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Abstract

With the help of variational perturbation theory we continue the renormalization constants of ¢“-theories in 4 — e
dimensions to infinitely strong bare couplings g, and find their power behavior in g,, thereby determining all critical
exponents without the standard renormalization group techniques. © 1998 Published by Elsevier Science B.V. All rights

reserved.

1. In arecent paper [1] we have shown that there
exists a simple way of extracting the strong-coupling
properties of a ¢*theory from perturbation expan-
sions. In particular, we were able to find the power
behavior of the renormalization constants in the limit
of large couplings, and from this all critical expo-
nents of the system. By using the known expansion
coefficients of the renormalization constants in three
dimensions up to six loops we derived extremely
accurate valuesfor the critical exponents. The method
is a systematic extension of the Feynman-Kleinert
variational approximation to path integrals [2] to
arbitrary orders[3]. For an anharmonic oscillator, the
derived variationa perturbation expansions converge
uniformly and exponentially fast, like e~ €N jp
the order N of the approximation [4,5]. The same
type of convergence seems to exist also for the
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¢*-theory if the power 1/3 is replaced by 1 — w,
where w is the critical exponent governing the ap-
proach to scaling [1]. This exponent plays a crucial
role in the development of the theory.

2. Variationa perturbation expansions have the
important property of possessing a good strong-cou-
pling limit, as was first shown for the harmonic
oscillator [6,7]. The speed of convergence turned out
to be governed by the convergence radius of the
strong-coupling expansion [8,9]. The good strong-
coupling properties have enabled us to set up a
simple algorithm for deriving uniformly convergent
approximations to functions of which one knows a
few Taylor coefficients and an important scaling
property: they approach a constant value with a
given inverse power of the variable. The renormal-
ized coupling constant g of a ¢*theory has pre-
cisely this property as a function of the bare coupling
constant g,. In D =4 — € dimensions, it approaches
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a constant value g* for increasing bare coupling
constant g, like

. const
9(9%) =9 —gw/e+-- , (1)

where g~ isthe infrared-stable fixed point and w is
called the critical exponent of the approach to scal-
ing. The same exponent governs the approach to
scaling of every function of g which behaves like
f(g)=f(g*) +f'(g*) X const/gs” < +

The purpose of this paper is to point out that the
theory developed in [1] for a three-dimensional ¢*-
theory can easily be applied in D=4 — € dimen-
sions with beautiful results at the two-loop level.

3. Let us briefly recall the relevant formulas.
Consider a function f(g,) for which we know the
firss N+ 1 expansion terms, f(g,) =X\ _,a, g/,
and the fact that it approaches a constant value f *
in the form of an inverse power series f,(g,) =
M b (go? D™ with a finite convergence radius
g, (simple examples were treated in [10]). Then the
Nth approximation to the value f * is obtained from
the formula

EaE (V) o

where the expression in brackets has to be optimized
in the variational parameter §,. The optimum is the
smoothest among all real extrema. If there are no
real extrema, the turning points serve the same pur-
pose.

The derivation of this expression is simple: We
replace g, in fy(g,) trivially by §,=g,/«9 with
k=1 Then we rewrite, again trividly, % as
(K?+ k2 —K?)~9/2 with an arbitrary parameter K.
Each term is now expanded in powers of r = (k2 —
K?2)/K? assuming r to be of the order g,. Taking
the limit g,— « a a fixed ratio §,=g,/K9 so
that K — o like g3/ 9 and r — — 1, we obtain (2).
Since the final result to all orders cannot depend on
the arbitrary parameter K, we expect the best result
to any finite order to be optimal at an extremal value
of K, i.e, of §,.

The strong-coupling approach to the limiting value
r=—-1+«k?/K?=—-1+0(gy?/% implies the
leading correction to f; to be of the order of g2/ 9.

= opt

i

Application of the theory to a function with the
strong-coupling behavior (1) requires therefore a pa-
rameter = 2¢/w in formula (2).

For N=2 and 3 one can give analytic expres-
sions for the strong-coupling limits (2). Setting p =
1+9/2=1+¢/w, wefind for N=2

. R ™ 1 af
fa =0pt[ao+alpgo+azgo] ag— — —p*.
Go 4 8
(3
For N = 3, we obtain from the extrema
fy = opt[a, + 3a p(p+1) G,
9o
+8,(2p— 1) 2 + 2,63
133, 2 &
=a,— — 1-2r)+ ——(1-r), 4

where r=1-33,a,/3 and & =za p(p+1)
and 3, = a,(2p — 1). The positive square root must
be taken to connect g; smoothly to g, in the limit
of a vanishing coefficient of gg. If the square root is
imaginary, the optimum is given by the unique turn-
ing point, leading once more to (4) but with r = 0.
The parameter p=1+ €¢/w can be determined
from the expansion coefficients of a function F(g,)
as follows. Assuming F(g,) to be constant F* in
the strong-coupling limit, the logarithmic derivative
f(gy) = goF'(g,y)/F(g,) must vanish at g, = . If

F(g,) starts out as Aj+ A gy+ ... or Ag,+
A,9é+ ..., the logarithmic derivative is
f(9o) =A’190+(2N2—A’f)g§

+( A -3 A, +3K)g3+..., (5
where A, = A;/A,, or
f(go)=1+'&zgo+(2'&3—%)g§

(R -3A,A+3R)3+.... (6

where AAi = A,/A,. The expansion coefficients on
the right-hand sides are then inserted into (3) or (4),
and the left-hand sides have to vanish to ensure that
F(gy) > F".
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If the approach F(g,) = F* is of the type (1),
the function

h(g,) = gow =2A,0,+ (—4% + 6&)93
(9)
+(8A3—18A, A + 124, ) g3 + ...
(7)
must have the strong-coupling limit
h(go)—>h*=—§—l. (8)

4. These formulas are now applied to the renor-
malization constants of the ¢*theory in D=4 —¢
dimensions with the bare euclidean action

o7 = @ x{3[ (0] + 2B

2)\0 2
+(amy' 2 [43001°). ©

The field ¢(x) is an n-dimensional vector, and the
action is O(n)-symmetric in this vector space. The
Ising model correspondsto n = 1, the critical behav-
ior of percolation is described by n= 0, superfluid
phase transitions by n= 2, and classical Heisenberg
magnetic systems by n= 3.

By calculating the Feynman integrals regularized
via an expansion in e =4 — D with the help of an
arbitrary mass scale w, one obtains renormalized
values of mass, coupling constant, and field related
to the bare input quantities by renormalization con-
stants Z,,Z,,,Z,:

mj = mzzngl, /\0=AZQZ<;2, b= Zj/z.
(10)
Up to two loops, perturbation theory yields the fol-

lowing expansions in powers of the dimensionless
reduced coupling constant g, = A,/ u*:

n+8 (n+8)° 3n+ 14| .
= — —+ ,
gd=9do 3e 9o 9¢? be o
(11)
m? n+2g, n+2[n+5 5]
—=1- — — + |9,
mg 3 € 9 € 4e |
(12)

2 n+2 g2
%=1+ = g—: (13)
0

We now set the scale parameter u equal to m and
consider all quantities as functions of g, = A,/m".
In order to describe second-order phase transitions,
we let m3 go to zero like 7= const X (T — T,) as the
temperature T approaches the critical temperature T,
and assume that also m? goes to zero, and thus g, to
infinity. The latter assumption will be shown to be
self-consistent after Eq. (28)

m2 2

- ~Tm/ € m
2 qgO am ’

g’/ am . 14
e Yo (14)

2
0

The powers can therefore be calculated from the
strong-coupling limits of the logarithmic derivatives
2

(80) = ~€Giog o100
2

n(9o) = Gngolongg' (15)
Inserting (12) and (13) yields the expansions

n+2 n+2 n+8
Mn(90) = —3 9o~ 18( 95

(16)

n+2 5

n(go) = 18 Y- (17)

When approaching the second-order phase transi-
tions, where the bare mass mj vanishes like 7= (T
—T.), the phasical mass m? vanishes with a differ-
ent power of 7. This power is obtained from the first
equation in (14), which shows that mar 7%/~ ),
Experiments observe that the coherence length of
fluctuations ¢ =1/m increases near T, like 7", so
that we derive for the critica exponent » a value
1/(2 — m,). Similarly we see from the first equation
in (14) that the scaling dimension D/2 — 1 of the
free field ¢, for T — T is changed, in the strong-
coupling limit g,—>, to D/2—1+ n/2, the
number n being the so-called anomalous dimension
of the field. This implies a change in the large-dis-
tance behavior of the correlation functions
(p(x)p(0)) a T, from the freefield behavior
r~°*2 to r P*2-7 The magnetic susceptibility is
determined by the integrated correlation function
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(do(X)d(0)). At zero coupling constant g,, thisis
proportional to 1/mé o 7, which is changed by
fluctuations to m™%pZ/$2. This has a temperature
behavior m™ @~ " = =@~ = =7 which defines
the criticad exponent y= v(2— 1) observable in
magnetic experiments. Using v»=1/(2—n,) and
the expansions (16), (17), we obtain for y(g,) the
perturbation expansion up to second order in g:

n+2
7(90):1+Tgo

n+2
36

This is certainly positive, so that the first equation
(Eq. (14)) ensures that with m3 also m? goes to zero,
a necessary condition for the self-consistency of our
theory.

All calculations in this note will be restricted to
the two-loop level, which will be sufficient to
demonstrate the power and beauty of the new
strong-coupling theory with analytical results.

+

n+38
(n—4—2—)g§. (18)
€

5. We begin by calculating the critical exponent
o from the requirement that g(g,) has a constant
strong-coupling limit, implying the vanishing of (6)
for g, — . From the expansion (11) we obtain a
logarithmic derivative (6) up to the term g2, so that
Eqg. (3) can be used to find the scaling condition

1 A

0=1——ﬁp2. (19)
42A,— A2

This gives

P=V8A3/AA§_4- (20)

Since w must be greater than zero, only the positive
sguare root is physical. With the explicit coefficients
A A,, A; of expansion (11), this becomes

3n+ 14
p=2 1+3m6. (21)

The associated critical exponent w=¢€/(p—1) is
plotted in Fig. 1. It has the e-expansion

3n+ 14
33—+
(n+8)

» (22)

0.5 .
0.4
0.3 -
0.2 -

0.1 =

0.8 e * ex
0.6 wie) -
0.4 T
02

0.65
0.625 ex
0.6 v(e) z
0.575 "
0.55 g
0.525 ==
0.5 €

1.25 s ex
1.2 e
1.15 _
1.1 o=

1.05 =

1

€
02 04 06 08 1

Fig. 1. For the Ising universdity class (n=1), the first figure
shows the renormalized coupling at infinite bare coupling as a
function of e =4— D caculated via variational perturbation the-
ory from the first two perturbative expansion terms. The curve
coincides with the e-expansion up to order e2. The dashed curve
indicates the linear term. The other figures show the critical
exponents w, v, and y. Dashed curvesindicate linear and quadratic
e-expansions. The dots mark presently accepted values of g~ =
0.48+0.003, » =0.802+0.003, » =0.630+0.002, and y=
1.241 + 0.004 obtained from six-loop calculations [1].

which is aso shown in Fig. 1, and agrees with the
first two terms obtained from renormalization group
caculations [11].

From Egs. (8), (7), and (3) we obtain for the
critical exponent « a further equation

A2 2

S P . e L (23)

€ p—1 23A,-2A3
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which is solved by

PZ%"' A _%’ (24)

with the positive sign of the square root ensuring a
positive . Inserting the coefficients of (11), this

becomes
3n+ 14
1+4—e. (25)
(n+38)

The associated critical exponent w =€/(p— 1) has
the same e-expansion (22) as the previous approxi-
mation (21). The full approximations based on (25)
is indistinguishable from the earlier one in the plot of
Fig. 1.

Having determined w, we can now calculate g~ .
Inserting the first two coefficients of the expansion
(12) into (3) we obtain

NI
Nlw

p=3+

1af ,

9 == g P (26)
Inserting (21), this yields

3 3n+ 14 5
gz=n+86+9(n+8)36, (27)

which is precisely the well-known e-expansion of
g” in renormalization group calculations up to the
second order. Including the next coefficient, we can
use formula (4) to calculate the next approximation
g5 - At e =1, the square root turns out to be imagi-
nary, so that it has to be omitted (corresponding to
the turning point as optimum). The resulting curve
lies dightly (= 8%) above the curve (27), i.e., repre-
sents a worse approximation than (27). Indeed,
the e3-term in gy is 81(3n+ 14)?/8(n + 8)°
and disagrees in sign with the exact term €3
[ 3(—33n° + 110n? + 1760n + 4544) /8 — 36{(3)
(n+8)(5n +22)]/(n+ 8)°, which we would find
by caculating p from an expansion (11) with one
more power in g,.

We now turn to the critical exponent v. Taking
the expansion (16) to g, — %, we obtain from for-
mula (3) the limiting value

€ n+2

_f_ 7T e 28
4n+8+5e/2° (28)

TIm

The corresponding v=1/(2 — n,,) is plotted in Fig.
1. With the approximation (21) for p we find for »
the e-expansion

I1n+2

— €

4n+8

(n+2)(n+3)(n+20) )
8(n+8)° ‘

which is also shown in Fig. 1, and agrees with
renormalization group results to this order.

As athird independent critical exponent we calcu-
late y=(2—-mn)/(2—m,) by inserting the coeffi-
cients of the expansion (18) into formula (3), which
yields

v=35+

+..., (29)

€ n+2

=1+ 2, 30
Y 8n+8—(n—4)e/2" (30)

plotted in Fig. 1. This has an e-expansion

1n+2
y=1+ — €
2n+8

1(n+2)(n*+22n+52) |
+ — 3 €
4 (n+8)

shown again in Fig. 1, and agreeing with renormal-
ization group results to this order. The full approxi-
mation is plotted in Fig. 1. The critical exponent
n=2-—vy/v has the eexpanson n = (n+
2e?/2An+8)%+ ...

+..., (31

6. We conclude that variational strong-coupling
theory can easily be applied to ¢*-theoriesin D = 4
— e dimensions and yields resummed expressions
for the e-dependence of all critical exponents. Their
e-expansions agree with those obtained from renor-
malization group calculations. The calculations here
are supposed to illustrate the new calculational pro-
cedure and do not yet give very accurate results, in
particular for the critical exponent » whose expan-
sion coefficients have the worst growth at large
orders. In order to achieve better accuracies than
presently available, we shall go to five loops and
incorporate knowledge of the large-order behavior of
the expansion coefficients.

Let us finally mention that while we have studied
here the approach to the critical properties of the
theory in the disordered phase where m3 > 0, the
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asymptotic behavior (1) with g, = A,/m* yields
course the same limit g* and critical exponents
w,v,m,... if the critical point is approached in the
ordered phase where m3 < 0, the opposite sign of m3
producing merely a phase factor in the next-to-lead-
ing term.
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