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Abstract

With the help of variational perturbation theory we continue the renormalization constants of f 4-theories in 4ye

dimensions to infinitely strong bare couplings g and find their power behavior in g , thereby determining all critical0 0

exponents without the standard renormalization group techniques. q 1998 Published by Elsevier Science B.V. All rights
reserved.

w x1 . In a recent paper 1 we have shown that there
exists a simple way of extracting the strong-coupling
properties of a f 4-theory from perturbation expan-
sions. In particular, we were able to find the power
behavior of the renormalization constants in the limit
of large couplings, and from this all critical expo-
nents of the system. By using the known expansion
coefficients of the renormalization constants in three
dimensions up to six loops we derived extremely
accurate values for the critical exponents. The method
is a systematic extension of the Feynman-Kleinert

w xvariational approximation to path integrals 2 to
w xarbitrary orders 3 . For an anharmonic oscillator, the

derived variational perturbation expansions converge
uniformly and exponentially fast, like eyconst=N 1r3

in
w xthe order N of the approximation 4,5 . The same

type of convergence seems to exist also for the

1 E-mail: kleinert@ physik.fu-berlin.de. URL: http:
˜rrwww.physik.fu-berlin.der kleinert.

f 4-theory if the power 1r3 is replaced by 1yv,
where v is the critical exponent governing the ap-

w xproach to scaling 1 . This exponent plays a crucial
role in the development of the theory.

2. Variational perturbation expansions have the
important property of possessing a good strong-cou-
pling limit, as was first shown for the harmonic

w xoscillator 6,7 . The speed of convergence turned out
to be governed by the convergence radius of the

w xstrong-coupling expansion 8,9 . The good strong-
coupling properties have enabled us to set up a
simple algorithm for deriving uniformly convergent
approximations to functions of which one knows a
few Taylor coefficients and an important scaling
property: they approach a constant value with a
given inverse power of the variable. The renormal-
ized coupling constant g of a f 4-theory has pre-
cisely this property as a function of the bare coupling
constant g . In Ds4ye dimensions, it approaches0
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a constant value g ) for increasing bare coupling
constant g like0

const
)g g sg y q . . . , 1Ž . Ž .0 v reg0

where g ) is the infrared-stable fixed point and v is
called the critical exponent of the approach to scal-
ing. The same exponent governs the approach to
scaling of every function of g which behaves like
Ž . Ž ) . XŽ ) . v ref g s f g q f g =constrg q . . . .0

The purpose of this paper is to point out that the
w x 4theory developed in 1 for a three-dimensional f -

theory can easily be applied in Ds4ye dimen-
sions with beautiful results at the two-loop level.

3. Let us briefly recall the relevant formulas.
Ž .Consider a function f g for which we know the0

Ž . N nfirst Nq1 expansion terms, f g sÝ a g ,N 0 ns0 n 0

and the fact that it approaches a constant value f )

Ž .in the form of an inverse power series f g sM 0
M Ž y2r q.mÝ b g with a finite convergence radiusms 0 m 0
Ž w x.g simple examples were treated in 10 . Then thes

Nth approximation to the value f ) is obtained from
the formula

NyjN yqjr2 k
) g jˆf s opt a y1 , 2Ž . Ž .Ý ÝN j0 ž /kĝ js0 ks00

where the expression in brackets has to be optimized
in the variational parameter g . The optimum is theˆ0

smoothest among all real extrema. If there are no
real extrema, the turning points serve the same pur-
pose.

The derivation of this expression is simple: We
qŽ .replace g in f g trivially by g 'g rk with0 N 0 0 0

ks1. Then we rewrite, again trivially, kyq as
Ž 2 2 2 .yq r2K qk yK with an arbitrary parameter K.

Ž 2Each term is now expanded in powers of rs k y
2 . 2K rK assuming r to be of the order g . Taking0

the limit g ™` at a fixed ratio g 'g rK q, soˆ0 0 0
1r q Ž .that K™` like g and r™y1, we obtain 2 .0

Since the final result to all orders cannot depend on
the arbitrary parameter K , we expect the best result
to any finite order to be optimal at an extremal value
of K , i.e., of g .ˆ0

The strong-coupling approach to the limiting value
2 2 Ž y2r q.r s y1 q k rK s y1 q O g implies the0

leading correction to f ) to be of the order of gy2r q.N 0

Application of the theory to a function with the
Ž .strong-coupling behavior 1 requires therefore a pa-

Ž .rameter qs2erv in formula 2 .
For Ns2 and 3 one can give analytic expres-

Ž .sions for the strong-coupling limits 2 . Setting r'

1qqr2s1qerv, we find for Ns2

21 a1
) 2 2f s opt a qa r g qa g sa y r .ˆ ˆ2 0 1 0 2 0 0 4 ag 2ˆ0

3Ž .

For Ns3, we obtain from the extrema

1)f s opt a q a r rq1 gŽ . ˆ3 0 1 02
ĝ0

2 3qa 2 ry1 g qa gŽ . ˆ ˆ2 0 3 0

31 a a 2 a1 2 22sa y 1y r q 1yr , 4Ž . Ž .Ž .0 3 23 a 27 a3 3

12 Ž .(where r' 1y3a a ra and a ' a r rq11 3 2 1 12

Ž .and a 'a 2 ry1 . The positive square root must2 2

be taken to connect g ) smoothly to g ) in the limit3 2

of a vanishing coefficient of g 3. If the square root is0

imaginary, the optimum is given by the unique turn-
Ž .ing point, leading once more to 4 but with rs0.

The parameter rs1qerv can be determined
Ž .from the expansion coefficients of a function F g0

Ž . )as follows. Assuming F g to be constant F in0

the strong-coupling limit, the logarithmic derivative
Ž . XŽ . Ž .f g 'g F g rF g must vanish at g s`. If0 0 0 0 0
Ž .F g starts out as A qA g q . . . or A g q0 0 1 0 1 0

A g 2 q . . . , the logarithmic derivative is2 0

f g sAX g q 2 AX yAX 2 g 2Ž . Ž .0 1 0 2 1 0

q AX 3 y3 AX AX q3 AX g 3 q . . . , 5Ž .Ž .1 1 2 3 0

where AX sA rA , ori i 0

ˆ ˆ 2̂ 2f g s1qA g q 2 A yA gŽ . ž /0 2 0 3 2 0

3̂ ˆ ˆ ˆ 3q A y3 A A q3 A g q . . . , 6Ž .ž /2 2 3 4 0

ˆwhere A sA rA . The expansion coefficients oni i 1
Ž . Ž .the right-hand sides are then inserted into 3 or 4 ,

and the left-hand sides have to vanish to ensure that
Ž . )F g ™F .0
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Ž . ) Ž .If the approach F g ™F is of the type 1 ,0

the function

FXX gŽ .0 2 2ˆ ˆ ˆh g 'g s2 A g q y4 A q6 A gŽ . ž /X0 0 2 0 2 3 0F gŽ .0

3̂ ˆ ˆ ˆ 3q 8 A y18 A A q12 A g q . . .ž /2 2 3 4 0

7Ž .
must have the strong-coupling limit

v
)h g ™h sy y1. 8Ž . Ž .0

e

4. These formulas are now applied to the renor-
malization constants of the f 4-theory in Ds4ye

dimensions with the bare euclidean action

21 1D 2 2AAs d x Ef x q m f xŽ . Ž .H 0 0 02 2½
l 202 2q 4p f x . 9Ž . Ž . Ž .0 54!

Ž .The field f x is an n-dimensional vector, and the0
Ž .action is O n -symmetric in this vector space. The

Ising model corresponds to ns1, the critical behav-
ior of percolation is described by ns0, superfluid
phase transitions by ns2, and classical Heisenberg
magnetic systems by ns3.

By calculating the Feynman integrals regularized
via an expansion in es4yD with the help of an
arbitrary mass scale m, one obtains renormalized
values of mass, coupling constant, and field related
to the bare input quantities by renormalization con-
stants Z ,Z ,Z :f m g

m2 sm2 Z Zy1 , l sl Z Zy2 , f sf Z1r2 .0 m f 0 g f 0 f

10Ž .
Up to two loops, perturbation theory yields the fol-
lowing expansions in powers of the dimensionless
reduced coupling constant g 'l rme:0 0

2nq8 nq8 3nq14Ž .
2 3gsg y g q q g ,0 0 023e 6e9e

11Ž .
2m nq2 g nq2 nq5 50 2s1y q q g ,02 23 e 9 4em e0

12Ž .

f 2 nq2 g 2
0

s1q . 13Ž .2 36 ef0

We now set the scale parameter m equal to m and
consider all quantities as functions of g sl rme.0 0

In order to describe second-order phase transitions,
2 Ž .we let m go to zero like tsconst= TyT as the0 c

temperature T approaches the critical temperature T ,c

and assume that also m2 goes to zero, and thus g to0

infinity. The latter assumption will be shown to be
Ž .self-consistent after Eq. 28

m2 f 2
yh re h hre yhm mAg Am , Ag Am . 14Ž .0 02 2m f0 0

The powers can therefore be calculated from the
strong-coupling limits of the logarithmic derivatives

d m2

h g sye log ,Ž .m 0 2dlog g m0 0

d f 2

h g se log . 15Ž . Ž .0 2dlog g f0 0

Ž . Ž .Inserting 12 and 13 yields the expansions

nq2 nq2 nq8
2h g s g y 5q2 g ,Ž .m 0 0 0ž /3 18 e

16Ž .
nq2

2h g s g . 17Ž . Ž .0 018

When approaching the second-order phase transi-
2 Žtions, where the bare mass m vanishes like t' T0

. 2yT , the phasical mass m vanishes with a differ-c

ent power of t . This power is obtained from the first
Ž . 1rŽ2yhm.equation in 14 , which shows that mAt .

Experiments observe that the coherence length of
fluctuations js1rm increases near T like tyn , soc

that we derive for the critical exponent n a value
Ž .1r 2yh . Similarly we see from the first equationm
Ž .in 14 that the scaling dimension Dr2y1 of the

free field f for T™T is changed, in the strong-0 c

coupling limit g ™`, to Dr2y1qhr2, the0

number h being the so-called anomalous dimension
of the field. This implies a change in the large-dis-
tance behavior of the correlation functions
² Ž . Ž .:f x f 0 at T from the free-field behaviorc

ryDq2 to ryDq2yh. The magnetic susceptibility is
determined by the integrated correlation function
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² Ž . Ž .:f x f 0 . At zero coupling constant g , this is0 0 0

proportional to 1rm2 Aty1, which is changed by0

fluctuations to my2f 2rf 2. This has a temperature0

behavior myŽ2 yh .styn Ž2yh .'tyg , which defines
Ž .the critical exponent gsn 2yh observable in

Ž .magnetic experiments. Using ns1r 2yh andm
Ž . Ž . Ž .the expansions 16 , 17 , we obtain for g g the0

perturbation expansion up to second order in g :0

nq2
g g s1q gŽ .0 06

nq2 nq8
2q ny4y2 g . 18Ž .0ž /36 e

This is certainly positive, so that the first equation
Ž Ž .. 2 2Eq. 14 ensures that with m also m goes to zero,0

a necessary condition for the self-consistency of our
theory.

All calculations in this note will be restricted to
the two-loop level, which will be sufficient to
demonstrate the power and beauty of the new
strong-coupling theory with analytical results.

5. We begin by calculating the critical exponent
Ž .v from the requirement that g g has a constant0

Ž .strong-coupling limit, implying the vanishing of 6
Ž .for g ™`. From the expansion 11 we obtain a0

Ž . 2logarithmic derivative 6 up to the term g , so that0
Ž .Eq. 3 can be used to find the scaling condition

2̂1 A2 20s1y r . 19Ž .
24 ˆ ˆ2 A yA3 2

This gives

2ˆ ˆ(rs 8 A rA y4 . 20Ž .3 2

Since v must be greater than zero, only the positive
square root is physical. With the explicit coefficients

Ž .A , A , A of expansion 11 , this becomes1 2 3

3nq14
rs2 1q3 e . 21Ž .2( nq8Ž .

Ž .The associated critical exponent vser ry1 is
plotted in Fig. 1. It has the e-expansion

3nq14
2vsey3 e q . . . , 22Ž .2nq8Ž .

Ž .Fig. 1. For the Ising universality class ns1 , the first figure
shows the renormalized coupling at infinite bare coupling as a
function of e s4y D calculated via variational perturbation the-
ory from the first two perturbative expansion terms. The curve
coincides with the e-expansion up to order e 2. The dashed curve
indicates the linear term. The other figures show the critical
exponents v, n , and g . Dashed curves indicate linear and quadratic
e-expansions. The dots mark presently accepted values of g ) f
0.48"0.003, v f0.802"0.003, n s0.630"0.002, and g s

w x1.241"0.004 obtained from six-loop calculations 1 .

which is also shown in Fig. 1, and agrees with the
first two terms obtained from renormalization group

w xcalculations 11 .
Ž . Ž . Ž .From Eqs. 8 , 7 , and 3 we obtain for the

critical exponent v a further equation

2̂ 2v r 1 A r2
y y1sy sy , 23Ž .

2e ry1 2 ˆ ˆ3 A y2 A3 2
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which is solved by

ˆ6 A31 15
rs q y , 24Ž .2 4) 2̂A2

with the positive sign of the square root ensuring a
Ž .positive v. Inserting the coefficients of 11 , this

becomes

3nq14
1 3

rs q 1q4 e . 25Ž .2 2 2( nq8Ž .
Ž .The associated critical exponent vser ry1 has

Ž .the same e-expansion 22 as the previous approxi-
Ž . Ž .mation 21 . The full approximations based on 25

is indistinguishable from the earlier one in the plot of
Fig. 1.

Having determined v, we can now calculate g ).
Inserting the first two coefficients of the expansion
Ž . Ž .11 into 3 we obtain

1 a2
1

) 2g sa y r . 26Ž .2 0 4 a2

Ž .Inserting 21 , this yields

3 3nq14
) 2g s eq9 e , 27Ž .2 3nq8 nq8Ž .

which is precisely the well-known e-expansion of
g ) in renormalization group calculations up to the
second order. Including the next coefficient, we can

Ž .use formula 4 to calculate the next approximation
g ). At es1, the square root turns out to be imagi-3

Žnary, so that it has to be omitted corresponding to
.the turning point as optimum . The resulting curve

Ž . Ž .lies slightly f8% above the curve 27 , i.e., repre-
Ž .sents a worse approximation than 27 . Indeed,

3 ) Ž .2 Ž .5the e -term in g is 81 3n q 14 r8 n q 83

and disagrees in sign with the exact term e 3

w 3 2 Ž .3 y33n q110n q1760nq4544 r8y36z 3Ž .
Ž . .x Ž .5nq8 5n q22 r nq8 , which we would findŽ

Ž .by calculating r from an expansion 11 with one
more power in g .0

We now turn to the critical exponent n . Taking
Ž .the expansion 16 to g ™`, we obtain from for-0

Ž .mula 3 the limiting value

e nq2
2h s r . 28Ž .m 4 nq8q5er2

Ž .The corresponding ns1r 2yh is plotted in Fig.m
Ž .1. With the approximation 21 for r we find for n

the e-expansion

1 nq2
1

ns q e2 4 nq8

nq2 nq3 nq20Ž . Ž . Ž .
2q e q . . . , 29Ž .38 nq8Ž .

which is also shown in Fig. 1, and agrees with
renormalization group results to this order.

As a third independent critical exponent we calcu-
Ž . Ž .late gs 2yh r 2yh by inserting the coeffi-m

Ž . Ž .cients of the expansion 18 into formula 3 , which
yields

e nq2
2gs1q r , 30Ž .

8 nq8y ny4 er2Ž .
plotted in Fig. 1. This has an e-expansion

1 nq2
gs1q e

2 nq8

1 nq2 n2 q22nq52Ž . Ž .
2q e q . . . , 31Ž .34 nq8Ž .

shown again in Fig. 1, and agreeing with renormal-
ization group results to this order. The full approxi-
mation is plotted in Fig. 1. The critical exponent

Žh s 2 y grn has the e-expansion h s n q
. 2 Ž .22 e r2 nq8 q . . . .

6 . We conclude that variational strong-coupling
theory can easily be applied to f 4-theories in Ds4
ye dimensions and yields resummed expressions
for the e-dependence of all critical exponents. Their
e-expansions agree with those obtained from renor-
malization group calculations. The calculations here
are supposed to illustrate the new calculational pro-
cedure and do not yet give very accurate results, in
particular for the critical exponent v whose expan-
sion coefficients have the worst growth at large
orders. In order to achieve better accuracies than
presently available, we shall go to five loops and
incorporate knowledge of the large-order behavior of
the expansion coefficients.

Let us finally mention that while we have studied
here the approach to the critical properties of the
theory in the disordered phase where m2 )0, the0
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Ž . easymptotic behavior 1 with g sl rm yields0 0

course the same limit g ) and critical exponents
v,n ,h, . . . if the critical point is approached in the
ordered phase where m2 -0, the opposite sign of m2

0 0

producing merely a phase factor in the next-to-lead-
ing term.
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