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Abstract

We show that the chiral Gross-Neveu model in 2qe dimensions has for a small number N of fermions two phase
transitions corresponding to pair formation and pair condensation. In the first transition, fermions and antifermions acquire
spontaneously a mass and are bound to pairs which behave like a Bose liquid in a chirally symmetric state. In the second
transition, the Bose liquid condenses into a coherent state which breaks chiral symmetry. q 1998 Elsevier Science B.V. All
rights reserved.

1. Introduction

Ž . w x Ž . w xThe Nambu-Jona-Lasino NJL model 1 and its N-component version, the Gross-Neveu GN model 2 ,
are field theories of zero-mass fermions with quartic interaction which provide us with considerable insight into
the mechanisms of spontaneous symmetry breakdown. Both models can formally be turned into pure boson

Ž . Ž .theories. In an SU 3 = SU 3 -symmetric version, the NJL model has been shown to be equivalent to a chirally
Ž . Ž . w xSU 3 =SU 3 invariant s-model which reproduces all well-known relations of current algebra 3 . For recent

w xwork and citations see 4 .
The Gross-Neveu model is exactly solvable in the limit of N™`. For an attractive sign of the interaction, a

collective fermion-antifermion field acquires a nonzero vacuum expectation, and the system shows quasi-long-
range order. In Ds2qe dimensions, the order of this state becomes proper long-range. The ordered state is
reached in a second-order phase transition from a disordered state if the renormalized coupling constant g
becomes larger that a critical value g ) spe . The disordered state at small g-g ) consists of massless
interacting fermions. It exhibits chiral symmetry, in which fermions are transformed by a phase rotation
containing a g matrix. In the ordered state at larger g)g ) , however, the fermions acquire spontaneously a5

mass, and the chiral symmetry is broken spontaneously.

1 ˜E-mail: kleinert@physik.fu-berlin.de URL: http:rrwww.physik.fu-berlin.derkleinert
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The purpose of this note is to point out, that in a modified Gross-Neveu Model in which pairs of fermions
form bound pair states analogous to the Cooper pairs in superconductor, the paired phase becomes incoherent in

w xa Kosterlitz-Thouless-like transition 5 if the number of field components N drops below a certain critical value
N Q8. From this we conclude that in 2qe dimensions, the transition in which the pairs form existsc

independently of a transition in which they condense.
In the ordinary Gross-Neveu model, the role of the Kosterlitz-Thouless-like transition is played by an Ising

transition, which appears in addition to the transition in which the collective state forms.

2. Proper Gross-Neveu model

Ž .The original Gross-Neveu model has the following O N -symmetric Lagrange density
g 20

LLsc iEuc q c c , 1Ž .Ž .a a a a2 N

where the index a runs from 1 to N. At the mean-field level, the effective action is equal to the initial action

g 20Dw x w xG C ,C sAA C ,C s d x C iEuCq C C . 2Ž .Ž .H a a2 N

In general, we obtain all Green functions from the generating functional

iW wh ,h xw xZ h ,h se s DDc DDc exp i AA c ,c q i chqc.c. , 3Ž .� 4Ž .H
Ž . Ž .where h x and h x are fermionic anticommuting sources. A collective field s;gcc is introduced to rewrite

Ž .3 as

D 2w xZ h ,h s DDc DDc DDs exp i d x c iEuys c q chqc.c. yNs r2 g . 4Ž . Ž .Ž .H H a a 0½ 5
Ž .The fields c x are integrated out according to the rule to yield a generating functional containing only the

Ž .collective field s x :

w x w xZ h ,h s DDs exp i AA s yhG h , 5� 4 Ž .H coll s

with the collective action

1
2w xAA s sN y s y iTr log iEuys x . 6Ž . Ž .coll ½ 52 g0

where Tr denotes functional and Dirac trace.
In the limit N™`, the field s is squeezed into the extremum of the action and we obtain the effective

action

1 1 1
2G S ,c ,c sy S x y iTr log iEuyS x q C iEuyS x C 7Ž . Ž . Ž . Ž .a aN 2 g N0

The extremum of G S ,c ,c is given by the equations of motion,

iEuyS x C x s0, 8Ž . Ž . Ž .a

1 i
S x sg tr G x , x y g c c x , G x , y s , 9Ž . Ž . Ž . Ž . Ž .0 S 0 a a SN iEuyS
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where the trace symbol tr is restricted to the Dirac indices. The expectation C of a fermionic field is alwaysa

zero, so that we only must solve the gap equation

S x sg tr G x , x . 10Ž . Ž . Ž .0 S

Thus, as far as the extremum is concerned, we may study only the purely collective part of the exact action

1 1
2 y1w xG S sy S y iTr log iG . 11Ž .SN 2 g0

Ž .The ground state is given by a constant gap field S , for which 10 yields either S s0 or0 0

d D p 1E
1sg tr 1 , 12Ž . Ž .H0 D 2 2p qS2pŽ . E 0

0 4 Ž 1 2 3 4.where we have performed a Wick rotation p ™ ip to euclidean momenta p ' p , p , p , p with the metricm

p2 syp2. The Dirac matrices have dropped out, except for the unit matrix whose trace is 2 D r2 for even D.E

This expression may be continued to any non-integer value of D.
For a constant S, the effective action gives rise to an effective potential

D1 1 1 d pE12 2 2w xÕ S sy G S s S y tr 1 log p qS . 13Ž . Ž . Ž .H E2 DN N 2 g 2pŽ .0

Performing the integral yields in Ds2qe dimensions with e)0

2qee 21 m S S
2Õ S s yb m , 14Ž . Ž .ee ž /N 2 g m m0

where m is an arbitrary mass scale, and the constant b stands fore

2 2 1
er2b s 2 S G Dr2 G 1yDr2 s G 1yDr2 , 15Ž . Ž . Ž . Ž .e D Dr2D D 2pŽ .

yg Ž .which has an e-expansion b ;y 1y er2 log 2p e rpeqOO e . A renormalized coupling constant gŽ . Ž .e

may be introduced by the equation

1 1
yb ' , 16Ž .eeg m g0

so that

ee 21 m S S
2Õ S s qb S 1y . 17Ž . Ž .e ž /½ 5N 2 g m

Ž .Extremizing this we obtain either S s0 or a nonzero S solving the gap equation 12 in the form0 0

e
)g D S0

1y s , 18Ž .ž /g 2 m

where g ) sy1rb fpe . A nontrivial solution of this is called gap. It specifies the mass which the fermionse

Ž .acquire from the attractive interactions, and will be denoted by M. The second derivative of Õ S shows that
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the solutions S s0 and S /0 are stable for g )0 and g -0, respectively. Denoting the solution S of0 0 0 0 0
Ž .18 for gs` by M , we may write the g-dependence of the gap as`

1re
)g

M g sM 1y . 19Ž . Ž .` ž /g

Ž .In terms of M, the effective potential 17 can be rewritten as
2 D1 b S Se DÕ S s M D y2 . 20Ž . Ž .ž / ž /N 4 M M

Ž . DIt has a minimum at SsM, where it yields the condensation energy Õ M syNM r4p .

3. Correlation functions of pair field

Ž .If N is no longer infinite, the pair field s in the partition function 4 performs fluctuations around the
Ž .extremal value S sM. For large N, the correlation functions of s x can be extracted from the leading0

Ž . Ž . XŽ .effective action 7 at S sM. Setting S x sMqS x , we expand0

X 2N S i i
X X2d Gsy q i Tr S S , 21Ž .ž /2 g iEuyM iEuyM0

implying a propagator of the s
X-field in momentum space

1 i
X XG sy , 22Ž .s s N 1rg qP qŽ .0

Ž .where P q is given by the self-energy diagram

d Dk k kyq yM 2Ž . EED r2P q sy2 ,Ž . H D 22 2 22p k qM kyq qMŽ . Ž .Ž . EE

th integral being performed over euclidean D-dimensional energy-momenta. With standard Feynman methods,
this can be transformed into a simple integral

er22D Dy1 qŽ . 1 EeP q sy b M dx x 1yx q1 . 23Ž . Ž . Ž .He 22 M0

Ž .Inserting here Eq. 18 , we obtain
er221 1 1 q1 EeqP q sm y y1q Dy1 dx x 1yx q1 , 24Ž . Ž . Ž . Ž .H

) 2ž / ½ 5g g g M00

which can be expanded for small q as
21 1 1 1 qEeqP q sem y 1q Dy1 q . . . . 25Ž . Ž . Ž .

) 2ž /g g g 12 M0

Ž .This shows that the propagator 22 has a correlation length
1r2Dy1

js . 26Ž .2ž /12 M
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Ž .Inserting the g-dependence of M from 19 , we see that

y1re1r2 )1 Dy1 g
js 1y 27Ž .ž / ž /M 12 g`

so that the coherence length diverges for g™g ) with a critical exponent ns1re .

3.1. Chiral and complex pair field Õersion of model with Goldstone bosons

We want to prove the existence of two phase transitions in the chiral version of the Gross-Neveu model,
whose Lagrange density is

g 2 20
LLsc iEuc q c c q c ig c . 28Ž .Ž . Ž .a a a a a 5 a2 N

Ž .The collective field action 6 is then replaced by

1
2 2w xAA s sN y s qp y iTr log iEuys x y ig p . 29Ž . Ž . Ž .coll 5½ 52 g0

Ž .This model is invariant under the continuous set of chiral O 2 transformations which rotate s and p fields into
each other. This model is equivalent to yet another one which is closely related to the BCS model of
superconductivity. Its Lagrange density is

g0 T TLLsc iEuc q c Cc c Cc . 30Ž .Ž .Ž .a a a a b b2 N

Here C is the matrix of charge conjugation which is defined by

Cg mCy1 syg mT . 31Ž .
†0 1 1 2 1 TIn two dimensions, we choose the g-matrices as g ss , g syis , and Csg . Note that c Cc sŽ .a a

yc TCc , implying that g -0 corresponds to an attractive potential. The second model goes over into the firsta a 0
1 1 TŽ . Ž .by replacing c™ 1yg cq 1qg Cc , where superscript T denotes transposition. In the Lagrange5 52 2

2g T0Ž . Ž .density 30 we introduce a complex collective field by adding a term y Nr2 g Dy c Cc , leading to0 b bN

the partition function

N
21† D † T < <w xZ h ,h s DDc DDc DDD DDD exp i d x c iEuc q D c Cc qc.c. qchqhcy D .Ž .H H a a a a2½ 52 g0

32Ž .

The relation with the previous collective fields s and p is Dssq ip . In order to integrate out the Fermi
fields we rewrite the free part of Lagrange density in the matrix form

c0 iEu1 Tc C ,c 33Ž .Ž .2 Tž / ž /iEu 0 Cc

l lT T T Twhich is the same as c iEuc , since c CCc scc , c CEuCc scEuc . But then the interaction with D can be
1 T y1Ž .combined with 33 in the form f G f, wherei D2

c
T T y1fs , f s c ,c C 34Ž .Ž .Tž /Cc
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are doubled fermion fields, and

† TC 0 D iEuy1 y1iG s sy iG 35Ž .Ž .D Dž / ž /0 C iEu D

is the inverse propagator in the presence of the external field D. Now we perform the functional integral over
the fermion fields, and obtain

1 T† i N AA w D xq j G ja D a2w xZ j s DDD DDD e , 36Ž .H
w xwhere AA D is the collective action

i
21 D y1< <w xAA D sy d x D y Tr log iG 37Ž .H D2 g 0 2

and j is the doubled version of the external sourcea

Th
js . 38Ž .y1ž /C h

1 T T Ž .This is chosen so that chqhcs j fyf j . In the limit N™`, we obtain from 36 the effective actionŽ .2

1 1 i 1
2 y1 y1< <w xG D,C sy D y Tr log iG q C iG C 39Ž .D a D aN 2 g 2 N0

in the same way as in the last chapter for the simpler model with a real s-field.
The ground state has Cs0, so that the minimum of the effective action implies for D either D s0 or the0 0

gap equation

C 01syg Tr G 40Ž .0 D0 ž /0 0

where we may assume D to be real. With the Green function0

d D p i y1yD pu0 C 0yi pŽ xyy.G x , y s e , 41Ž . Ž .HD D 2 y10 ž /ž /pu Dp yD 0 C02pŽ . 0

Ž . Ž .the gap equation 40 takes the same form as 12 :

d D p 1
1sg tr 1 , 42Ž . Ž .H0 D 2 2p qM2pŽ .

where we have again set M'D . The renormalization of the coupling constant and of the effective potential0
Ž . Ž . )yields the same equation for Õ D sÕ M as before, so that the previous stability discussion for g-g and0

g)g ) holds also here.
Let us now study the propagator of the complete D-field. For small deviations D

X
'DyD away from the0

Ž .ground state value we find from 39 the quadratic term

2X< < X† X†1 D i
12 D Dd Gsy q Tr G G .M M2 X Xž / ž /½ 5N g 2 D D0
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D Ž .DThe second term in curly brackets may be written more explicitly as an integral Hd qr 2p over
Di d k i i

X 2 X ) 22 D r2M D qD 2Ž . H D 2 2 2 22 k yM2p kyq yMŽ . Ž .
Dd k i i

2X< <q2 D tr ku ku yqu ,Ž .H D 2 2 2 2k yM2p kyq yMŽ . Ž .
X 2 XŽ . XŽ . < X < 2 X ) Ž . XŽ .where D is short for D q D yq and D for D q D q . After some algebra this becomes

Dd q
2X 2 X†2 X1 2 2 2 2 2 2 2 2˜ ˜< <M D qD P q rM q2 D P q rM yM P q rM ,Ž . Ž . Ž . Ž .H ½ 5E E E2D2pŽ .

2 2 ˜ 2 2Ž . Ž .where P q rM is the previous self-energy 23 , and P q rM is the functionŽ .E E

d Dk i i
2 2 D r2P̃ q rM s i2Ž . HE D 2 2 2 2k yM2p kyq yMŽ . Ž .

D 1 Dr2y22 2s b 1yDr2 dx q x 1yx qM . 43Ž . Ž . Ž .He E2 0

As a result, the action for the quadratic deviations from D sM can be written as0

D1 d q 1
2X X 2 X ) 21 12 < <d Gsy qA D q B D qD , 44Ž .Ž .H2 2D ž /N g2pŽ . 0

with the coefficients

D
e e 2 2 e 2 2Asy b M Dy1 J q rM y Dr2y1 J q rM ,Ž . Ž .Ž . Ž .e 1 E 2 E2

D
e e 2 2Bsy b M Dr2y1 J q rM , 45Ž . Ž .Ž .e 2 E2

and the integrals

1 1Dr2y1 Dr2y2e D e DJ z s d x zx 1yx q1 , J z s d x zx 1yx q1 . 46Ž . Ž . Ž . Ž . Ž .H H1 2
0 0

XŽ .Thus the propagators of real and imaginary parts of the field D x are in momentum space

i 1 i 1
X X X XG sy , G sy . 47Ž .D D D Dre re im imN 1rg qAqB N 1rg qAyB0 0

The excitation spectrum is given by the zeros of the denominator functions

1 D
e e 2 2qAqBs b M 1y Dy1 J q rM , 48Ž . Ž .Ž .e 1 Eg 20

1 D
e e 2 2 e 2 2qAyBs b M 1y Dy1 J q rM q Dy2 J q rM . 49Ž . Ž . Ž .� 4Ž . Ž .e 1 E 2 Eg 20

e Ž . e Ž . 2 2By expanding J z , J z in powers of zsq rM f0,1 2 E

Dy2 Dy4
e 2 e 2J z ;1q zqOO z , J z ;1q zqOO z , 50Ž . Ž . Ž . Ž . Ž .1 212 12
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we find

1 D Dy1
e 2qAqBsy b M Dy2 1q z qOO z ,Ž . Ž .e ž /g 2 120

1 D Dy2
e 2qAyBsy b M 3 zqOO z , 51Ž . Ž .eg 2 120

Ž .Inserting here the gap equation 19 , we obtain

1 1 1 Dy1 q2 1 1 1 q2
E E1e eqAqBsem y 1q q . . . , qAyBsem y q . . . .4

) )2 2ž / ž / ž /g g g 12 g g gM M0 0

52Ž .

Ž . X XRecalling 25 we see that the propagator of D coincides with that of S in the standard Gross-Neveu model,re
X Ž . Ž .so that the fluctuations of D have the same correlation length 26 , with at a critical exponent n in 27 as gre

approaches g ).
In contrast, the propagator of the imaginary part of D

X has now a pole at q2 s0:

y11 4 1 1 i
2 2

X XG s y M q regular part at q s0. 53Ž .D D
) 2im im ž /N e g g q

The sign of the pole term guarantees a positive norm of the corresponding particle state in the Hilbert space. The
particle is a Nambu-Goldstone boson.

4. Second phase transition

We are now prepared to show that the pair version of the chiral Gross-Neveu model in 2qe dimensions has
two phase transitions. Consider first the case es0 where the collective field theory consists of complex field D

Ž . if w xwith O 2 -symmetry D™e D. From the work of Kosterlitz and Thouless 5 we know that such a field system
possesses macroscopic excitations of the form of vortices and antivortices. These attract each other by a
logarithmic Coulomb potential, just like a gas of electrons an positrons in two dimensions. At low temperatures,
the vortices and antivortices form bound pairs. The grand-canonical ensemble of pairs exhibits quasi-long-range
correlations. At some temperature T , the vortex pairs break up, and the correlations becomes short-range. Thec

phase transition is of infinite order.
Ž .This transition is most easily understood in a model field theory involving of a pure phase field u x , with a

Lagrange density

b 2
LLs Eu x , 54Ž . Ž .

2

where b is the stiffness of the u-fluctuations. The important feature of the phase field u is that it is a cyclic
field with usuq2p . In order to ensure that such jumps by 2p carry no energy, the gradient in the Lagrange
density needs a modification which allows for the existence of vortices and antivortices. This will not be

w xdiscussed here in detail, since the reader may consult the literature for it 6,7 . We only state here that after
including vortices and antivortices at positions x , x , their partition function can be written asi j

1
2 < <Zs exp 4p b q q log x yx rr , 55Ž .Ž .Ý Ý i i i j 0½ 52pgas i-j
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where r is the size of the vortices. For a single vortex-antivortex pair, the average square distance r 2 is0

` 1
2 2² :r A drr r exp y2pb log rrr A . 56� 4Ž . Ž .H 0 2pby4r0

This diverges as the stiffness falls below b s2rpf0.63662. A more detailed study shows that this is anKT
w xexact result for a very dilute system of vortices and antivortices 7 .

Ž .The large-stiffness state with bound vortex pairs has a coherent phase field u x , the low-stiffness state with
separated vortex pairs exhibits incoherent phase fluctuations. The same situation is found in three dimensions,
only that the excitations are vortex lines. These become infinitely long and prolific in a second-order phase

w xtransition 7 at a critical point b f0.33.c
Ž .The result 53 for es0 can now be used to estimate a critical value of the number of field components

NsN below which the phase fluctuations of the complex field D
X become so violent that the system has ac

X Ž .phase transition. For this we write D sMu and find from 53 a propagator of the u-fieldim

i 4p
G f q regular terms. 57Ž .uu 2N q

Ž .Comparing this with the propagator for the model Lagrange density 54

1 i
G s 58Ž .uu 2b q

we identify the stiffness bsNr4p . The pair version of the chiral Gross-Neveu model has therefore a
vortex-antivortex pair breaking transition if N falls below the critical value N s8.c

Consider now the model in 2qe dimensions where pairs form at gsg ) fpe . A comparison between the
Ž . Ž .propagator 53 and 58 yields a stiffness of phase fluctuations

N g )

bs 1y . 59Ž .ž /4p g

The linear vanishing of the stiffness with the distance of the coupling constant g from the critical value g ) is
in agreement with a general scaling relation, according to which the critical exponent of bending rigidity should

Ž . w Ž .x Ž .be equal to Dy2 n . Since the model has ns1re see 27 , this yields Dy2 ns1, which is precisely the
Ž .exponent in Eq. 59 .
Ž .The stiffness 59 implies the existence of a phase transition in the neighborhood of two and in three

dimensions at roughly

y1
)g

N f8 1y , Df2,c ž /g

y1
)g

N f4.19 1y , Ds3. 60Ž .c ž /g

As N is lowered below these critical values, the phase fluctuations of the pair field D become incoherent and
the pair condensate dissolves. The different phases are indicated in Fig. 1. In the chiral formulation of the same
model, the intermediate phase has chiral symmetry in spite of a nonzero spontaneously generated ‘‘quark mass’’

< <M/0. The reason why this is possible is that the ‘‘quark mass’’ depends only on D , thus allowing for0

arbitrary phase fluctuations preserving chiral symmetry.
ŽThe sceptical reader may wonder whether the solid hyperbola in Fig. 1 is not simply the proper albeit

.approximate continuation of the vertical line for smaller N. There are two simple counterarguments. One is
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Fig. 1. The two transition lines in the Ny g-plane of the chiral Gross-Neveu model in 2qe dimensions. For e s0, the vertical transition
line coincides with the N-axis, and the solid hyperbola degenerates into a horizontal line at N s8. The quark masses and chiral propertiesc

are indicated.

formal: For infinitesimal e the first transition lies precisely at gsg ) spe for all N, so that the horizontal
transition line is clearly distinguished from it. The other argument is physical. If N is lowered at some very

�large g, the binding energy of the pairs increases with 1rN in two dimensions, the binding energy is
2w Ž .x44Msin pr2 Ny1 . It is then impossible that the phase fluctuations on the horizontal branch of the transition

line, which are low-energy excitations, unbind the strongly bound pairs. This will only happen in the limit
N™` where the binding energy becomes zero and the two transition curves merge into a single curve. This is
the situation in the BCS theory of superconductivity, where Cooper pair binding and pair condensation coincide.

In the ordinary Gross-Neveu model, the analog of the phase disordering transition is an Ising transition, in
which the vacuum expectation value of s jumps between yS and S in a disorderly fashion. In two0 0

dimensions, this occurs at some critical value N . In 2qe dimensions, this transition should again existc

independently of the transition at which the system enters into a state of nonzero S . It will be interesting to see0

these two transitions in either model confirmed by Monte-Carlo simulations.
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