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Abstract

A supersymmetric path-integral representation is developed for stochastic processes whose Langevin equation contains
any number N of time derivatives, thus generalizing the presently available treatment of first-order Langevin equations by
Parisi and Sourlas [Phys. Rev. Lett. 43 (1979) 744; Nucl. Phys. B 206 (1982) 321] to systems with inertia (Kramers’
process) and beyond. The supersymmetric action contains N fermion fields with first-order time derivatives whose path
integral is evaluated for fermionless asymptotic states. © 1997 Published by Elsevier Science B.V.

1. For astochastic time-dependent variable x, obey-
ing a first-order Langevin equation

L[x] =% + F(x:) =71, (1)

driven by a white noise n, with {%,) =0, (n/my) = 6,
the correlation functions (x,, ...x,,) can be derived
from a generating functional

Z1J] = (eifdtlx) =/Der—Sb+ifdt s (2)

with an action S, =  fdr L? and a Jacobian
A = det 6,,L,. We denote by Ox, L, the func-
tional derivative 8L,[x]/8xy. Explicitly, 6;,L, =
[8; + F'(x;)18,. The time variable is written as a
subscript to have room for functional arguments after
a symbol. It was pointed out by Parisi and Sourlas [ 1]
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that by expressing the Jacobian 4 as a path integral
over Grassmann variables,

A=/DE Dce™ ™, (3)

with a fermionic action

Sf = /dt dt/ C-‘y 6x’,L; Cy = /dt 5,(3, + F’)C,,
(4)

the combined action § = S, +5¢ becomes invariant un-
der supersymmetry transformations generated by the
nilpotent (Q? = 0) operator

= /dt (icdy —iL,0¢). (5)

The supersymmetry implies QS = 0.

The determinant (3) should not be confused with
the partition function formed with the Hamiltonian
corresponding to the fermionic action (4). The parti-
tion function is equal to the trace over external states,
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the determinant to the vacuum-to-vacuum transition
amplitude for the imaginary-time interval. When cal-
culating the determinant (3), one must specify the
boundary conditions which are not just antiperiodic
as for ordinary Fermi fields, but causal. Within the
coherent-state representation [2], the fermionic path
integral (3) requires setting ¢, and ¢, equal to zero at
the initial and final times, respectively > . .

The generating function (2) can also be rewritten
in a canonical Hamiltonian form by introducing an
auxiliary Gaussian integral over momentum variables
p:, and replacing S, by S = [dr (p?/2—ip,L,). The
generator of supersymmetry for the canonical action is
O = [dr (ic,8;,—p:8;,). This form has the important
advantage, to be used later, that it does not depend
explicitly on D,, so that the above analysis remains
valid also for more general colored noises with an
arbitrary correlation function (9ampr) = (Dap) e +
Ot

Inserting (3) into (2), the generating functional
becomes

Z[J] — (eifdt./x>

= / Dp Dx D& De =5 —5+ [t s, (6)

This representation makes the stochastic process (1)
equivalent to a supersymmetric quantum mechanical
system in imaginary time. The supersymmetry gives
rise to an infinity of Ward identities between the cor-
relation functions which can be collected in the func-
tional relation

/ Dp Dx DéDc e~ QM ¢ =0, (7

valid for an arbitrary functional @ = @[ p, x,¢,c]. The
Ward identities simplify a perturbative computation of
the correlation functions.

A proof of the equivalence between (1) and (2) re-
quires a regularization of the path integral, most sim-
ply by time slicing. This is not unique, since there are
many ways of discretizing the Langevin equation (1).
If one sets 1y = ke, for k =0,1,2,..., M, xx = x4,

3 The conventional coherent-state path integral can also be used to
represent the determinant (refdet) [3], but it has the disadvantage
that quantum corrections (terms proportional to A) must be added
by hand to the classical bosonic action explicitly.

and Fi = F(x;), then the velocity x may be approx-
imated by (x; — x¢—1)/€. On the sliced time axis,
the force F(x,) may act at any time within the slice
(txs tk—1), which is accounted for by a parameter a
and a discretization F — aF; + (1 — a) Fy.-;. Note
that the discretized Langevin equation is assumed to
be causal, meaning that given the initial value of the
stochastic variable xo and the noise configurations
o> M, - - - » My—1, the Langevin equation uniquely de-
termines the configurations of the stochastic variable
at later times, xi, x2,...,xs. The simplest choice of
the right-hand side of the Langevin equation compati-
ble with the causality is to set it ?&ual to Yx—1. In gen-
eral, one can replace mx_1 by > " Ayg_1 j—1m,—1, with
A being an orthogonal matrix (ATA = 1). The latter
is just evidence for the symmetry of the white-noise
stochastic process with respect to orthogonal transfor-
mations 7, — (A79),.

Some specific values of the interpretation param-
eter a have been favored in the literature, such as
a = 0 or 1/2 corresponding to the so-called Ité- or
Stratonovich-related interpretation of the stochastic
process (1), respectively [2,4]. In the time-sliced
path integral, these values correspond to a prepoint
or midpoint sliced action [2,5]. Emphasizing the a-
dependence of the sliced action, we shall derote it by
SH. This action is supersymmetric for any a: QHSH =
0. The sliced generator Q" = 37, (ickdy, — pidz,)
is independent of both the interpretation parameter
a and the width € of time slicing [2]. A shift of a
changes the action by the Q-exact term

S:z{-+—8a = SE{ +da QH G, (8)

in which G is a function of a and a functional of
P, x,¢,c. This makes the Ward identities independent
of a,i.e. on the interpretation of the Langevin 2quation.
Indeed, setting 8a = —a we find e=5% = e~ 0"? =
e~ (1 + QHa!). Substituting this relation into (7)
we observe that the a-dependence drops out from
the Ward identities, because of the supersymmetry
QHSH = 0 and the nilpotency (Q%)? = 0.

The simplest situation arises for the Itd choice, a =
0. Then the sliced fermion determinant 4 b2comes a
trivial constant independent of x. In the continuum
limit of the path integral, however, this choice is incon-
venient since the associated limiting action Sy cannot
be treated as an ordinary time integral over the con-
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tinuum Lagrangian. Instead, S, goes over into a so-
called Itd stochastic integral [2]. The Itd integral cal-
culus [4] differs in several respects form the ordinary
one, most prominently by the property [ dx # Jdt x.
This difficulty is avoided by taking the Stratonovich
value a = 1/2, for which the continuum limit of S, 2
is an ordinary integral [2]“. Splitting (8) as S, =
812+ (a—1/2)Q G, the non-Stratonovich part van-
ishes in the continuum limit because Q does not de-
pend on the slicing parameter €, whereas G is propor-
tional to € — 0 [2]. For a = 1/2, formula (6) has a
conventional continuous interpretation as a sum over
paths, and can be treated by standard rules of contin-
uum path integration based on the perturbation expan-
sion around Gaussian measures. The price to pay is
the additional fermion interaction which possesses, as
a compensation, the additional supersymmetry.

The aim of our work is to extend this supersymmet-
ric path-integral representation to stochastic processes
with higher time derivatives

Li=y(3)x + F(x;) =7, (9)

where v is a polynom of any order N — 1, thus pro-
ducing N time derivatives on x,. This Langevin equa-
tion may account for inertia via a term m 4, in y(4d,),
and/or an arbitrary non-local friction f dr yrki—r &~
SN yedrt x, where y, = [dr y.(—7)"/n!. The
main problem is to find a proper representation of the
more complicated determinant 4 = det 8, , L, in terms
of Grassmann variables. What we need is an appro-
priate generalization of the causal boundary condition
discussed after (5). The way to resolve the bound-
ary condition problem is to go to the correspond-
ing operator formalism [2]. However, quantum the-
ories with higher-order time derivatives have many
unphysical features, in particular states with negative
norms [6,7]. Thus, it is a priori unclear how to im-
pose the causal boundary conditions for the associ-
ated fermionic path integral. In gauge theories, the
Faddeev-Popov ghosts give an example of a fermionic
theory with higher (second) order derivatives. There,

41In Section 10.5 of Ref. [5] it is shown that the correct time
slicing of an interaction f dr ¢gF(q) in a path integral is of
the midpoint type, corresponding to a = 1/2. Sometimes this is
referred to as the midpoint prescription for defining the sliced
action, but it can actually be derived from the short-time action
along a classical orbit.

unphysical consequences of the negative norms of the
ghost states are avoided by imposing the so-called
BRST invariant boundary conditions upon the path
integral. For the above stochastic determinant with
higher-order derivatives, the correct boundary condi-
tion are unknown.

2. The solution proposed by us in this work is best
illustrated by first treating Eq. (9) for the case of one
more time derivative

Ly =% +vyx,+ F(x;) =7, (10)

accounting for particle inertia (Kramers® process for
a unit mass m = 1). Omitting the time subscript of
the stochastic variables, for brevity, we replace the
stochastic differential equation (10) by two coupled
first-order equations

Ly=0+vyv+ F(x) =v,, (11)
Ly=x—v=v, (12)

There are now two independent noise variables, which
fluctuate according to the path integral

(F[x,0]) = / Dy, Dy, F|x,v]

1 V3 (9x +7Vx)2
XCXP[_E/dt(2(1—0)+ 20 )]
(13)

A parameter o regulates the average size of deviations
of i from v in Eq. (12). If we regard the basic noise
correlation functions as functional matrices (D,), =
(vmwnr) for n = x,v, which act on functions of time
as linear operators D, f, = f dt’ (Dy)w fr, the noise
correlation functions associated with (13) are

Du = 1 -a,
Dy =cge™ (-9 '3 e . (14)

Substituting (12) into (11) we find Eq. (10) now
driven by the combined noise

N — No =Vy + Uy + Vs (15)
This noise is white for any choice of o,

<77m> =0, <Tlm77m") =& (16)
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Let x,[7n] be a solution of the original Langevin equa-
tion (10), and x,[7,] a solution of the system (12),
(11). The property (16) implies that x,[7,] has the
same correlation functions as x,[n] for any o, thus
describing a stochastically equivalent process.

Once we have transformed Kramers’ process into
a system of coupled first-order Langevin equations
(11) and (12), which is a trivial extension of the first-
order Eq. (1) to a matrix form, there obviously exists
a path integral representation analogous to (6). This
was precisely the purpose of introducing two noise
variables and a fluctuating relation between x and v
in Eq. (12). There is a complication though, that the
noise v, is no longer white since D, is non-local in
time. However, as observed above, this does not affect
the supersymmetry in the canonical form (6) of the
path integral since the supersymmetry generator Q!
does not depend on D, (in contrast to Q).

Thus, having established the supersymmetric path
integral representation of the equivalent system of
first-order stochastic equations, our strategy is the fol-
lowing. We shall integrate out the auxiliary bosonic
variable v. Since Eqgs. (11) and (12) are linear in v,
the corresponding determinant does not depend on it.
Therefore the integration will not affect the fermionic
integral whose proper boundary conditions will be
guaranteed by the coherent-state path-integral repre-
sentation of the determinant (3) associated with the
system (11), (12) which, by construction, is equiv-
alent to the original second-order stochastic process.
From the supersymmetry generator in the extended
space we shall obtain the corresponding generator in
the original bosonic configuration space by substi-
tuting solutions of the equations of motion for the
auxiliary variable. The so-obtained effective action
and the supersymmetry generator are shown to be
regular in the vicinity of o = 0. This allows us to take
the limit & — 0, in which the effective action and the
supersymmetry generator are both local in time.

To prepare the notation for the later generalization
to a stochastic differential equation with N deriva-
tives, we rename the variables x and v as x,, with
a =1,...,N, where N = 2, for the moment. Only
the equation for xy contains the force F = F(x;).
The other equation just establishes a fluctuating equal-
ity between x; and x;, the original process being de-
scribed by x = x;. Inserting the stochastic equations
(11) and (12) into the exponent of (13), we apply the

previously discussed time-slicing procedure to change
the integration variables v, = v,[x]. Choosing mid-
point slicing with a = 1/2 a la Stratonovich, we ob-
tain the path-integral representation of the generating
functional

Z[J] =/Dp Dx Dz De e+ [ 4175, (17

2
sH = Z /dt (3PnDupy — ipaLy + &6, Lycy) .
n=1

The generator of supersymmetry is

2
0" =3 [at (iesds. = puti,). (18)
n=1

It is readily verified that QHSH = 0, using the fact
that 3., EmCx (8x,8x, L) cn ~ 3, c2 = 0 due to the
Grassmann nature of ¢,. Explicitly, the Fermi part of
the action SH reads

S = /dt [Cxlyx + Cup — ExCy + Eu F/ (X)) + YCuCy].
(19)

The Gaussian path integral over momenta in (17) has
a meaning without time slicing, and can be performed
to recover the Lagrangian version of the supersym-
metric action

2
Sy = Z/dr 1LD 'L, + Se. (20)
n=1

The associated generator of supersymmetrv is ob-
tained from (18) by substituting into Q" the solutions
of the Hamilton equations of motion p, = iD, 'L,
which extremize St (8, 5" = 0), leading to

2
Oy = Z/d: (icndx, — D, ' Lnds,). (21)
n=1

The final step consists in integrating out the auxiliary
variable x; = v which only appears quadratically in the
bosonic part of the action. Making use of the explicit
form of D, given in (14), we obtain the Lagrangian
form of the supersymmetric action

1
Sy = /dt 1L, (1 + 1—_(;3,Dxa,) Li+S8 (22
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where L, is now given by (10). At this stage, the
effective action is non-local in time. Now we take
advantage of the freedom in choosing the parameter
o. We go to the limit o — 0, in which case D, ~ o
vanishes, reducing the action to the local form

S=So=/dt LI+ 8. (23)

To find the generator of supersymmetry in this rep-
resentation, we omit §,, = &, in (21), and replace
Xy = v by the solution of the equation of motion

1
808y = —D;'Le+ T—— (=8 + ML, =0.  (24)

According to (12), the quantity L, fluctuates with the
width proportional to o. In the limit & — 0, we re-
cover the non-fluctuating relation L, = v — x = 0. Al-
though the operator D! ~ o~! diverges in this limit,
so that D;’ L, is uncertain, the equation of motion for
the velocity v holds for all values of ¢. In fact, in the
limit ¢ — 0, the value of D! L, isequal to (d,—y) L,
when v satisfies the classical equation of motion (24).
Since by construction the operator (21) is evaluated
by inserting the solution of the classical equation of
motion for the auxiliary variable v, the relation (24)
also determines the operator (21) at o = 0. The su-
persymmetry generator assumes the final form

0=00= / dt [ics8y — i(=d, + ) Libe, — iLibs ] .
(25)

The action (23) provides us with the desired super-
symmetric description of Kramers’ process (10).

An important feature of the supersymmetry gener-
ated by Q is that the supermultiplet contains one bo-
son field and two fermion fields. The reason for this
is, of course, that a quantized boson field with N time
derivatives in the action carries N particles, each of
which must have a supersymmetric fermionic partner.
In our matrix formulation (11), (12) of Kramers’ pro-
cess, the fermion degrees of freedom have the conven-
tional first-order action, which permits us to impose
the vacuum-to-vacuum boundary conditions within the
coherent-state representation of fermionic path inte-
grals [2]. So, the problem of the boundary condition
for the determinant of the second-order operator has
been circumvented by enlarging the number of Fermi

fields, thereby reducing the problem to the known one
for the determinant of the single-derivative operator.
The boundary conditions (x,—¢ = xo and X,¢ = vy =
Xp) for the bosonic path integral pose no problem.

What happens if we integrate out the auxiliary
Grassmann variables &,, ¢,? In these variables, the
action (19) is harmonic, driven by external forces
¢ and ¢, F'(x). After a quadratic completion the
integration with the vacuum-to-vacuum boundary
condition yields det(d; + ). The effective action for
the other fermion pair becomes non-local,

sf=/dt (et + 208+ 1) (F'(Den)] . (26)

The total effective action S = S, + S still exhibits the
supersymmetry now generated by the operator (25),
if the last term in Q is dropped. The action (26) is
a first-order action. So, with the vacuum-to-vacuum
boundary condition, the integral over ¢,, c, would also
give a determinant. Thus we obtain the product

A=det[d, +yldet[d, + (@ +y)'F'(x)]. (D)

Invoking the formula for the determinant of a block
matrix, the non-locality in the second determinant can
be removed, while maintaining the linearity in the time
derivative

7
A=det(FTYEY (28)
~1 g,

This is exactly the determinant arising from the two-
noise process (11), (12). In this way we have rep-
resented the determinant of the second-order operator
as a determinant of a first-order operator acting upon
a higher-dimensional space for which the boundary
conditions are known.

Thus, with the help of two coupled equations driven
by auxiliary noises we have succeeded in giving a
unique meaning to the path-integral represéntation of
the Kramers process. The final path integral can be
time-sliced in any desired way (prepoint, postpoint,
midpoint, or any mixture of these). As long as the slic-
ing is done equally in the bosonic and the fermionic
actions, the fermions will compensate all slicing am-
biguities in the bosonic variables. In Section 4 the pro-
cedure will be generalized to the case of a friction co-
efficient y being a function of x. Now we proceed to
generalize our construction to stochastic processes of
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an arbitrary order N. As a result we shall arrive at a
supersymmetric extension of general higher-order La-
grangian systems with a supermultiplet of N fermion
fields which all possess a good quantum theory due to
their first-order dynamics.

3. Consider a system of coupled stochastic pro-
cesses

N
Ly=3in+ D Yo1%, + F(x1) = v, (29)

n=1

Ly=dy—Xps1=vp, n=N—1,N=2,...,1, (30)

where x; = x. This stochastic process is equivalent
to the original one if we assume the noise average as
being taken with the weight e =%, generalizing that in
(13) to

N—-1
1 1
_1 2 Z 1 2
SV s 2 /dt (1 o VN n=1 n (AN_nyn) )’

(31)
I

where o = YV o, and A, = Sh o YN-mdl ",
vvw = 1. As for N = 2, Egs. (29) and (30)
can be combined into a single equation L, =
vy + ZHNQI AN—n¥n = 7. From (31) follows that
(M) = 0 and (Np:Mor) = S, Thus the correlation
functions of the system (29) are the same as those of
the original one. As before, the correlation functions
for the combined noise 7, do not depend on the pa-
rameters o,. At the end, all of these will be chosen
to be zero, to obtain a formulation local in time.

The Hamiltonian path integral for the stochastic sys-
tem (29) and (30) has the form (17), where the la-
bel n runs now from 1 to N. With the same exten-
sion of the index sum, the operator Q" in (18) gen-
erates supersymmetry. The noise correlation functions

(14) are generalized to Dy =1 — 22:] o,and D, =

oa( AL_,,AN_,,) =1, After integrating out the momenta
Pn, we arrive at the action (20) with the extended sum,
and the generator of supersymmetry assumes the form
{21) with the extended sum.

Integrating out the auxiliary variables x,, n > 1,
is now technically more involved, but the integral is
still Gaussian. A successive integration is possible by
observing that the fermion action does not depend on
the variables x,, for n > 1, the stochastic process being

non-linear only in the physical variable x; := x. The
classical equations of motion &,, S, = O can be written
in the form

—D L,y — 0D Ly +¥a Dy'Ly =0, (32)

for n =2,3,..., N. Combining the equations for n =
N and n = N — 1, and the result with the equation for
n =N — 2, and so on, we derive the relation

N—n

_ 1
DL, = 7_—,,(Z<—1>"7n+kaf) Ly, (33)
k=0

having inserted Dy =1 —coand withn=2,3,.. ., N.
These expressions may be substituted into the action
(20), and the generator (21). Asin thecase N = 2, the
supersymmetric Lagrangian action and the operator Q
turn out to have a smooth limit o, — 0. Relation (33)
specifies the value of D; 'L, in the limit o, -— 0. The
generator of supersymmetry becomes

N N—n

O=ifdt |:018X -3 (E(—l )ky,,+k:9,"1;,> 55"}.
n=1 k=0

(34)

For convenience, we give the fermion action explicitly,

N
Sf = /dt [ZC_‘"C‘” — CuCntl

n=1

N
+CN(Z'}'n—lCn+F,(x)Cl)]- (35)

n=0

The operator (34) transforms the original stochas-
tic variable x = x; into the Grassmann variable ¢,
Qx = icy, whereas all the fermionic variables are trans-
formed into some functions of the only bosonic vari-
able x. The fermionic action (35) is constructed in
such a way that OS¢ depends only on c;. The terms
containing the other Grassmann variables are can-
celled amongst each other. The ¢; term is cancelled
against the term resulting from @8, i.e. Q(Sp +5¢) =
0. It is important to realize that the fermions are cou-
pled with each other, and thus belong to an irreducible
supermultiplet. The number of fermions is equal to
the highest order of the time derivative entering the
bosonic action, as observed before for N = 2.
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4. The idea of splitting the higher-order Langevin
equation into a system of coupled first-order stochastic
processes with a combined noise can also be applied
to construct a supersymmetric quantum theory asso-
ciated with the higher-order stochastic process where
the coefficients vy, are functions of x,. We illustrate
this with the example of Kramers’ process in which
the friction coefficient being a function of the stochas-
tic variable x,.

A straightforward replacement of ¥ by y(x) in (11)
would create a problem because the combined noise
7s appears to be a function of x,, making the sys-
tem (11), (12) inequivalent to the original stochastic
process (if the Gaussian distributions for the auxiliary
noises are assumed). To resolve this problem, we take
two coupled non-linear first-order processes

Li=o+v+A(x) =, (36)
Li=x—v+ A(x) =v,. 37)

The functions A, , are subject to the condition

A=y—1, A=F-A. (38)
With the noise average defined by (13), where the
constant ¥ is set equal to one, and the condition (38),
the stochastic system (36), (37) is equivalent to the
original system L, = X + y(x)x + F(x) = 7.

The difference between (37) and (12) is just the
extra force A,, which does not affect the derivation of
the associated supersymmetric action. Repeating cal-
culations of Section 2, we arrive at the supersymmet-
ric action § = S, + Sf, where

S

%/dt [ +y(0i+ F0], (39)

S = /dt {5xéx + CpCy + CxCx[y(x) — 11 + Cpecy
— G [F'(x) —v(x) + 1] — &xcu}- (40)

The supersymmetry generator has the form
0= /dt [icy6; —iL8;, —i(—d;+ 1) L8z 1. (41)

It is not hard to verify that QS = 0.

If we set ¥ to be independent of x in (40), the
fermionic action does not turn into (19). In fact, when
y(x) = y = const., the system (36), (37) does not

coincide with the system (11), (12}, and the correla-
tion function D, of the auxiliary noise is different in
both systems. Nonetheless, the integral (3) for the ac-
tions (40) and (19) is equal to the very same delermi-
nant (28). The reason is that the fermionic path inte-
gral exhibits a large symmetry associated with general
canonical transformations on the Grassmann phase
space spanned by ¢ and c¢. Recall that under canonical
transformations the canonical one-form 2 Cn dcp 18
invariant up to a total differential dF (Z,c). Also the
measure ||, dé, dec, remains unchanged. Thus there
exists infinitely many equivalent supersymmetric rep-
resentations of the same stochastic process. The situ-
ation is similar to the BRST symmetry [7] in gauge
theories where the BRST charge is defined up to a
general canonical transformation. This freedom can
be used to simplify the fermionic action or the Fermi
part of the supersymmetry generator.

This formal invariance of the continuum phase-
space path-integral measure with respect to canonical
transformations has been studied thoroughly [8] for
bosonic phase spaces. A regularization of the contin-
uum phase-space path-integral measure with respect
to general canonical transformations in a phase space
which is a Grassmann manifold is still an open prob-
lem.

The authors are grateful to Drs. Glenn Barnich and
Axel Pelster for many useful discussions, and to Pro-
fessor John Klauder for comments.
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