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Abstract

Quadratic fluctuations require an evaluation of ratios of functional determinants of second-order differential operators. We
relate these ratios to the Green functions of the operators for Dirichlet, periodic and antiperiodic boundary conditions on a
line segment. This permits us to take advantage of Wronski’s construction method for Green functions without knowledge
of eigenvalues. Our final formula expresses the ratios of functional determinants in terms of an ordinary 2 x 2 determinant of
a constant matrix constructed from two linearly independent solutions of the homogeneous differential equations associated
with the second-order differential operators. For ratios of determinants encountered in semiclassical fluctuations around a
classical solution, the result can further be expressed in terms of this classical solution. In the presence of a zero mode,
our method allows for a simple universal regularization of the functional determinants. For Dirichlet’s boundary condition,
our result is equivalent to Gelfand-Yaglom’s. Explicit formulas are given for a harmonic oscillator with an arbitrary
time-dependent frequency. (©) 1998 Published by Elsevier Science B.V.

1. Introduction

Evaluation of Gaussian path integrals is needed in
many physical problems, notably in all semiclassical
calculations of fluctuating systems. Typically, we are
confronted with a ratio of functional determinants of
second-order differential operators [1]. For Dirichlet
boundary conditions encountered in quantum mechan-
ical fluctuation problems, a general result has been
found by Gelfand and Yaglom [2]. Working with
time-sliced path integrals, they reduced the evaluation
to a simple initial-value problem for the homogeneous
second order differential equations associated with the
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above operators. The functional determinants are di-
rectly given by the value of the solutions at the final
point. Unfortunately, Gelfand and Yaglom’s method
becomes rather complicated for the periodic and an-
tiperiodic boundary conditions of quantum statistics
(see Subsection 2.12 in Ref. [1]), and has therefore
rarely been used. Several papers have studied the func-
tional determinants of second-order Sturm-Liouville
operators with periodic boundary conditions [3-6],
and related them to boundary-value problems. The cal-
culated determinants are all singular and were regular-
ized with the help of generalized zeta-functions [7].
This has the disadvantage of a physical quantity de-
pending unnecessarily on the analyticity properties
of generalized zeta-functions. Moreover, the auxiliary
boundary-value problems were formulated in terms
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of first-order operators, rather than the initial second-
order one, making the treatment of a zero mode of op-
erator with periodic boundary conditions unclear, and
requiring additional work [8].

In this paper we shall avoid the above drawbacks by
developing a simple and systematic method for find-
ing ratios of functional determinants of second-order
differential operators with Dirichlet, periodic and an-
tiperiodic boundary conditions. By focusing our at-
tention upon ratios instead of the determinants them-
selves, we avoid the need of regularization. The main
virtue of our method is that it takes advantage of the
existence of Wronski’s simple construction rule for
Green functions. This permits us to reduce the func-
tional determinants to an ordinary constant 2 x 2-
determinant formed from solutions of homogeneous
differential equations associated with the differential
operators. For semiclassical fluctuations around a clas-
sical solution, our final result will be expressed entirely
in terms of a classical trajectory. Furthermore, for fluc-
tuation operator with a zero mode, a case frequently
encountered in many semiclassical calculations, we
find a simple universal expression for the regularized
ratio of determinants without the zero mode.

2. Basic relations

The typical fluctuation action arising in semiclassi-
cal approximations has the form

ty

Alx] =/dtL(5c(t),x(t))

ta

=fdt—A21[x2—!22(t)x2]. (1)

ta

The time-dependent frequency f2(¢) can be expressed
in terms of the potential V(x) of the system as

P(t) = V' (xa (1)) /M, (2)

where x.1(?) is a classical trajectory solving the equa-
tion of motion (for examples see Subsection 17.3 of
Ref. [1]).

Mi=-V'(x). (3)

The action (1) describes a harmonic oscillator with
a time-dependent frequency (2(¢). partition function
contain a phase factor exp(i.Aj), where Aq = A[xy]
is the action of the classical path x;(z). The phase
factor is multiplied by a fluctuation factor proportional
to

4

DetK1>“‘/2
DetK ’

F(tp, ta) ~ (

where K, = —3? — 2%(t) = Ko — 2%(¢) is obtained
as the operator governing the second variation of the
action A[x] along the classical path x.(t):

32A[X¢]]

W=8(I—I)K1. (5)

The ratio of determinants (4) arises naturally from
the normalization of the path integral [1] and is well
defined. The linear operator K; acts on the space of
twice differentiable functions y(¢) = éx(t) on an in-
terval t € [t4,¢,] with appropriate boundary condi-
tions. In the quantum-mechanical fluctuation problem,
these are Dirichlet-like with y(#,) = y(t;) =0, in the
quantum-statistical case, they are periodic or antiperi-
odic with y(#p) = £y(t,) and y(tp) = £y(t;). The
operator X in the denominator of (4) may be chosen
as Ky (Dirichlet case) or Ky’ = Ko— w? (periodic and
antiperiodic cases), respectively, where w is a time-
independent oscillator frequency. Then the operator K
is invertible, having the Fredholm property

Dele =DetK 'K, (6)
Det K
(a possible multiplicative anomaly being equal to
unity [9]). Furthermore, since the operator K~'K,
is of the form 7 4+ B, with B an operator of the trace
class, it has a well-defined determinant without any
regularization.

To calculate F(7p,t,), we introduce a one-
parameter family of operators

K, = —37 — g (1) 7N

depending linearly on the parameter g € [0, 1], and
reducing to the initial operator K; for g = 1. Then we
consider the eigenvalue problem

Ke()ya(g:t) = An(@)yn(g5 1), (8)



H. Kleinert, A. Chervyakov/Physics Letters A 245 (1998) 345-357 347

with eigenvatues A,{g). The eigenfunctions y,{g; ¢y
satisfy the orthonormality and completeness relations

/thn(g;t)ym(g§t) = S, 9

S yn(git)yn(git) = 8(t — 1), (10)

Tie compitieness reinionr permmis us™ o witie aUwir
immediately a spectral representation for the Green
function Gg(1,¢’) associated with the differential

expeairyn By . By wpplyiag K4l @
G(”)_Zyn(g,t)yn(g,t), (11)

An(g)

and wsmg (3, 10, wr verdfy ihe vahdiy of the
oehnng Miferena) epuanon

K (1)Gy(1, 1) =8(t —1'). (12)

In terms of the eigenvaiues A, (g}, the determinant (6}
would read

An(g)
Ap(0)°

Det K"K, = CH

n=1

(13}

where C = Det{K~'Xy) is a constant of the g-
integration, which still may depend on t,,¢,. Since
the infinite product of ratio of the eigenvalues A, in
Eq. (13) converges uniformly for ail g € [0, 1], we
can differentiate this equation to obtain

3, log Det K~ ‘Kg_z = Ei; (14)

Differentiating Eq. (8), and using the condition (10)
gives for all boundary conditions,

1

—/dt P)yan. (15)

ta

A (g) =

This may be inserted into (14). Because of the con-
vergence of sum in (14), summation and integration
can be interchanged, and using the spectral represen-
tation (11) we find the compact formula

d togDet { K" Ky)y = ~TridP(1)Gy(t, ¢y 1.
——/dtﬂz(t)Gg(t,t). (16)

By integrating this equation in g, we obtain the ratio
of. funcsional.deserminants. (), in.the. form.

DetK~'K,

o,

=Cexp(—/dg'/dt{)z(t)Gg/(t,t)) (17)

g ta

with the same integration constant C as in Eq. (13).
It is fixed calculating the same expression for g = 0
where the left-hand side is well known. In the case
of Dirichlet boundary conditions, where K = K, the
left-hand side is trivially unity. For periodic and an-
tiperiodic boundary conditions, where we take K =
& — w? = —F% — @’ the maost convenient way @
normalize the right-hand side is to go to g = 1 and
choose the frequency £2%(¢) to be equal to the con-
stant frequency @2 . The left-hand side is again unity
thus fixing C.

Having determined C we set g = 1 in Eq. (17)
and obtain the final result for the operator K. In the
seque! we shall evaluate the right-hand side of for-
mula (17) using explicit Wronski constructions of the
Green function for the different boundary conditions.

3. Wronski’s construction of green functions

The general solution of the differential equation
(12) may be expressed in terms of retarded and ad-
vanced Green functions which have the general form

G (8, 1) =GV (1, 1) = O 44(1,1), (18)

where @, = @(t — ') is Heaviside’s step function
which vanishes for ¢ < ¢’ and is equal to unity for ¢ >
t’. The function 4,(t,?’) satisfies the homogeneous
differential equation corresponding to (12). This is
seen by applying the operator Kg(t) to (18) and mak-
ing use of the identity 18’ (¢) = —8(1):

Ko (1)GST(1,1') = O Ky (1) Ag(2,1)

Ag(1,1")
+ ((z—z')

—~20,Ag(t,t')> 8(t—1"). (19)
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Since the right-hand side must be equal to (¢ — ¢'),
the function 4,(¢,t') has to satisfy the homogeneous
differential equation

Ko (1) Ag(1,4) =0, fort>1, (20)

while the bracket in (19) must be equalto 1 at z = ¢'.
Upon expanding 4,(¢,t') around ¢ = ¢/, this leads to
the conditions

A5(1,8) =0, 34,(2,t")|p= = —1. (21)
Eq. (20) is solved by a linear combination

Ag(1,1) = ag(1)e(1) + Bo (1) €,(1) (22)

of any two independent solutions 7, (¢) and &.(¢) of
the homogeneous equation

Ky(he() = [-02 — g2 (D1he(1) =0, (23)

Their time-independent Wronski determinant W, =
Ney — Te€, is nonzero, so that we can determine the
coefficients in the linear combination (22) from (21)
and find

1
45(1,1') = - [mg( €4 (1)) — Ee()me(1)]
8

= — A (1, 1). (24)

The right-hand side contains the so-called Jacobi com-
mutator of the two functions n,(¢) and £,(¢). Here
we list a few algebraic properties of 4,(t,¢") which
will be useful in the sequel:

Ag(tb, t)Ag(t,, tq) — Ag(tbytl)Ag(t, ta)

411 = 2g(1ar 15) ’
(25)

A (2, 1) 0y, Ag(th, 1) — Ag(2,1a)
= Ag(tp, t3) 014, (15, 1), (26)

A (1,25)01, Ag(2p, 84) + Ag(tp, 1)
= Ag(1p,14) 01 dg(1, 1) (27)

Note that the solution ( 18) is so far not unique, leav-
ing room for an additional general solution of the ho-
mogeneous equation (23),

Gg(t»tl) = @tr'Ag(tst,) +ag(t,)77g(t) + bg(t/)gg(t)
(28)

with arbitrary coefficients a,(¢') and b, (¢'). This am-
biguity is removed by appropriate boundary condi-
tions.

Consider first the quantum mechanical fluctuating
problem with Dirichlet boundary conditions y(g; ;) =
¥g(ta) = O for the eigenfunctions y(g;¢) of K,, im-
plying for the Green function the boundary conditions

ty ¥ t,
t# 1, (29)

Gg(tb, 1) =0,
Ge(t,15) =0,

Substituting (28) into (29) leads to a simple algebraic
pair of equations

ag(t)ng(ta) +bg(t)§g(ta) =0, (30)
ag(1)me(tp) + be(2)€p(15) = —A(2p, ). (31)

We now define a fundamental matrix A, as the constant
2 x 2 matrix,

Ne(ta) §g(ta)
A, = , 32
! (ngm) fgm,)) G

and observe that under the condition
det A, = Wy 4,(24,85) # 0, (33)

the system (31) has a unique solution, so that the co-
efficients a,(¢) and b,(¢) in the Green function (28)
are easily calculated. Making use of identity (25), we
obtain Wronski’s well-known formula

Ge(t, 1) =
O Ag (14, 1) A (', 1) + Opr  Ag (1, 1) Ag(2, 15)
Ag(ta, tb) '

(34)

For Dirichlet boundary conditions, this equation yields
a unique and well-defined Green function assuming
the absence of a zero mode of the operator K, with
these boundary conditions. Such a mode would cause
problems since 7,(t;) = M(#) = 0 would make
det A; = 0, thus destroying the property (33) which
was necessary to find (34). Indeed, the Wronski ex-
pression (24) is undetermined since the boundary con-
dition 7, (#,) = O together with (30) imply &:1(¢,) =
0, making W; = mfl — 1€ vanish at the initial time
t, and thus identically in ¢.
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Consider now the quantum statistical fluctuation
problem with periodic or antiperiodic boundary condi-

tions y(g;tp) = £y(g;ta), ¥(&ts) = £y(gita) for
the eigenfunctions y(g;t) of the operator Kg(t). For
the Green function

q
G, (1,1),

these imply

14 »
G (15, t') = £Gy (2,4, 1),

» P
Gy (tp,1") = £Gg (15, 1). (35)

In both cases, the frequency £2(¢) and the Dirac delta
function in Eq. (12) are also assumed to be periodic
or antiperiodic in time with the same period. Insert-
ing (28) into (35) gives now the equations

a(t) (mp F ma) + b(1) (€p F &) = —A(th, 1),
a(t) (e F1a) +b(t) (€sF&a) = —3,4(tp,1).  (36)

For brevity, we have omitted the subscripts g and writ-
ten €qp, Nap for €,(1ap), Mg(tap). Defining now the
constant 2 x 2 matrices

v
i = 7&?7;: é:b:Fg.a (37)
M F % & F&a

the condition analogous to (33)
n _h
detAg = Wo 4, (25, t) # 0 (38)

with

Ag (tarty) =2+ 3,45 (10, 1) £ B8 (tp, 1) (39)

enables us to obtain the unique solution to Egs. (36).
After some algebra using the identities (26) and (27),
the expression (28) for Green functions with periodic
and antiperiodic boundary conditions (35) can be cast
into the form

Gg(t,t') = G,(2,1)
- [Ag(1,10) £ Ag(2p, 1)1 [ (¥, ta) £ Ag(25,1')]

P
A_g (taa tb)Ag(tu» tb)

(40)

The right-hand side is well defined unless the operator
K has a zero mode with 9, = +n,, 1 = £7,, which
p

would make the determinant of the 2 x 2-matrix /I;
vanish.

Note that the Green functions (34) and (40) are
both continuous at ¢ = ¢, as is necessary for calcu-
lating the associated ratios of functional determinants
from formula (17), which we shall now do.

4. Main results and relation to Gelfand-Yaglom’s
initial-value problem

Excluding at first zero modes, we evaluate for-
mula (17) for ratios of functional determinants.
The temporal integral on the right-hand side can be
performed efficiently following Ref. [10]. Here we
present an even more direct method, by which we
express the result in terms of solutions of Gelfand-
Yaglom’s initial-value problem for Dirichlet boundary
conditions, and of a dual problem for periodic and
antiperiodic boundary conditions.

4.1. Dirichlet case

The Gelfand-Yaglom initial-value problem consists
in the search for a function D, (¢) solving the follow-
ing equations,

Ko(£)Dg(1) =0, Dg(ta) =0, Dglty) =1.

(41)

By differentiating these three equations with respect
to the parameter g, we obtain for Dé(t) = 3,D, (1)
the inhomogeneous initial-value problem

K (1)Dy(1) = (1) Dy(1),
Dy(ta) =0, Dy(ts) =0. (42)

The unique solution of Eqs. (41) can easily be ex-
pressed in terms of our arbitrary set of solutions 7,(t)
and £, (¢t) as follows:

'ﬂg(ta)fg(t) - fg(ta)”’g(t)
Wg

Dg(t)= =Ag(ta$t)v
(43)

thus leading to
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Det A,

8

Dg(tb) = =Ag(tmtb)- (44)

In terms of the same functions, the general solution of
the inhomogeneous initial-value problem (42) can be
seen to have the form

D (1) = /dt'ﬂz(t')Ag(t,t')Ag(ta,t'). (45)

Comparison with (34) shows that at the final point
=1,

Di(1y) = —Ag(ta,tb)/dtﬂz(t)Gg(t,t), (46)
fa

which together with (44) implies the following simple
relation for the Green function (34) with Dirichlet’s
boundary conditions,

Tr [22(t)Gy(t, 1) ] = —dglog (d::,’ig)
8

= —dglog Dg(1p). (47)
Inserting this into (17), we find for the ratio of func-
tional determinants the simple formula
Det K 'K, = CDy(1). (48)

The constant of integration is fixed by applying (48)
to the trivial case g = 0, where Ko = —d? and the
solution to the initial-value problem (41) is

Do(t) =t —ta. (49)

At g = 0, the left-hand side of (50) is unity, determin-
ing C = (1, — t,) ! and the final result for g = 1:
detAl/Wl _ D (tp)
Det Ag/Wo  tp—tq
This compact formula was first derived by Gelfand and

Yaglom [2] via a direct calculation of the determinant
arising in a time-sliced path integrals [1].

DetK; 'K = (50)

4.2. Periodic and antiperiodic case

Our technique makes it straight-forward to derive
an equally compact formula for periodic and antiperi-
odic boundary conditions. For this purpose we in-
troduce another homogeneous initial-value problem

whose boundary conditions are dual to Gelfand and
Yaglom’s in (41):
Kg()Dy(1) =0, Dy(ta) =1, Dy(te) =0.

(51)

In terms of the previous arbitrary set ,(¢) and &, (?)
of solutions of the homogeneous differential equation,
the unique solution of (51) reads

o) Ea(12) — Eg(1)15(12)
Wg )

Dy(1) = (52)

This can be combined with the time derivative of (43)
at t = ¢, to yield

De(15) + De(tp) = £[2 — &g (tar 1) 1. (53)

By differentiating Eqs. (51) with respect to g, we ob-
tain the following inhomogeneous initial-value prob-
lem for Dj(1) = 8,Dg(2),

Ko (1) Dy(1) = 22 (1) Dy(n),
D;(ta) =0, D’g(ta) =0, (54)

whose general solution reads in analogy to (45)
t
AGE —/dt'.()z(t')Ag(t, 1) Ag(t4, 1), (55)
r{l

where the dot denotes the time derivative with respect
of the first argument of 4,(¢,t'). With the help of
identities (26) and (27), the combination D’(z) +
D;(t) at ¢t = 1, can now be expressed in terms of
the periodic and antiperiodic Green functions (40), in
analogy to (46),

D (1) +DY(1p) = £ (ta, 15) /dt P(1)Gg (1,1).

Ia

(56)

Together with (53), this yields for the temporal in-
tegral on the right-hand sides of (16) and (17) the
simple expression analogous to (47)

d det A,
Tr[ 2%(1)Gg (1,1')] = —d; log (ng>

= —d108[2 F Dg(ts) F Dy(15) 1. (57)
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This is inserted into formula (17) yielding for periodic
and antiperiodic boundary conditions

Det K"K, = C[2F Do(tp) F Dy(th)1, (58)

where K = Ky — w? = —3? — w?. The constant of inte-
gration C is fixed in the way described after Eq. (17).
We go to g = 1 and set £°(¢) = w>. For the operator
K? = —3? — w? we can easily solve the Gelfand-
Yaglom initial-value problem (41) as well as the dual
one (51) by

DY (1) = isin[a)(t —t)],
Dllu(t)':COS[w(t_ta)]a (59)

so that (58) determines C by

1=C x4sin’[w(tp — t,) /2] periodic case,,
x4 cos?[w(tp — t,) /2] antiperiodic case.

(60)

Hence we obtain the final results for periodic boundary
conditions

det /III) /Wl
DetA7? /Wy
_2—=Di(1p) = Di(1p)

Det (K~'K)) =

= , (61)
4sin’[w(tp — t4)/2]
and for antiperiodic boundary conditions
_ detA4 /W,
Det (R-'K;) = S Ai/W1_
Det Ay* /Wy
_ 24 Di(1p) + Di(ts) (62)

T dcos?[w(ty — 14} /2]

The intermediate expressions in (50), (61), and (62)
show that the ratios of functional determinants are or-
dinary determinants of two arbitrary independent solu-
tions 7 (¢) and & (¢) of the homogeneous differential
equation K;y(t) = [—d? — 2%(¢)1y(1) = 0. As such,
the results are manifestly invariant under arbitrary lin-
ear transformations of these functions (7,¢&)) —

(i1, 1)

5. Expressions in terms of classical trajectory

In semiclassical fluctuation problems, the time-
dependent frequency 22(¢) is determined by the clas-
sical solution x(#) of the equation of motion (3) via
Eq. (2). In this case, the above results can be made
quite explicit by expressing the solutions D, (¢) and
D (t) of the initial-value problems (41) and (51)
directly in terms the classical trajectory x(¢) if this
is specified in terms of its initial position x, and initial
velocity %, as xq(f, x4, %,). Given such a trajectory
Xa(t, Xg, Xa) = XxaDi1(t) + %,D1(t) the solutions
of (41) and (51) can be written in the form

a t’ ’ X
D (1) = _{i(_cﬁx_‘l_f_"l,
a
a-’Ccl(l‘,xaaﬁa)

Di(n) = P
a

(63)

As an example, take a harmonic oscillator where for-
mulas (63) are given explicitly by the previous ex-
pressions (59). For a classical path, we can use the
equation of motion (3) and a partial integration to ex-
press the action as a surface term

Alxal = M(xpXp — xaxa)/zs (64)
where

xp = xaD1(1p) + %aD1(15),

%6 = xaD1 (1) + %aD1 (13). (65)
With the help of Egs. (65), we can write the ac-

tion (64) as a function of initial and final positions x,
and x,, and of the time difference t; — ¢,:

M
Ac(xa, Xp3 15 — tg) = 3D (1)
x [Dy(tp) x5 — 2xpxs + D1 (2p) x2]. (66)

From this we obtain directly

0X40Xp

N 3 -1
Dy (ts) =—M<a Aa(Xa, Xp, th ta)) , (67)

so that the ratio (50) of functional determinants for
Dirichlet boundary conditions becomes



352 H. Kleinert, A. Chervyakov/Physics Letters A 245 (1998) 345-357

Det Ky 'K,

_ 2 Aa(xas xpu 15 = 1)\
=-M ( Axa9xp ) /(tb ~la).
(68)

The right-hand side is known as one-dimensional Van
Vleck-Pauli-Morette determinant (see Subsection 4.3
in Ref. [1]).

In the case of periodic and antiperiodic boundary
conditions, we find from Eq. (66),

2F Di(ty) F Di1(1p)
oy (azAcl(xasxbstb - ta)>—1

0X,0%p

x azACl(-xa, xb’ tb - ta)
dx2
3*Aa(xq, xp, tp — ta))

(69)
ax3

+

which determines the ratio of functional determi-
nants (58) in terms of the classical action, in analogy

to (68).
For a harmonic oscillator with the classical action
Mw
) ,t - bl ———
Ad(xg, Xp, tp — 1) Tene (=10
X [(x}+ x2) cos @ (tp — ta) — 2xpX,], (70)

and we obtain D (1) = @~ ' sinw(1,—1,) as in (59)
and

2F DY (1) F DY (13) = 4sin’[w(1y — 1a) /2],
=4cos*[w(ty — ta) /2]
(n

in agreement with the previous results (50), (61), and
(62).

6. Treatment of zero mode

Consider now the often encountered situations that
the operator K; has a zero mode. In path integrals, such
a zero mode arises for example from the translational
invariance along the time axis of a classical solution
in a potential V(x). As in the last section, the squared
frequency £2%(t) is determined by (2).

For simplicity, we shall assume the presence of only
a single zero mode, which we choose as one of two
independent solutions of the homogeneous differential
equation, say 1(#). For Dirichlet boundary conditions,
we call this a Dirichlet zero mode, satisfying

7 =0, 74=0. 72)

For periodic and antiperiodic boundary conditions, the
zero mode satisfies

MWFN=0, M%F=0, (73)

respectively. As pointed out earlier, the Wronski con-
struction for evaluating ratios of functional determi-
nants is not applicable here since the conditions (33)
and (38) are violated as a consequence of (72)
and (73). In order to enforce (33) and (38), we
modify the boundary conditions for eigenfunctions
y(t) of the operator K, by a small regulator parameter
€ > 0, and determine new eigenfunctions y(¢) with
y(t) — y(1) and A* — A for € — 0. The specific
form of regularized boundary conditions will be irrel-
evant. It is merely required to keep the boundary-value
problem self-conjugated. For instance, the Dirichlet
boundary may be slightly modified to

g —€n; =0, nj+en; =0, (74)

the periodic and antiperiodic ones to
15 = £ coshe nj + sinh e 7,
7, = sinh e n; + coshe n; . (75)

Whereas the zero mode 7(t) satisfies (72) or (73),
the modified function %€ (¢) is no longer a zero mode,
but has an eigenvalue 8A¢ of K, which goes to zero
for € — 0. As long as € is nonzero, the Wronski con-
struction provides us with a regularized determinant
Det K§ which tends to zero in the limit € — 0. In
terms of the independent solutions 7(¢) and £(t) of
Ky =0, this determinant is given for the regularized
Dirichlet boundary conditions (74), to first order in
€, by

€ : . : .
Deth =DetK; + W(ﬂafb - nagb + 77b§a - 771760)-
(76)

The determinant Det K; vanishes, and the constant
Wronskian
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W=77a§}a —ﬁa§a=nb£b_7}b§b n
is, by (72), equal to
W= —0.éa = —0éb. (78)

Simplifying (76) further with the help of (72), we
obtain

Det K =~ (11afs + Tivta) = pozbaoliiy + 12 ).
(79)

For the regularized periodic and antiperiodic boundary
conditions (75), the determinant reads, to first order
in €:

€ . .
DetK]E= W(nbfa_nafb—f]bfa‘i"ﬁafb): (80)

with the same Wronski determinant (77) whose con-
stancy implies, together with (73), that

Mo (€p F €a) — (€ F €2) = 0. (81)
Using (73) once more in (80), we find

Det Kf = F 37— = 1) (6 F £0). (82)

In order to find a finite expression for the functional
determinant we must divide out the eigenvalue §A¢
before taking € — 0. From the regularized eigenvalue
equation

Kin®(1) = 6A°n° (1), (83)
with %€ () normalized as in (9), we find to first order
in €

th
nKim® = (0 -9 = 5/\‘/

ta

dr 2 (t) = 8A°.

Taking into account the regularized boundary condi-
tions (74) and (75) for n°(t), as well as the condi-
tions (72) and (73) for n(t), gives for the eigenvalue
of the Dirichlet would-be zero mode 7€ (¢)
8A° = 1ipmy — MMy = —€(M7} + NaMa)» (84)
and for periodic (antiperiodic) boundary conditions:
8A° = 1ip(my, F M) — Mo (5 F 1)

= Fe(ppiy — MM5)- (85)

These equations enable us to remove A€ from the
regularized determinants (79) and (82). Defining the
determinant without the zero mode by (see Subsection
17.5 in Ref. [1]).

€
Det'K; = lim 24K

am e (86)

we obtain from (79) and (84) for Dirichlet boundary
conditions

~2 22
—fbi“ lim 2 2
W2 e=0 105 + a7
é:bfa 1

TTWE T e (87)

Det’K1 =

For periodic and antiperiodic boundary conditions, the
result is from (80) and (85):

2 _ a2
Det’Kl - & T &, lim — 771; M =_(§b:F§a)’
MW =0 Npny, — M7 W
(88)
which by (81) becomes
fb +F fa gb + éa
Det'K) = — =—2= . 89
1 W MW (89)

Formulas (87) and (89) are useful for semiclassical
calculations of path integrals whose equations of mo-
tion possess nontrivial classical solutions such a soli-
tons or instantons [1], as will be illustrated in Sec-
tion 8.

Note that our final expressions (87) and (89) for
the functional determinants are independent of the spe-
cific choice of regularization.

7. Time-dependent harmonic oscillator

To illustrate the power of the formulas derived in
this work consider the time-dependent harmonic os-
cillator described by the Lagrangian (1). The path in-
tegral formalism for such a system with the Dirich-
let boundary conditions was studied in several pa-
pers [ 10-12]. Here we rederive their results and gen-
eralize them to periodic and antiperiodic boundary
conditions. Due to the absence of time-translational
invariance of the Lagrangian (1), a zero mode can be
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excluded here. For the Wronski construction, we take
two independent solutions of Eq. (23) as follows:

(1) =q(t)cosdp(t), &(t) =q(t)sing(t) (90)

with a constant Wronski determinant W. The solutions
n(t) and £(t) are parametrized by two functions g(t)
and ¢q(t) satisfying the constraint

d(1)g (1) =W. (91)

The function g(t) is a soliton of the Ermankov-Pinney
equation [13]

i+ P(t)g—W2qg3=0. (92)

For Dirichlet boundary conditions we insert (90)
into (50), and obtain the ratio of fluctuation determi-
nants in the form

1 g(ta)gq(tp) sin[$(1p) — $(1a) ]
w tpy — 1, ’

Det Ky 'Ky =
(93)

For periodic or antiperiodic boundary conditions and
£2(t), the functions g(t) and ¢(¢) in Eq. (90) do not
in general have the same periodicity. This is possible
because of the nonlinearity of Egs. (91) and (92).
Moreover, since we are assume here the absence of a
zero mode with such boundary conditions, it is a nec-
essary property of the solutions of the homogeneous
Egs. (23). Substituting (90) into (61) and (62), we
obtain the ratios of functional determinants for peri-
odic boundary conditions

-2 o(tp — 1g)
2
y (4Sin2 [d(1p) — P(12)]

Det K~ 'K = 4sin

2
~ [9(n)g(ta) — §(1a)q(25) ]

¢
x sin[@(1p) — b (ta)]

_ 2
- [Q(:(’: )qqé,f?” costpte) ""5““)])'
(94)

For antiperiodic ones, we must interchange sin —
— cos. By a linear combination of the solutions (90)
we can always redefine ¢(r) such that ¢(,) = 0.

In the literature, only formula (93) for the Dirich-
let case appears to be known (see Refs. [10-12]).
Formulas (94) for periodic and antiperiodic boundary
conditions are new, except for predecessors in a time-
sliced formulation (see Subsection 2.12 in Ref. [1]).
The present derivation is, however, much simpler than
that of the predecessor since we have been able to
take full advantage of Wronski’s simple construction
method for Green functions.

8. Fluctuation determinant of instanton

As an application of our formulas we derive the
functional determinant of the quadratic fluctuations
around an instanton which governs the energy level
splitting of a quantum mechanical point particle in
a double well. Setting the mass equal to unity, for
simplicity, we consider a potential of the form [1]

_ w? 2 242
V(x)—é—a—z(x —a’)”. (95)

The tunneling through the central barrier is controlled
by the solution of the equation of motion at imaginary
time 7 = —it, which can be integrated once to yield
the energy conservation law

Li(r) =V(x(7)) + E, (96)

where x(7) = dx(7) /d7, and E is the integration con-
stant corresponding to the particle energy in the in-
verted double-well. For the splitting between ground
state and first excited state, we must study the path
integral for the evolution amplitude over a large but fi-
nite time interval (7., 75). In a semiclassical approxi-
mation, this is dominated by periodic solutions of with
energy E < 0, whose turning points lie close to the
minima of the double well. We consider first a single
sweep across the central barrier from a turning point
at x(74) = x4 to x(7p) = xp, where the velocities van-
ish: (1) = x(7p) =0, so that the energy is given by

2

E=-V(x) = —V(xa) = — o (2} = a2 (97)
8a?

For a single sweep this implies

Xp=—Xq, Xp< a. (98)

For an infinite time interval (7,4, 75), the sweep con-
nects the potential minima with each other, in which
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case x, = —xp = a and E = 0. Then Eq. (96) can eas-
ily be integrated yielding the well-known kink solu-
tion [ 1] centered around some finite 7o = (7,+75) /2:

(T — 7'0))

: (99)

xa(7) = atanh (
With the explicit energy (97), the equation of mo-
tion (96) reads

w2
x2(7)=—-3(x§—x2)(b2—x2), (100)

where b? = 2a® — x} and x? < x} <

Eq. (100) gives

< b2, Integrating

=—Z(r—m). (101)

/ \/(x —t2)(b2—-t2) 2a

x(7)

It is useful to introduce a normalized coordinate
y(7) = x(7)/x, moving between —1 and 1, and
rewrite (101) as

y(1)

l/ d =—(T—'T)+—'
b Va-md-me 2

(102)

The parameter m is equal to x3 /b* < 1 and deter-
mines the constant « on the right-hand side via the
complete elliptic integral of the first kind

k=K(m) = (103)

/ dt
J VA-5(1—-m)

This constant fixes the period T via formula (101) for
T = 7, as follows:

2k = =BT, (104)
2a
The general solution of Eq. (102) is

xa (7, Tp,m) = xpsn(z(7);m), (105)

where z(7) = wb(r — 1) /2a + «, so that z5 =
K, Zq = —k and sn(z;m) is the elliptic function run-
ning from —1 to 1 for 7 € (74,75), thus ensuring the
correct boundary conditions x¢i(75) = Xp, Xc1(7a) =
—Xp.

According to Eqgs. (7) and (2), the fluctuations
8x(7) = y(r) around the solution (105) are gov-
erned by the differential operator K, (1) = —d?/dr* +
w?*(3x%—a?*) /2a%. The boundary conditions are even-
tually irrelevant for the level splitting in the ground
state, since this will require taking the limit of an in-
finite time interval. As an example, we consider here
Dirichlet boundary conditions for eigenfunctions of
the operator K;(7) : y» = yo = 0. The derivation of
fluctuation determinant requires, in general, two in-
dependent solutions of the homogeneous differential
equation which after going over from the time 7 to the
variable z (7) takes the Lame’s form

2a 2
h (z) + (—b-z—
By translational invariance, the first independent
solution n(t) to this equation is the derivative
(8/d7p)xc1(z(T); m) oqu (105). Normalizing, we
have explicitly

— 6msn? (z;m)) h(z)=0. (106)

Nc?xcx(f, Tp, M)
a7p
= —N3-bxsen(z;m) dn(z;m), (107)
whose time derivative is
. @ \2
n(r)=N (Efzb) xpsn(z;m)
X [dn2(z;m)+mcn2(z;m)]. (108)

(1) =

Here cn(z;m) and dn(z; m) are the elliptic functions.
The normalization factor N is determined by the con-
dition (9) as follows:

k
N Z=x} (;’—ab) f dz cn?z dn’z . (109)
Zk

Performing the integral yields

2
-5 (322)

x [(1-m)xk —(m+1)e], (110)

N-%=

where € = E(m) is given by the complete elliptic

- integral of the second kind

1
— 2
E(m):/d;,/l—l?'%. (111)

0
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The solution (107) is a zero mode of the operator
K; (), since it satisfies Dirichlet boundary condition

w
2a
Because of the property (112), the Dirichlet determi-
nant (50) vanishes, so that we may only calculate the
primed determinant according to formula (87). This

does not require the second independent solution & (7)
of Eq. (106). From Eq. (108) we observe

My =na=—~N-—bxpcnkdnk =0. (112)

. . 2
nb=—na=N(§“’2b) xp (1 —m). (113)

Inserting (113) with (110) into Eq. (87), we find
immediately
1
7.]b7‘)a
_fi_gf[(m-i— De—(1—-m)x] (ﬂb)—B
T 32 (m+1)(1-m)? 2a :

Det'Kl =—

(114)

Let us turn now to the limit of an infinite time in-
terval where £ — 0 and x, and b go to the con-
stant a, the parameter m tends to unity as (1 —m) —
16 exp(—2«), and € — 1. Using equation (104), we
obtain from (114)

4x ewT
Ky = 115
Detki = 20t = 23 (1)
In the same limit
sn [%b(‘r —Tp) + k; 1] — tanh (M) ,
(116)

so that (105) reduces to the limiting kink solu-
tion (99), for which the fluctuation determinant
is (115). The presence of exponentially divergent
factor e“” like in Eq. (115) is a special future of
fluctuation determinants in the limit 7 — oo. It also
appears if one derives the determinant of harmonic
differential operator K = K = —d?/d7? + 2, which
governs the fluctuations around the trivial constant
classical solution x¢(7) = a, with the same Dirichlet
boundary conditions. Indeed, inserting of the inde-
pendent solutions 7(7) = coshwr, £(7) = sinhw7
into Eq. (50) yields directly

sihhwT  e*T

dr o)
2w
where the right-hand side being the large-T limit.

Certainly, when considering the more relevant ratio
of (115) and (117), we obtain the finite result

Det Ky =

(117)

Det'K; /Det K¢ — (118)

122’
which agrees, of course, with previous calculation [1].

The primed determinant (115) can also be de-
rived from (87) using only the asymptotic behav-
ior of the independent solutions n(7) and &(7) at
T — oo [15,1]. For this purpose, we set the particle
energy in (97) equal to zero. The elliptic functions
degenerate into hyperbolic, simplifying Eq. (106) to

h(z) —2(2—3cosh™2z)h(z) =0, (119)

where z(7) = w(7 — 70) /2 with 79 = (7 + T4) /2.
Now we are looking for the asymptotics of two inde-
pendent solutions to this equation at 7, — 7, — 0.
For the solution corresponding to (107) we find

—2awN e 23,

(120)

n(r) = N 22 cosh™27 —
2 To—Tq—00

the proper normalization factor being N~2 = 22w /3.
For the second independent solution, the asymptotic
behavior may be deduced from the constancy of Wron-
skian W (7, &) as follows:

E(r) — e, (121)

Thp—Tq—0O0

Here the normalization is irrelevant since the expres-
sions (87) is independent of it. The solutions (120)
and (121) have the Wronskian W (7, £) = —4aw?’N,
and the asymptotic boundary conditions for 5(7)

N = Na &~ —2awN e~ =T/2,

Np = —Na = &N, (122)

and for £(71)

E=bum wby  (123)

Inserting this into formula (87), with the right-hand
side rewritten as —&,£,/W?, we obtain once again the
result (115).

Ep=—€y e,
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