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Summary. — We investigate the general consequences of Gell-Mann’s
decomposition of the energy density Oy(z) = 050(@) - z Sp(m) + u(x),

n
where % is the SU, X SU,; breaking term transforming according to a
(33)+(33) representation and being a Lorentz scalar of dimension d. We
show that there must be at least two terms among 6j,, 6, with non-
vanishing vacuum expectation values. 1f we further assume that there
are only two such terms with dimensions d’ and d" we can obtain a new
sum rule involving the spectral functions of the propagators of 6/, 8"A7,
and 9“4, , which reads
dp? r—2 dp2 v+ 27 dye?

f ooli®) 5 = X[ — f onli®) i [ wﬂ)!jz],
where r=—3(¢++/2)/e and X=(d—d’ )(d” d). Saturating with o, 7, K,
one finds, using an earlier result on ¢grnx,

Mg 32n 7 r4 2 m,zT —2
= X My ——— —2]— .
Tonr  3mg [2 A K](H"[d QJmi)

We use the experimental values mga 700 and Igrra 400 to estimate
X in both the Gell-Mann-Oakes—-Renner and the Brandt-Preparata
SU;x SU,; symmetry-breaking schemes. Unfortunately, for reasonable
values of fg/f, our sum rule does not distinguish between these two
schemes, e.g. for fi/f,==1.25, both schemes give X a 3. Nevertheless,
this typical value allows us to conclude that o dominance is consistent
with many models not involving operators of anomalously high dimen-
sions and at the same time it allows us to exclude many other models.
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1. - Introduction.

Recently, a great deal of work has been invested in linking uwp chiral and
dimengional information and extracting itz physical congequences (*?). (hiral
Lagrangians provided the first models for these studies and have until now
given the bulk of useful insights {*). It is well known that phenomenological
Lagrangians provide a simple mnemonic device to enforce low-energy theorems
on physical coupling constants given arbitrary current field commutation
rules {*). Indeed, for the complicated commutation rules of SU, = 817, the
Lagrangian methods have made the involved conzistency equations of Ward
identities (*) an casy S, coupling exercize,

For evaluating consequence of dimensional assumptions, however, Lagran-
Fana probably provide zomewhat too big an apparatus. The reason is that
the commutator carrying all information on the dimension of a field iz extremely
simple:

(1) i D), @l -y, = [xd - d_)qix) d* e — ) + Schwinger term ,

where P (x) is the current density of dilatations, defined in terms of the sym-
metrie local energy-momentum tensor @, (x) () by

(2) D, (x) = &0 (x),
gueh that the conservation condition reads
(3) et D () = @z} = Oz} .

The trivial algebraic structure of (1) allows one to solve many Ward identities
at onee. Thus for the three-point function Tfﬂﬂ{m} @y p(0)) one finds imme-

('} G. Mack: Nuel. Phys.,, 5B, 409 (1968); (. Macx and A, Bavam: Ann. of Phys,,
53, 174 (1968); K. Wmsown: Phye. Reo., 179, 1499 (1989); M. Dan-Civ and H. A,
Kaztrur: Nuel. Phys., 15 B, 188 (1970),

)y M. G ELL-MANN: FProceedings of the Thivd Hawaii Topical Conference on Elemenlary.
Particle Physics (Loa Angeles, Cal., 1968},

(") A. Bavam and J. BTRATHDEE: Phye. Fev., 184, 174 (1969); . J. Tagaum, A, Saran
and J. STRATHDEE: Phys, Ledt., 81 B, 300 (1970); 3. P. DE Avwis and ', J. O'DOXKELL:
Toronto preprint (1870): J. ELiis: Nuel, Phys., 22 B, 478 (1970} (there ia a normaliza.
tion error in this paper—see eq. (14)—ref, (V) agrees with us. Nole added in proof:
see erratum in Nuel, Phys., 23 B, 638 (1971)); J. Wess and B. Zumiso: to be published
and ref. (Y).

{*) For an elegant prool of the equivalence of Ward identities and low.energy theorems
extracted from phenomenological Lagrangians in the tree approximation sec, lor example,
B. ZuMmno: Brandeis Leclures (19700,

(*) Bee, for example, [. GERsTEIN and H. J. ScaNirzer: Phys. REev., 175, 1876 (1948).
(*) E. Hocaoma: Ph. D). Thesis, Caltech (1962); F. GUR3EY: Ann. of Phys., 24, 211 (1963);
C. Cacraw, B, ConEmay and R, Jackrw: Ann. of Phys., 59, 42 (1870},
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diately the low-energy theorem (*)

” 0
(4) I, p?, p?) = — 247 (p?) [(2 —d) + p*A-(p?) B A(Pz)] ;

where A(p?) is the propagator of the ¢ field

=

and I'"is the reduced vertex function defined by
(5)  —A@yA(p—a3) (e (p— %) =
Zfdy da exp [— i(gz — py)] 01T (0(z) () (0)) |0 -
On the mass shell of a particle of mass g this gives the universal result
(6) I'(0, 2, p?) = 2u2 41 .

Here Z is the wave function normalization of the single-particle state of
mass u. For convenience, we shall sometimes state the results in terms of the
properly normalized vertex function "= ZI'" There is no dependence on the
dimension of the interpolating field (as any on-mass shell result should be}).
The dimension enters, however, in the off-mass shell continunation, determining

o

M =

P F(O’ p27 Mg)!aﬂ2=;¢2 = dcp"_l .

One might suspect that a similar result could also be obtained for the derivative
of I'(¢?, u?, u*) with respect to ¢%, in terms of the dimensional content of the
energy-momentum tensor. Indeed, in a recent paper it was shown () that using
the additional assumptions of

1) standard chiral-symmetry properties of the Hamiltonian,
2) ¢ dominance of the I'(¢? p?, p'?) vertex (with ¢ = 2" 4,),
3) smoothness of the vertex function,
one can in fact derive such a result for dl'/d¢?, involving only the dimension &

of the chiral-symmetry-breaking part in 0g:

8F(0 mk, mk) =1+ (d—2)

(8) ¥ e

(") H. KreiNert and P. H. Weisz: Nuel. Phys., 27 B, 23 (1971).
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Obviously this equation implies, even for an once-subtracted dispersion relation
for I'(g? u® p?), that the onm coupling constant (*) (normalized by £ = g .,"
“(my2) on*n®) is
M
{9) gcnn:y(l+[d_2]—2)’
mG’
where (m?y™') is the coupling <0}f]c> (?).
A second very simple Ward identity can be derived for the two-point fune-
tion <0|7(D,(»)6(0))]0>.  Taking its divergence leads directly to

(10) Aan(0) = <0Ji [ [@ Dy, 0), 6(0)] 10,

where A,, is the propagator of the 0(x) field. Under the above assumption 2),
the left-hand side becomes —y *m, such that

(11) miy—2 = — 0l UdamDo(x, 0), 9(0)] 05

Equations (9} and (11) can be used to eliminate the unknown o graviton
coupling . The commutator in (11), on the other hand, can be evaluated by
making dimensional assumptions on §,,.

It is the purpose of this paper to discuss the consequences of (9) and (11)
assuming only dimensional properties of the decomposition of 6,,, PCAC for =
and K, and ¢ dominance of §. In spite of the roughness of the information on
possibile I =0 s-wave resonances (°) the presently assumed principal eandi-
date at m, = 700, [, ~ 400 helps considerably to distinguish between the
possible dimensions of the different parts contained in 0.

2. — Dimensional and chiral content of 0,,(x).

We adopt the assumptions on the SU, x SU, decomposition of the energy
density conjectured a long time ago by GELL-MANN (1)

(12) 0o = 05y + 0 -+ u® 1 eu®

(]) Notice that our result holds up to order O(m%/M?) and O(mZ/M'?), where M, M’
are the next significant mass contribution in A,# a,5"a, 80d gy . They are, in prineciple,
valid for any myi/m%. We are aware that such a term is physically as small as the
neglected terms. However, we shall carry it along for the sake of allowing for a com-
parison with Lagrangian results.

(°) Notice that this is the same result as was obtained by Saram et al. (3}, from
phenomenological Lagrangians for the special value y = my/f,.. But, as was pointed out
by Erris {3), the conformal covariance properties assumed by SaArLaM et al. do not
determine y. However, the physical significance of the arbitrary constant y appearing
in the construction of the chiral Lagrangian is perhaps not as manifest as here.

(**) ParricLE Data GrouPp: Phys. Rev. Leil., 34 B, 1 (1971).

(1) M. GELL-MANN: Phys. Rev., 125, 1067 (1962).
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where 0, and § are SU,x SU, singlets. The terms u°, u® are Lorentz scalars
transforming like members of the (3,3) 1 (3, 3) representation, which they
form together with a nonet of pseudoscalar operators »* (a =0, ..., 8)

[45(@), w/(0)],,.o = — 14 v°(0) 6*() ,

(13) e
[A5(@), ¥(0)],,.o = 94 u°(0) 6°() .

The term # can conveniently be split into a term S conserving SU, x SU, and
another term 2, transforming like the fourth component of an (4, 1) represen-
tation:

w=u+ecut=8+ 2.

From this assumption one readily derives, using the equation of motion for
A, i=1,..,8,

(14) QRAL = — (di0 - edi®)v — O3V E e,
which in turn implies the so-called 2 commutator to be
(15) E“EiU&mM%OLWMﬁm]:
— (%6;’:‘ + \/gcd“s) uc(o) 4+ (\/gdiﬂc + edsidlie | %Gajsﬁuc) uk(o) .

This equation can be used to derive the well-known low-energy theorem
for the propagator

A(g?) = — 1 [exp [—iqa] 0| (2“4 () 9"45(0)) 0>,

x

(16) A(0) = (X = a' (8> + b (2>,
where

0 1 1,2,3,

. r+1 ) -1 .
ai — T+2’ bt — 97 for ¢ = 415;6777

4 1

5 3 5
and
an T:_gc+v2
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From eq. (16), we find for ¢+ — =, K that the vacuum expectation values
{8y and <X can be expressed as

(18) (X = 4™0),

(19) () — (w+2>(r—i—1 AK(O)—%;AN(O)).

These two equations allow us to obtain for v = 8§ + X

r—2 r -+ 2
o AT(O0) + T A%(0).

(20) O T

After these preliminaries, let us proceed to the evaluation of the commu-
tator in eq. (10)

@'”DO(x, 0) o, 9(0)] .

To do so, we obviously need information on the dimensional content of 6(0).
Let us assume that 6 is a sum of scalars §, of definite dimension d,, while %
has the dimension d (*2). Then it can be shown that 6 has the form (?)

(21) —SE—d)b+ 4 —d)u.

%

As a consequence, eq. (10) is immediately evaluated to give

(22) Agp(0) = > (4 —dy) d{(8,> + (4 —d)dlu .

n

Now we also have the following trivial identities:

@ =2 4—d)0w + 4 —duy =0,

(23) .
<600> - <900> + z <6ﬂ> _l_ <'M’> = () ’

(12) Notice, however, that many popular models have a more complicated vacuum
expectation value structure. For example, in the SU, n-c model, the term & consists
of the terms (1/4)(3m2%— m2) x (¢ + #?) and a constant = f2(3mj; + m%)/8 > 0 (necessary
to make the vacuum expectation value of the Lagrangian vanish). The first term has
dimension two, the second dimension zero. The vacuum expectation value of 6, is
fi(m%:—mk)/8. Thus in the o-model there are just two terms among 0g, and &, with
nonvanishing vacuum expectation value only when m%=my or mj= 3mz.



ON THE DIMENSION OF CHIRAL AND CONFORMAL SYMMETRY BREAKING 4185

from which we immediately see that if among <B:O> and {d,> there are less
than two nonvanishing terms, then A,(0) =0. We reject this case for it
would require the corresponding spectral funetion p,(u%) to vanish every-
where. A corollary of this simple result is that there must be at least one &,
with & nonvanishing vacuum expectation value (¢.e. there must be a §), although
this can be a constant.

The important observation now is that if among 9:0 and 4§, there are two
and only twe operators 0', 0" with nonvanishing vacuum expectation values (12)
then A, can be expressed completely in terms of (u#> and the dimensions &'
and d" of O' and 0" respectively:

(24) Agg(0) = (d — d')d"— &)l

Equation (24), together with the expression (20) for <(u)> becomes our central
exact resull

—2 2
(25) Awmh=@—dﬁm—d4?m Awn+;il

AK(O)] .

The result can be restated in terms of a sum rule relating the spectral funec-
tion of the scalar operator 6 to those of the pseudoscalar operators o“ A}
and 0" A7

du®

oy ¥ pr " T_?’ 2 d(u’2 r+2 2 (E
@) fotpe) B = @ — )| [ontey 2 T2 [ 4

Let us discuss the consequences of this sum rule. We assume as usual that
AT, A% are dominated by a = and K pole, respectively, i.e. the spectral fune-
tions are approximated by

On(t?) = famg 0 —m2), o (’) = fpmgd(u* —mb) .

In addition, ¢ dominance of A, gives
mﬁ
(27) oo(p?) = y—g@(yz—mi) .

Therefore we find in this approximation

% — ' " N 2 2 r+2 f2 an?
28) e a— =) o+ T .
3. — Discussion of the result.

Two types of ideas have been forwarded as to what the mechanism of ST, x SU,
breaking amounts to. In the old Gell-Mann scheme, recently revived by BRANDT
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and PREPARATA (), 0y, of dimension four creates a massless world which is
made massive by a term § breaking dilatational symmetry. Then SU,x 8T,
is broken, conserving SU,, by «° and finally a very small SU,-breaking cu?
is introduced to cause the SU, splitting of baryon and meson masses. In this
scheme the smallness of the pion mass is an unexplained dynamical accident.
The value r one finds from several considerations is r~ 3.3 (1*). Thus, neg-
lecting the small pion contribution in (28), we obtain
Mg
(29) pecs ~(d—d)d—d)1.2 fEmk .

According to more recent ideas of GELL-MANXN ef al. (1), however, the small
magsses of the pseudoscalar mesons and the quality of PCAC can mest naturally
be explained by assuming the vacuum to break the U, x U, symmetry of 02‘0
and creating a nonet of massless psendoscalar Goldstone bosons. The term &
should commute with all U, x U, generators, except for @: to lift the singlet
particle ' to its high mass of 985 MeV. Finally, an approximately SU, x SU,-
invariant « term lifts K and » masses, leaving only the pion almost massless.

In this scheme r is estimated by the pseudoscalar masses as

Mn
(30) t ﬁfmi ’
such that (29) becomes
mt ! 7" y mi’ 2 2 2 2 2
(31) e (d —d'}d"— d) [? (3fx — 2fx) + mx(2fx —fn)]~

Notice that this result reduces to the one obtained by Lagrangian methods (34)
if one sets f, = f., and @’ =0, d’ =4 (ref. (**) assume J is a constant).

In conjunction with eq. (9) for g,.., We can eliminate y from (2¢) and (31)
and we find, in terms of mass and width of the g-meson, our final result in the
Brandt-Preparata scheme:

Mg 327 mi\ -2

while the Gell-Mann—Oakes—Renner scheme gives

Mg 327

2 2 2 mi —2
(GOR) T. Xw@fx—fu) My (1+[d—2] ",”F) :

g 2]

&

(**} R. A. BranDpT and G. PREPARATA: Ann. of Phys., 61, 119 (1970).
(**) M. GELL-MaNN, R. OakEs and B. RENNER: Phys. Rev., 175, 2195 (1968).
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Here we have introduced for brevity the parameter X = (d— d')(d" — d).
Notice that in both schemes X > 0 and hence d necessarily lies between d'
and d’.

These equations can be used to get some limits as to the possible dimen-
sions of the symmetry breakers 0 and «. We shall assume that only integer
dimensions occur in these local fields. As we have discussed in our last paper (),
we believe that the naive dimensions of a field remain approximately a good
concept in the presence of interactions ('*). This has been proved to any finite
order in renormalizable field theory ('¢). It has been pointed out by WILsoN
that in the Thirring model logarithmic factors arising in finite-order perturba-
tion theory pile up to change the dimension completely (7). Also there is
indication that the scale-invariant Ag* theory has the same behaviour ().
From investigations of the non-scale-invariant ¢® theory (¢) we know, however,
that such a pile-up does not occur. It is our belief that any theory containing
massive constants from the beginning will have approximately integer dimen-
sions. Thege considerations severely limit the possible values d', d" and d can
agsume, From the Lehmann gpectral representation we know that the dimen-
sion of a proper local operator has to be >1. Allowing also constants, we have
0<d,d,d<4. It has been argued (**) that no dimension higher than four
should play an important role in the Hamiltonian. If we accept this point
of view, we obtain for every ordered ftriplet (d’, d, d") the following possible
values of X:

@ d d X
4 3 2 1
4 31 2
430 3
4 21 2
4 2 0 4
410 3
321 1
320 2
31690 2
210 1

(%) If a local field ¢(x) has a dimension d, then the operator product g(xz)e@(0)
diverges for z— 0, like 1/(x?)? (see K. WiLsoN, ref. (1)). It has been verified to finite
order in perturbation theory that this singularity is modified only by logarithmie factors
in the presence of interactions (see ref. (19)).

(1) K. Symanzik: Comm. Math. Phys., 18, 227 (1970).

(") K. WriLsoN: Phys. Rev. D, 2, 1473 (1970).

(1¥) R. GaTTO: private communication.

(1%) K. WiLson: Phys. Rev., 179, 1499 (1969).
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Let us now assume that the o-particle under consideration is the experi-
mentally inferred ¢(700) of width [ =400 (*>*). Then we obtain the fol-
lowing values of X:

1) Brandt-Preparata scheme
@) fK/fT: =1: X =4.7 (>3.3),
b) fulfs =5 X =3.0 (>2.2).

2) Gell-Mann-—-Oakes—Renner scheme
a) f/f.=1: X =158 (>4.0),
b) fulfr=13: X =27 (>1.9).

The numbers in parentheses indicate the lower limits on X provided by the
Adler-Weisberger relation (g...<mg/V2f,:) (21).

We note that in both schemes the values of X are extremely sensitive to
the value of f./f, taken. We consider two cases:

a) For f /f.=1 we see that the experimental values for X do not
appear in our Table of possible X values, however, if g, attains its Adler-
Weisberger bound then X a 3—4. This high value for X would exclude all
but three {d', d, ") combinations, each of which have d'=4, d'=0. If d'=0,
however, 0" is a constant and hence in the Gell-Mann scheme (where 0, com-
mutes with the whole U;x U;) it is not capable of raising the %’ mass (since
it commutes with @}); this would have to be done by other terms ¢, with van-
ishing vacuum expectation wvalue.

b) For f/f. =% (which corresponds to F_(0) very close to one) we un-
fortunately find that our sum rule does not distinguish between the two pro-
posed values for r (??), both schemes give X =2 =3, This value for X allows

(?®) J. ExceErLs and G. HOHLER: Nucl. Phys., 15 B, 365 (1970).

(?1) Inthe o-model, the g4, coupling constant can be obtained as ggrr= Mo/ My) gryorx=
= (mg/my)goxy- The right part of this relationis very well satisfied (see ref.(2*)) where
(gxw)/dna 184 2. The left-hand side yields, however, upon using the Goldberger-
Treiman relation (gryx = (My/fr)g4)s the value ¢gnn = (Wg/fr)g: This result obviously
violates the Adler-Weisberger limit ggpn= mqg/v/2fr giving a width of a 1200 MeV.
The reason is, clearly, that in the o-model ¢ exchange alone makes up all the correctly
normalized nw gcattering. There is no g-meson to fill the migsing half of the sum rule.
Notice that ggnr= (Mg/My)gdexn can also be derived assuming an unsubtracted disper-
sion relation for the (.4#7|6|.4"> vertex. Thus its failure indicates the necessity for a sub-
traction just like in the {z|fn) vertex.

(2%) This is, however, a familiar situation. Thus in the pole approximation for the sum
rule A%(0) = (1/(1 4 7)) A™(0) — (1/r) A%(0), with fg/fz =35, one also obtains very sim-
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us to reject many models, however, at the same time it is consistent with
many (d', d, ') combinations and hence the assumptions are consistent with
no anomalously high dimensions entering the theory.

4. — Conclusion.

There has to be at least one operator § in the Hamiltonian density with
nonvanishing vacuum expectation value, although this operator can be a con-
stant. When F_(0) ~ 1 the ¢ dominance of g, is consistent with many dimen-
sional structures of the Hamiltonian density in both the Gell-Mann-Oakes—
Renner and the Brandt-Preparata symmetry-breaking schemes (in particular
it is consistent with having just one & term of definite dimension). If f/f;
is very close to one, however, the high ' mass requires at least two terms of
different dimensions in ¢ in the Gell-Mann—Oakes—Renner scheme if 9:0 com-
mutes with U, x U;.

E 3

The authors would like to thank Profs. J. S. BELL, R. A. BRANDT and
B. ZumiNo for discussions.

ilar estimates for m, f, in the two schemes:

0.75 f—ﬂ My » GOR,
MWy R fx
0.6 == myg, BP,
fie |

i.e. both schemes require a small |f,/fz| for a large m,. (Recall that with fx = fr the
two values for 7, 7 = rgopy and 7= oo, give exactly the same estimates for {w) and

famy = 0.)

@ RIASSUNTO (%)

Si esaminano le conseguenze della decomposizione di Gell-Mann della densita di energia
Boo() = O () —{—Z 8,(z) = u(x), dove » & il termine di rottura di SU,;x 8U; che si tra-

sforma secondo una rappresentazione (33)+ (33) ed & uno scalare di Lorentz di
dimensione d. 8i dimostra che vi devono essere almeno due termini fra 64, &, con valori
previsti del vuoto non nulli. Se si suppone inoltre che vi siano solo due di tali termini
di dimensioni d' e d’, si pud ottenere una nuova regola di somma che interessa le

(*y Traduzione a cura della Redazione.

32 — Il Nuovo Cimento A.
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funzioni spettrali dei propagatori di 0, ¢*47 e 8“4, del tipo:

dp? r—2 dp? 74+ 2 du?
2 - 2 2
f@a( b X[ o J‘Qn(ﬂ)ﬂ2+?+1f () ]

con r=—23%(c++/2)j¢ ¢ X=(d—d')(d"—d). Saturando con ¢, w, K, si trova, usando
un rigultato precedente per ggmre,

Mg 32x r— r+ 2 mi\ 2
Tomm Bmgx[ P famy 4 ——e Y fK K](l + [d—2] 0) .
Si usano i valori sperimentali mga 700 e I'gpp & 400 per valutare X in entrambi ghi
schemi della rottura di simmetria ST, x SU, di Gell-Mann, Oakes e Renner e di Brandt
e Preparata. Sfortunatamente per valori ragionevoli di fx/fr la regola di somma ottenuta
non distingue fra 1 duc schemi; per esempio, per fx/fr= 1.25, entrambi gli schemi
danno X a~ 3. Nondimeno, questo valore tipico permette di concludere che il dominio

di ¢ & consistente con molti modelli non interessanti operatori di dimensioni anormal-
mente alte ed allo stesso tempo permette di escludere molti altri modelli.

O pa3MepHOCTH HAPYUIeHMS “HPAJILHOH M KOH(OPMHOH CHMMETPHI,

Pesrome (*). — MI:I HccIenyeM oOumwe crneacTBus pasioxenus [emr-MaHHA NIIOTHOCTH
SHEPTHH  8,(%) = Ogy(w) + Z 0,(@) + u(x), rOe w TNPeaCTaBIAST UYJIeH, HapyLIAIONMH

SU, x SU,, xoTopsblii npeo6pa3yeTCﬂ COIJACHO MNpeacTaBieHHIo (33)+ (33), u sBiseTCA
JIOPEHTUEBCKUM CKaJIAPOM pa3MepHOCTH d. MBI 1I0Ka3blBa¢M, YTO HOJDKHO OBITH, IO
Kpaiineif Mepe, OBa wieHa cpeny 04y, 0, C HEHCYC3AOUMMYM BaKyyMHBIMH OXHAAEMBIMH
penuuuBEaMu. ECiM MBI 3aTeM OPeONoIOKHM, YTO CYLIECTBYIOT TOJIBKO OBa TaKMX 4YJecHA
¢ pasMepHocTAMY d’ u d”, TO MBI MOXEM TIOJYYHTH HOBOE MPABHIO CYMM, BKIIOYAIOHIEE
CHeKTpasibHBle (PyHKIMK Tpomaratopor 64, o¥A% n 8”4 4+, KOTOpOE MMeeT BHA

d g’ r—2 u? T+ 2 du®
By =X - 2y —
fgﬂ(ﬂ ) e [ o f Or{® ) o fQK(M ) " ]

rae ¥ =— 2(¢+/2)e u X = (d—d')(d"—d). Wcnomp3yss npemslayliuii pe3ynbTar s
Gonms IPU HACKHIEHWHU ¢ 6,7, K nmonyvaercs

Mg 32w r—2 + 2 mE\ "2
= 4Xl [rm TE‘+ fK lK:I (14“[532]&1;) .

I onT 3’)’!&6 2r (o]

Mer Becnonb3yeM 3KCMePUMEHTATbHBIE 3HAYEHHS M~ T00 1 Iy ~~400, 9yT06BI ONIEHNTE X
B cxeMe Hapymenusi SU; x SU; cummerpuu Fenn—MaHHa, Qaxca, Pennepa m B cxeme
Bpannta u Ipenapater. K coxaneHuto, ajiss COOTBETCTBYIOIIMX 3HA4YeHwM f./f. Hame
TIPABUIIO CYMM HE JaeT Pa3jinyusa MEXKAY STUMH IBYMS CXeMaMH, T.6. O fx/f.—1.25 obe
cxeMbl npuBoasiT K X~3. TeM He MeHee, 3TO THIMHYHOE 3HAYCHHE TO3BOJISAET HAM
YIBEPKOATh, YTO ¢ OTOMHWHAHTHOCTB COTJIACYETCA ¢ MHOMKECTBOM MOJENEH, HE BKIIOYA-
IOIHX ONEPATOPEl AHOMAJbHO BBICOKOH PazMEPHOCTH, H B TO € BpPeMs MO3BOJNAET HAM
HCKIIIOYHTE MHOTO JPYTUX Mozeieif.

(") Ilepesedeno pedaxyueii.



