:98 . Time:14:36 LOP8M. V8.B. Page 01:01
Codes: 2494 Signs: 1247 . Length: 46 pic 0 pts, 194 mm

it is uniform up to infinite coupling strength. To exhibit this most clearly, we
observe that for increasing g$= g�;04 the optimal value of 0 grows like

02

|2tc \g$
6 +

1�2

, (104)

and the associated free energy like

;FNt
1
4

log \g$
6 ++;F� N(c), (105)

where ;F� N depends on the growth parameter c as

;F� N= 1
2 log c+ :

N

n=0

hN
n c&2n,

with coefficients listed in Table I.
For N=1 we obtain the Hartree�Fock�Bogoliubov approximation whose par-

ticular strength is to give a good approximation to the strong-coupling behaviour
g � � of a system. In our model

;F1=
1
4

log \g$
6 +&

1
2

+
1
2

log c+
3

4c2 . (107)

The minimum of this lies at c=- 3, where ;F� 1=&1
4+ 1

2 log - 3=0.02465... .
For the partition function Z=e&;F, this implies a first approximation
Z1 � e1�4�31�4 (g�6)1�4. The value e1�4�31�4

r0.9756 compares reasonably well with
the exact value `0=1.0227657 ... in (95).

TABLE I

Coefficients hN
a of Reduced Free Energy ;F� N (c) in the Strong-Coupling Expansion (106)

N 0 1 2 3 4 5 6 7 8 9

1 &1
2

3
4

2 &3
4

9
4 &3

3 &11
12

9
2 &15 99

4

4 &25
24

15
2 &45 693

4 &306
5 &137

120
45
4 &105 693 &2754 50139

10

6 &49
40

63
4 &210 2079 &13770 551529

10 &102096
7 &363

280 21 &378 10395
2 &50490 1654587

5 &1327248 69533397
28

8 &761
560 27 &630 22869

2 &151470 7169877
5 &9290736 1043000955

28 &70234128
9 &7129

5040
135

4 &990 22869 &393822 50189139
10 &46453680 2986001510

7 &1193980176 4529337021
2
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The reduced free energies ;F� N are plotted in Fig. 3. Their lowest extrema provide
us with rapidly convergent approximations to the number (recall (95))

;F� �=&log `0=&0.02252 ... . (108)

The approximations ;F� N have for N=1, 2, 3, ..., 9, the values 0.02465, &0.01311,
&0.02136, &0.023759, &0.02386, &0.02291, &0.02265, &0.02253, &0.02248, ... .
The approach is exponentially fast, with oscillations around the correct result (108)
(just as those observed for the quantum-mechanical anharmonic oscillator in
Ref. [4]). This is illustrated in Fig. 4.

Let us compare this convergent approach with the earlier improvement scheme
based on the truncated effective action derived from a Legendre transform [14].
According to Eq. (85), the effective actions to be extremized are

1N (0)=
1
2

log
02

|2+
|2&02

202 + :
N

n=1

(&)n cn (g�;04)n, (109)

where the coefficients cn require evaluation of all two-particle-irreducible diagrams
in the expansion (20), i.e. the Feynman diagrams (84). Because of the simplicity of
the model, all Wick contractions with a given number of loops yield the same
result, (g�;|)n, so that the coefficients cn become simply the multiplicity factors in
the diagrammatic expansion (84). For the first three coefficients c1 , c2 , c3 we there-
fore obtain directly the numbers 1

8 , 1
48 , 1

48 . All higher coefficients cn can easily be
calculated from a recursion relation derived in Eqs. (101) and (102) of Ref. [6],

cn=
1

2n _&
1
6

cn&1 (2n&2)(2n&3)+8 :
n&1

m=1

(n&m) m(2m&1) cmcn&m& , (110)

to be iterated with the initial values c1=1�8, c2=1�48. This yields for c3 , c4 , ... the
sequence 1

48 , 5
128 , 101

960 , 93
256 , 8143

5376 , 271217
36864 , 374755

9216 , ... .

FIG. 3. Reduced free energies ;F� N of Eq. (107) as functions of the growth parameter c. The lowest
extrema converge rapidly against the exact strong-coupling value log `0=&0.02252��indicated by the
horizontal dotted line. For N=2 and 4, the turning points yield the approximations F� 2 and F� 4 . We have
omitted the curve for the Hartree�Fock case N=1 which looks similar to the N=3-curve but lies much
higher, with a minimum at positive 0.02465.
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FIG. 4. Exponentially fast convergence of the free energy in the strong-coupling limit. The plot
shows the logarithm of the relative error of the Nth approximation as a function of N, which falls off
linearly. The approach to the correct result (108) is oscillatory.

In order to cross check the coefficients cn , we make a power series ansatz
0=|[1+��

n=1 on (g�;|4)n], insert it into (110), re-expand everything in powers
of g, and determine the coefficients on to minimize 1(0). This yields on= 1

4 , &23
96 ,

61
128 , &24805

18432 , 39247
8192 , &35991587

1769472 , 706267831
7077888 , &13947541207

25165824 , 3112285332185
905969664 , ... . The resulting

series 1=��
n=1 #n (g�;|4)n turns out to coincide with the original expansion (96)

for ;F.
The successive approximations of Nth order are plotted in Fig. 5. We observe

that the gain in accuracy is not uniform in the coupling strength. Instead, the errors
grow rapidly with increasing g. The weakness of this earlier approximation is most
dramatic in the limit of infinite coupling strength. Performing the same g � �-limit
of 02 as in (104), we obtain in analogy to (105) and (106)

1N=
1
4

log \g$
6 ++1N (c), (111)

with the reduced effective action

1N= 1
2 log c+ :

N

n=0

hn c&2c, (112)

where hn are equal to (&)n+1 times 1
2 , 3

4 , 3
4 , 9

2 , 405
8 , 8181

10 , 67797
4 , 5936247

14 , 197717193
16 ,

819589185
2 . Note that, in contrast to our new approximations (106), the expansion

coefficients hn are independent of the order N [which is the basic reason why (112)
cannot compete with (106)].

For N=1, we obtain the same Hartree�Fock�Boglojubov approximation (107)
as in the new approach. However, when attempting to extremize the higher
approximations, we find that an extremum exists only for odd orders N, implying
that the even approximations 1N(0) do not possess an extremum for large coupling
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FIG. 5. Approximations to 1N to ;F obtained from the extrema of the effective action 1N(0) in
Eq. (109) with increasing loop number N. In contrast to the new approximations ;FN in Fig. 2, the
errors increase rapidly with increasing g. There is no uniform convergence.

strengths. This can be seen in Fig. 6. Moreover, the limiting values obtained from
the odd approximations 1N do not converge toward the correct limiting value
;F� �=1� �=&log `0=&0.02252 ... . Instead, they have for N=1, 3, 5, 7, 9 the
values (see Fig. 6)

1N=0.0247, 0.0549, 0.1187, 0.1757, 0.2229, (113)

which move away from the correct value &0.02252 ... . Thus we conclude that for
infinite coupling strengths the previous approximation method based on Legendre
transforms is useless beyond the Hartree�Fock�Bogoliubov approximation. Only
for very small couplings do higher orders provide us with improved results, as
illustrated in Fig. 5.

FIG. 6. Reduced effective actions 1� N of Eq. (112) as functions of the growth parameter c, with
respect to which we must find the minima. Those of the odd-N approximations are all positive and move
further and further away from the exact strong-coupling parameter log `0=&0.02252. The even-N
approximations have neither a minimum nor a turning point, indicating that the effective actions for
N>1 are useless in the strong-coupling limit.
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VI. CONCLUSION

We have presented a new systematic extension to the Hartree�Fock�Bogoliubov
approximation which is far superior to an older method based on a bilocal version
of the loop expansion of the effective action of the second type. The older method
which corresponds to solving Dyson's equation with a self-energy consisting of all
two-particle-irreducible diagrams up to a given number of loops fails at larger
couplings. In contrast, the new method shows an exponentially fast convergence
uniformly for all g, including the strong-coupling limit.

While this paper was being refereed, the new method has been successfully used
to find the strong-coupling behavior of a scalar ,4 (x) quantum field theory, and the
critical exponents of the theory for all O(n) universality classes [15].
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