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Abstract: The implications of the dimension of a field on its gravitational vertex func-
tion are discussed. As expected from the L.SZ theory, the dimension as an in-
trinsic property of the interpolating field does not enter into on-mass-shell quan-
tities. Thus, contrary to the claim of Kastrup, the slope of the scalar form factor
is not determined by the dimension of the field. Only under additional assumptions
involving the dimension of the SU(2) X SU(2) breaking is such a determination pos-
sible.

1. INTRODUCTION

The dimensional analysis of field operator equations has recently turned
out to be a powerful tool in studying the singular behaviour of operator
products ¢(x)¢(0) for small x* as well as close to the light cone [1]. It
turns out that to any finite order in perturbation theory the dimensions of
fields are approximately ** equal to what one expects from canonical theo-
vy, a result which agrees with the scaling law found experimentally in deep
inelastic scattering.

It is therefore desirable to test this result in other physical processes.
Thus predictions have been derived for vector-meson dominance, Kygg form
factors, and u pair production in pp collisions [2], and for the high-energy
behaviour of propagators [3, 4] ***.

The most striking consequence was, however, derived by Kastrup.
Without any dynamical assumption, he found that the slope of the on-shell
form factor of the trace of the energy momentum tensor is given by [5]

aT
a_t (09 Uz, .U'z) = _% %-dgb) ’ (1)

* Nato Fellow.

** For example, the most singular part of the operator product ¢(x)$(0) is given to
finite order in perturbation theory by (b(x)qb(O)x—_:(j*(c/xz)(logxz)>t which shows
that ¢(x) has dimension one except for the logarithmic factor.

*** One of the authors (H.K.) is grateful to Professor Jackiw for sending him an
anonymous piece of work entitled 'Canonical and non-Canonical Scale Symmetry
Breaking' (MIT preprint, May 1970) in which the equations show his handwriting.
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where d_, is the (mass) dimension of the field. From this result he claims
to prove that there are at least three /=0 s-wave resonances in nature
[5, 6].
A result like this is highly surprising for two reasons:
(i) Kastrup's relation is not satlsfled by a free massive scalar field
(where dg = 1 but 21/3£(0, 12, 12) = 0).

(i) T (ﬁe dimension of an interpolating field can easily be changed with-
out changing the internal quantum numbers, for example by using Y(x)y¥/(x)
of dimension three instead of &(x) of dimension one. The on-mass shell re-
sult, however, cannot depend on which of these fields one uses.

Kastrup's result must therefore be wrong. It is shown in this paper that
he obtains it on the basis of two errors:

(a) In his Ward identity for the current j, (x) = x,, C)C“m(x) involving the
conformal current density XK, u(x) (m = 1,2, 3, but no summation implied)
he argues that a quantity

Lim  {(p2-42) lim [ axdy e XPP g | 7o, (2)6(3)9(0) [0},
p=0

vanishes on the grounds that the self stress of a particle at rest is zero.
However, this expression does not depend on the self-stress but contains
only second moments of the energy momentum tensor.

(b) He falsely evaluates the remainder of his equation and finds (1) T. o
he had proceeded correctly after neglecting the X,,,,,(x) term, he would
have found 2 T'/3£(0, 2, u2) = 0.

It is the purpose of this paper to clarify the situation about the grav1ta-
tional vertex and to show that a result on the slope 2 F/dt(O, p , ) can be
derived for pions.

In order to do so we shall invoke, however, several additional assump-
tions

(1) The energy density f,, can be split according to 65 = 900+ 6o+ 04,
where 65, conserves both chiral and conformal symmetry, and 6, 94 are
Lorentz scalars breaking conformal symmetry and behaving like
(0,0), (3, 2) under SU(2) X SU(2) respectively.

(ii) The SU(Z) X SU(2) breaking term 64 has a unique dimension d.

(iii) The time components of the SU(2) X SU(2) currents have dlmensmn 3.

(iv) The divergence of the axial-vector current is in the same (3%) mul-
tiplet as the symmetry breaking term.

(v) The propagators {0 |T(8““Aa (x)9¥A%(0)) |0) and (0 lT(G“(x) 64(0)) |0)
are dominated by a pion and c-meson, respectively.

Notice that the last assumption automatically implies the existence of a
7o interaction.

+ Neglecting sea-gulls which cancel with Schwinger terms of his Ward identity (see
ref. [8]).
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2. DIMENSION, WARD AND TRACE IDENTITIES

If 6,,(x) is the symmetric energy momentum tensor of the world {with
finite matrix elements *) we assume (as is true in field theories where the
field virial is a divergence) that the current densities of the conformal
group can be defined for spinless fields as

(Du(x) =xV9uV(x) s (2)

A, %) = (@xPx, - PgD)e, () . (3)

We say that a field ¢(x) has dimension dy if its commutation rules with the
corresponding charges ‘

D(x,) = [ D)3y, K (x) = [Ny, dx, (4)

are
i[D(xg), d(x)] = (x8 +d ) H(x) (5)
i[K,(xg), d@)] = (2%, (x8 +d y) - x72 ) b(x) - (6)

The origin of this dimension can be traced back to the occurrence of a
Schwinger term in the commutation rule

100,00, 60N, _, = 2,6@6% (-0~ 4dy 8, 00) 25 %= . (D)

As is obvious from the definition, the divergence of f-xw(x) and(Z)u(x) are
connected by

o Ky (%) = ZxVGﬁ(x) = 2x,0M D, (#) (8)

Thus, by using relation (7) alone, one can obtain all results contained in
(5), (6) and (8) (which are the only relations used by Kastrup).

Consider the 7 -product 7' (0H¥(x) ¢(v) $(0)). Applying the methods devel-
oped by Gross and Jackiw [8, 4], it can be covariantized by adding the sea-
gull terms

~iT(SHY (1) $(0)) 8% (x - ) - iT(SHV(0)B(»)) 6% (x)
with

SHY(y) = %dqbw“”-g“"g”o)cﬁ(y)+§”V(y) ,

* TFor renormalizable field theories it can be chosen up to first order by the meth-
ods of Callan, Coleman and Jackiw (ref. [7]) and possible improvements thereof
by Symanzik (ref. [3]).
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and forming the 7* product

T*(OHY (%) p(») $(0)) = T (6 (x) d(v) $(0))
- tidgy(g" - g% O T (o) BB x - v) + 8%(1)

- IT(SMY () 6(0)) 5% (x - ¥) - iT(SHY(0) p(v)) 84 (x) . (9)

Here SHV(y) is a symmetric traceless operator having at most i{j compo-
nents to compensate possible Schwinger terms in the commutator
[0:49, d(M]-

For this covariant 7 * product the conservation of energy momentum
leads to the Ward identity [3, 4]

10, (01 () 6() $(0)) = T(3Y $(») B(0))8*(x = ) + T(6() 2" $ONSHx) ,  (10)
while contraction with g, gives the trace identity {3, 4]

g,y THOHP () 6(3) $(0)) = T(8],(x) b(y) $(0))

- idy T($(MAON(EHx -3 +8%x) . (1D

Define the gravitational vertex THY(q, p) by taking the two particle prop-
agators out of the three-point function

~A(PPA (P - ) THY(g,p) = THV(g,P)

_ [ardy e H@¥PY) (o |7 (81V (x) b(y) $(0)) |0) .
Similarly define T and T (¢2,52, (b - g)2) for the three-point function
©O|T (05 ) )(0)) [0 .
Then the Ward identity implies ¥
a,T"q,p) = --0)’ a7 1D -pY a7 WP -0)?) . (WD
while the trace identity gives [3, 4]
Ti@,p) =T@?, 0% 0-?-dea D +a " @-0%) . (TD

Differentiating the Ward identity (YVI) once with respect to g) and setting
g = 0 yields the well-known results (A(p2) = (3/0p2) A(p2))

t The content of the Ward identity is to determine two of the four form factors of
Fy.v everywhere in terms of the remaining two and to fix T ﬁ (0, uz, u.z) (eq. (15)).
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T 0,0) = -g,,87 W% - 20 p, a7 2(pDA (1Y) (12)
r#0,0) = ~4871(p?) - 2222 (pPHA (KD | (13)

{
T(0,0%,0%) = -(4- 2dg)a"1(p?) - 2p2 A" 2(pHA(HD) . (14)

In eqgs. (13) and (14) we can go on the mass shell (p2 = uz) and obtain the
equivalence principle

T, u2, 12 = 1O, %, u? = 22271 (15)

where Z is t{le wave function renormalization constant of the field ¢

[<O l ¢ |p> = Zz]. It is therefore often convenient to introduce a properly nor-
malized vertex I' = ZI" which becomes 2u2 on mass shell. Eq. (14) shows
us that the dimension of the field d¢ enters only off mass shell (since
A'l(uz) = 0). Thus the slope of T'(g2p 113%) with respect to one of its
masses [[' = a/ap% I'l] becomes

T(0,02,0?%) = a"2(pA [(1-a A (0D + 202" pDA 20D - p2K (Y] . (16)

Our ignorance of A(pz) does not allow us to determine I" completely. Let
us assume for simplicity that we are dealing with a field that has a pole at
p2 = 12 with the next larger singularities being beyond some mass

M2 > 42 Then we can write for g2 « M2

A(p?) =_pf2(f’i)2, | (17
with
2 “1;, 2 p2 -1 p2
f(ue) =2z, Z" f(u )=O(A—l—2-), z f(0)=0(A72), (18)
and we obtain
£(0,52,02) - '(1’d¢)+°(f}%’f7z’ : (19)

If ¢ is a good interpolating field for the pion, n2/M2 is commonly assumed
to be small and I' is determined by the dimension of ¢. As one expects, eq.
(19) states that I‘(O,pz,pz) becomes smoothest in pz if dp has the canonical
value one.

There is no relation one can obtain, at this level, for I''(0,p2,p2),
where ' = 0 aqz. Let us see how Kastrup was led to his wrong result
f"(O, uz, ué) = -3¢ —d¢)). He considers the Ward identity for the current

Ju =%m C)C,_Lm(x):



28 H.KLEINERT and P.H., WEISZ

20| T*(x,, K )y (60N H(0)) [0) = O T* K, () S() B(0)) |00

+ %, (0] T*([K o, (), 6] $(0)) [0) 6(x° - y°)

+ 222, (0| TXOEx) 0()¢(0) 0>, (20)
and obtains for the Fourier transform 7 T:
22 9.9, 9
2a 2 @, 0% (P07 | g
q =0
= =(29,,2,,(d - 2P) + azamz)mm(pz)lq:o +R(pD,  (21)
p=0
where
R(p2) = [dxdy o~ Hax-py) (0| TH(U 5,510,(2) D(3) 0(0)) 10)' 40" (22)
p=0

He then neglects A'z(pz)R(pz) on the mass shell using the following argu-
ment: Since the self-stress of a particle at rest vanishes

{(u,p=0)]0,,,,,() | (u,p=0) = 0,

one can conclude that

lim [dxe "“Xp | K, )| p-g)=0.

g—0

p=0
But this step involves exchanging the limit with the integral, which is not
permissible, due to the occurrence of factors x in the integrand (producing
second moments of the self-stress). In evaluating the remainder of eq. (21)
he finds his result (1). A correct calculation of (21) gives, however,

A2(p2)[T(0,2,p2) +T(0, p2, p2)] + A (PDA(PT (0, p2, p?)
= (d- 3)A(p2) - p2A(p2) +1R(p?) . (23)

Inserting in this equation the result (16), following from our Ward identity,
we find for all p2

¥ The T* product is necessary to make the Schwinger terms occurring in the commu-
tator [N g, *),®(¥)] cancel against the sea-gulls covariantizing the remaining terms.
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422(p2T'(0, p2, p2) = R(p2) . (24)

Thus, assuming A"z(uz)R(uz) to vanish amounts to I''(0, ,uz, uz) =0 (in-
stead of eq. (1)T). While T''(0, 12, 12) is true for a free scalar field, it
does not hold in general. The o-model gives for example (0, n2, u2) =
1- uz/mg.

As argued in the beginning of this section, every result contained in (5),
(6) and (8) can also be derived directly from (7). Indeed, differentiating the
Ward identity thrice and setting =0, p=0 produces again (24).

3. INCLUSION OF CHIRAL SU(2) x SU(2)

While an on-shell result for I'' cannot be obtained by the methods devel-
oped up to here, it is quite simple to derive such a result for pions. For
this we have to make additional assumptions and blend conformal proper-
ties with chiral information. We assume PCAC and that the SU(2) X SU(2)
symmetry of the world is broken in the standard way by 1

00(*¥) = Bpo(¥) + 04(x) , (25)

where 6pq is an SU(2) X SU(2) singlet and 64 is a scalar field transforming,
together with a“Aﬁ, as a representation (33) of chiral SU(2) X SU(2), i.e.

(A7), 0,0]

Al a 3
3" A" (%)0” (x - 26
o=y 98 (=) (26)

-i0,(x)6" 8- 1) . (27)

a [T
[4g, 8%4, ], _,

Let us now assume that 64 has a definite dimension d

i[D(xo), 64(x)]xo=yo = (¥3 +d) Og(x) . (28)

Assuming that the time components of the SU(2) X SU(2) currents V§(x),A%(x)
have dimension three, which is consistent with the current commutation
rules, it follows from (27) that auAﬁ(x) has the same dimension d.

Finally, we assume that all parts in 0,5, with dimension not equal to four
are Lorentz (and chiral) scalars. Thus, it can be shown that

0(x) = w(x) +(4-d)6g(x) , (29)

T His error is probably due to the fact that he operates with the three point function
still containing the over-all momentum 8-function. This makes his calculation
corresponding to eq. (21) extremely tedious.

I Which can be derived, for example, from the superconvergence of the I; = 2 am-
plitude in the s-channel.
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where w(x) is some SU(2) X SU(2) singlet field [9]. Therefore we find

. 3
A, 00)], _, = (4= )2 AT (0" (x-y) . (30)

The commutation rules (27) and (30) allow us to derive a Ward identity for
the gravitational vertex I' of the three-point function 7T'(6(x) 91A% (y)aVA 20)).
By Fourier transforming the equation (no sum over a)

2y 0| T(emAT 1) A5 (0) [0) -0 |7(8(:)2"A% )34 (00 [0)

+ 01700, ) 10y 8°0) +(4- @) ©IT(2"A” L 0)e7A A% 10 o} x-5),  (31)
and setting p =0 we obtain

2)_

r(g%,0,4%) = a™X0) [2 94, (@DA"NgD - 4-a)] (32)

where A(qz) is now the propagator of the divergence of the axial-vector
field. From this we find by differentiating

(T' +1)(0,0,0) = A7%(0)[A g, (0) - Ao, (0" 10)A ()] - (33)
The derivative I can be eliminated using our earlier result (17) at p2=0:
1(0,0,0) = (1-d)A™2(0)A(0) . (34)
Hence we obtain
I'(0,0,0) = A"2(0)[A g, (0) = A g, (0)a~HO)A(0) - (1-DA(0)] -

This result can be simplified by comparing (32) with (14) at all arguments
zero. We find [6]

A694(0) =dA (0) . (36)
Inserting this in eq. (34) we arrive at the exact result
I'(0,0,0) = A72(0)[Agg,(0)-A(0)] - (87)

Let us see what this result implies if we assume, for small g2, PCAC in
the form

2)2
a2 =% (38)

T Note that this result can be obtained more directly by conS1dermg Ward identities
for the two-point functions 7(D, (x) 04(0)) and T(A (x)a AU(O) One finds in addition
<to>(36) that A(0) = (0]640) (cf., the o-model where A(0) - -f2u2, 64=-fu20, and
a) =f).
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where in the following ¢ = m4, and o-dominance of Aggy as

2, _ (fu?)2g
) = ———qz_ m%’ . (39)

Aggyla

From eq. (36) we determine g = d(mg/,uz) and inserting this into eq. (37)
gives
. 2
r'(o,o,0)=1-d—‘£-2~. (40)
My
Egs. (19) for 1°(0,0,0) and eq. (40) can be combined to obtain an on-mass
shell result for I''(0, uz 12). From eq. (32) we see that as a consequence
of the o-pole dominance of Aggy, also T" is dominated by a o-pole. The
smoothest I'-function containing a o-pole and fulfilling eqs. (15), (19) and
(40) is given by

2 9 9 aqz+bmc2,

g ,p5,p ) ) (41)
1 qz-mg
where
a = -m2+(4-d)u2 ,
o
2 2 2 2
b =-2."+(1-d)(p] +py-207) . (42)
From this we obtain our final result
2
20, b2, 48 = 14@-2) & . (43)
mg

We can compare th1s result with the oc-model where d=1 and

&0, u2, p?) = 1- (u 2 /2 £). It is amusing to note that for d =1 the on-shell
slope (43) and the off- shell slope (40) are exactly the same as can be
checked in the o-model as well.

4. CONCLUSION

Our result (43) can be used to calculate the on7w cou}s)lmg constant g g

in terms of the o gravitational coupling constant y~1m3 = (0|0 ]0):
2 g2
pe . _ 3, Somm
Eomm =y[1+(d_2);1?} (FO'mr“ 19 4, ) :

T Our result holds up to order O(u /M2 m /M ) and in principle for any possible
ratio u.z/mo.2 (Only experimentally it happens that u.z/m%. is as small as the terms
neglected such that ggrr ~ 7.) This approximation is the same as is implied by
effective Lagrangians using 0- and m-fields.
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In a forthcoming paper we shall obtain independent information on ¢ and
discuss consequences of the dimensional properties of the SU(3) X SU(3) de-
composition of the energy momentum tensor.

We thank Professors J.S.Bell, B. Zumino and H. A. Kastrup for discus-
sions. In addition, Dr. M. Testa contributed much to our understanding of
treating the Ward identities.

We are grateful to Professors J. Prentki and W. Thirring for their hos-
pitality at the Theoretical Study Division.
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