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Abstract

With help of a derivative expansion, the one-loop corrections to the energy functional of a nearly flat, stiff membrane with
tension due to thermal fluctuations are calculated in the Monge parametrization. Contrary to previous studies, an arbitrary tilt
of the surface is allowed to exhibit the nontrivial relations between the different, highly nonlinear terms accompanying the
ultraviolet divergences. These terms are shown to have precisely the same form as those in the original energy functional,
as necessary for renormalizability. Also infrared divergences arise. These, however, are shown to cancel in a nontrivial way.
© 1999 Elsevier Science B.V.
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Due to their small surface tension, fluid membranes (see Ref. [ 1] for reviews) are subject to strong thermal
undulations. The energy of such a membrane is usually modeled by the local expression [2,3]

Eo=m/ds+§/d3(xoy2+r<01<), (1)

where dS are the surface elements, while H and K denote (twice) the mean and the Gaussian curvature of the
membrane surface, respectively. In terms of the principal radii R; and R; of curvature these are H = 1 /R, +1/R;
and K = 1/R;R;. The parameter g in (1) is the surface tension, o the bending rigidity, and ko its Gaussian
counterpart. The geometric quantities appearing in the integral (1) are invariant under translations and rotations
in space. They are also independent of the parametrization of the surface. We ignore a possible spontaneous
curvature term linear in H. The energy of a physical membrane contains all higher powers in the principal radii
of curvature, but these are irrelevant at large length scales. (In the language of renormalization group analysis,
the first term is relevant, the second and third are marginal.)
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The statistical behavior of fluctuating membranes was first studied by Helfrich [3] using only curvature
terms. We allow for an additional surface term in (1) because fluctuations arising from the curvature terms
not only renormalize the bending rigidities, but also the tension. The thermal fluctuations soften the bending
rigidity at large length scales, reducing it from the bare value «g as follows,

Keff = Ko — 4—5 In(AL) , (2)
where 8 is the inverse temperature, A is an ultraviolet momentum cutoff of the order of the inverse microscopic
length scale a given by the length of the molecules, whereas L is an infrared cutoff determined by the finite
size of the membrane. Various authors derived different values for a, first &« = 1 [4-6] was obtained, later
a =3 [7-10]. The second result has also been found in computer simulations [11]. For either value of a, the
rigidity disappears at length scales larger than the persistence length [12],

4
£~ acxp ({ on), (3)

beyond which the normal vectors of the surface become uncorrelated - the surface looks crumpled. More
recent calculations [13] suggest the value @ = —1, implying a stiffening instead of a softening of the bending
rigidity. This new result was argued to arise from the use of another integration measure which respects the
incompressible-fluid nature of the membrane from the outset. This is in contrast to previous studies of in-plane
fluid [10] and elastic effects [14] which did not show any change in the value a = 3 (they only enter at the
two-loop level [15]).

The renormalization of the Gaussian rigidity ko was first calculated in Ref. [9] to have the same form as in
(2), but with @ — @ = —10/3. This value is changed by in-plane fluid and elastic effects [10,14].

The renormalization group flow of kg extracted from the one-loop result (2) has no nontrivial fixed point.
If this conclusion persists to all orders in perturbation theory, it would imply the absence of a smooth phase
with long-ranged correlations. The smooth appearance of lipid vesicles in the laboratory can then only be
explained by their very large persistence length. An alternative explanation has recently been proposed in
Ref. [16], where it was argued that the neglected higher order terms in the energy (1) may give rise to a
nonperturbative mechanism, by which the crumpled phase can go over into a smooth phase via a sequence of
two Kosterlitz-Thouless phase transitions or a single first-order one.

The renormalization of the surface tension has also been investigated by several authors. The results can be
summarized by the formula

frets = o + 4—"23— Einary, (4)
with the value @’ = 1 found in Refs. [8,17] and o’ = 3 in Refs. [7,9]. In Ref. [18], an attempt was
made to reconcile the differences. An almost planar surface without overhangs was considered in the Monge
parametrization. The points on the surface are then specified by a vector field r(x) = (xi, x2,#(x)), where
¢(x) denotes the vertical displacement of the surface with respect to a base plane with Cartesian coordinates
x = (x1, x2). For a surface with fixed topology, the Gaussian curvature energy is a constant and can be ignored.
The remainder of Eq. (1) was expanded to fourth order in the displacement field. The relative weights of the
resulting terms are fixed by their covariant origin. The authors encountered considerable problems in showing
that this remains true after including the thermal fluctuations. They studied the renormalization of the surface
tension by determining the coefficient 7 of the first (constant) term in the expansion of the surface energy,

1 d%k 1
= — [ ——1 k2 4 = — 7 2 2
T= o+ 2’3/ o)’ n( pok” + xok™) /.Lo+4TrB ln(AL) + A+ A In A+ c3, (5)
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with ¢; constants, and comparing it with the coefficient e of the second term (proportional to (0)?),

2 2

Meff = MO — % / (;i,n,k)z |:3 - [Lokg(flcgk“] = po + E;IE %g‘ In(AL) + caA* + cs. (6)
The above expressions differ from each other by positive powers of the cutoff A. Since the covariance of
the theory implies 7 = pefr, two factors were added to the energy, in order to correct Eq. (6). The first
one corresponds to the Faddeev-Popov determinant associated with fixing the gauge. In the Monge gauge, its
contribution is proportional to the cutoff A. The second (more ad hoc) factor introduces a nonlinear correction
to the integration measure in the partition function. It accounts for the difference between an infinitesimal
surface element on the membrane and its projection on the reference plane. This second correction factor, too,
contributes only with positive powers of the cutoff. Added to the first one, it leads to the equality fesr = 7,
which is the main result of Ref. [18].

Motivated by these problems, and by the renewed interest in the subject, we study the role of thermal
fluctuations in a more general approach. Employing a derivative expansion [19], we calculate the full effective
energy functional produced by Gaussian fluctuations for an arbitrary background configuration, maintaining the
full nonlinear structure of the energy at all intermediate steps.

The mean curvature in the Monge parametrization reads

H=3 N=3d,N,, N
where the summation is over the first two components only (u = 1,2); N is the unit normal to the surface,

1
N=oeoe—-—— (—-01¢,— 0, 1), 8
1+(8q§)2( 1@, —rh, 1) (8)

and the surface elements are

dS = d’x /1 + (d)?, 9

so that the first two terms of the energy (1) read explicitly

(o > ko[ (0%4) 0u$0,40u0r$9° (0,00,¢3,0,8)*
Fal9) = [ & /T {’“‘°+2[1+(a¢>2 iraem T nzesn |0 1Y

Physically, s corresponds to the chemical potential specifying the exchange of molecules between the (in-
compressible) membrane and its aqueous environment.

The main purpose of this note is to show that the ultraviolet divergent parts of the one-loop corrections
induced by thermal fluctuations are of precisely the same form as in (10), and in particular that the three terms
in the curvature energy renormalize in the same way, resulting in an overall renormalization of o alone.

To apply the derivative expansion we write the partition function as a functional integral over the displacement
field,

Z=/D¢6XP(—BE0), (11)

with each field configuration weighted with a Boltzmann factor. Fixing a gauge is generally accompanied
by a Faddeev-Popov determinant appearing in the measure of the functional integral. Following Ref. [20]
we adopt dimensional regularization to handle momentum integrals which diverge in the ultraviolet. This is
common practice in the technically closely related nonlinear sigma model. The great advantage of dimensional
regularization over regularization with a momentum cutoff A ~ 1/a is that terms diverging with a strictly
positive power of A are suppressed. As a result, both the Faddeev-Popov determinant corresponding to the
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Monge gauge and the second correction factor introduced in Ref. [18], which contain only positive powers of
the cutoff, are unity in dimensional regularization, and the difficulties addressed in that reference are avoided.
Only logarithmic divergences show up as poles in €, where € = 2 — D, D being the dimension of the membrane.
The connection between the two types of regularization is

1 — In(AL) , (12)
€

with the linear size L of the membrane representing the relevant long-distance scale. The rationale for using
dimensional regularization is that contributions to the effective energy with strictly positive powers of the
ultraviolet cutoff are connected to 8® (x = 0). These highly local terms are uninteresting at large length
scales {21,22].

In the one-loop approximation, the exponent in (11) may be expanded up to second order around a back-
ground configuration @(x) extremizing Ey. A nontrivial background requires the presence of an extra source
term. For brevity, this term will not be written down explicitly when setting 6E/8® = 0. The resulting integral
is Gaussian and yields an effective energy

8% (BEo)
84 (x)66(¥) |y

where the expression in square brackets corresponds to the matrix of second functional derivatives of Ey and
the trace Tr stands for the trace of this matrix, i.e., the integral f d?x over space, as well as the integral
Jd%k/(27r)? over momentum [19].

The one-loop correction E;[2] to the energy will now be calculated in a derivative expansion for a nearly
flat, but arbitrarily tilted background configuration. The expansion has the general form

E[®@] = Eo[P] + Ei[P] = Eo[ @] + ﬁTrln [ ] , (13)

E\[®] = /dzx[V(vn + Z' (V) 0V + 22, (VW) 3uVedo Ve + 25,5, (VA)8u VOV + -1, (14)

where we introduced the abbreviation V, = 9,®, while V, Z, Zi,,, and Zf“,,,p are functions of V,, to be
determined. Following Ref. [19], we set V,(x) = 17# + v, (x), where V# denotes the constant part of V,(x),

and expand Eq. (14) in powers of v, (x) and its derivatives, to obtain
aV(VA)U N 162V (W)
av, “ 24V,

E[Vi+ 4] =/d2x[V(V,\) + vy + ZH W) (3,0,)2

+ Z2,(VA) 3,000V + 2y (VA) 900050, + - ] , (15)

with space-independent V(V,) and Z(V,)’s. These functions will now be extracted from the expansion of the

Tr In in (13) up to quadratic terms in v, and d,v,.
The functional derivatives in (13) are calculated using the Euler-Lagrange formula

5FLp]  of af of
= = — 9, ——o 0,0, —— cee,
56(x) b a(oud) T i) (16)

with F[¢] = [d°x f(¢,3,¢,9,0,6,...). To keep track of the many terms appearing in the resulting expression
we have used the algebraic computer program FORM [23].

We consider first the renormalization of the surface tension. Since the energy density +/1 + V2 does not
contain derivatives of V,,, we may set v, (x) to zero and consider E| [Va] only,

BE Vil = —iTrin(1+ V) + iTrIn[G™'(p)] . (17)
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Here, G~!(p) denotes the inverse propagator,

G (p) = (po + kop?)P* — (po + 2kop®) (T - p)* + ko(U - p)*, (18)

where U, is the constant vector

[]‘L=L (19)

\/1+V2'

In dimensional regularization, the first term at the right-hand side of (17) is zero. To evaluate the remaining
Trln, we apply a standard trick and first differentiate (17) with respect to uo to obtain

IE( [l 1 p*— (U p)?
E1lVal | 1 — e, (20)
Iiro 28 [ (mo+ xop?)p? — (p0 + 2x0p?) (U - p)? + ko (U - p)
where p, = —id,. Because the integrand contains no space-dependence, the spatial part of the trace in (20)
yields an area factor A = [ dPx, and we are left with the momentum integral
SE\[W] _ A [ d°k [ K — (U k)? ] 2N
dpo 28 (2m)P [ (uo+ Kok?) k2 — (po + 2k0k?) (U - k)2 + ko (U - k)* |

Being interested only in the ultraviolet divergent terms, we obtain, in dimensional regularization,

aEl[VA] - 1 l dzx‘/1+‘72' (22)
a,u,() 471'K()B €

After integrating again with respect to uo and comparing the result with (14), we find (up to an irrelevant
additive constant)

V(VA)=L1\/1+V2 £ l\/1+(z9<1!>)2, (23)

47BkKy € = 47 Bky €

where we replaced V, with the full background field V)y(x), to obtain the first term in (14). Note that this
one-loop correction is precisely of the same form as the surface term contained in the original energy expression
(1). This term can consequently be combined with the original one by introducing the renormalized tension

Meﬁ=ﬂo+#":—zé- (24)
This result, corresponding to @’ = 1 in (4), is in agreement with Refs. [8,17], but disagrees with Refs. [7,9]
where the value o’ = 3 was obtained. To understand the differences, we note that in these last two references,
the energy (1) with po =0 was used instead. That is, the renormalization of the surface tension calculated by
these authors was generated solely by the curvature terms. However, the surface term also contributes. In fact, it
generates a contribution with o’ = —2, which, together with the contribution obtained from the curvature terms,
results in the value @’ = 1. This is also the value obtained in Ref. [18], as can be seen by disregarding the
terms proportional to positive powers of A in Eq. (5) and using the relation (12). There, the covariance of the
first two terms in the expansion of the surface energy is assured by introducing correction factors proportional
to positive powers of the cutoff. Our result, based on dimensional regularization where terms with positive
powers of the cutoff are suppressed, proves the covariance of all terms in the expansion of the surface energy
since the full expression has been maintained.
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We continue to investigate the renormalization of the bending rigidity. Since the three terms involved contain
derivatives of the background field V,, we now have to employ the derivative expansion. As a first step, we
Taylor expand the logarithm in (13) as

BE\[V) + va(x)] = BE\[Va] = {Trin[1 + G(p) A(x, p)]
= 3Tr[G(p) A(p, x)] — {Te[G(P) A(x, p)G(p) A(xX, p) ] + - - -, (25)

where G(p) is the propagator defined in (18) and A(x,p) contains the x-dependent terms obtained from
functionally differentiating Ey twice, setting 3,#(x) = V,(x) =V, + v,(x) and expanding up to second order
in v, and d,v,.

The first term in (25) can be calculated in a similar fashion as V(V,). In the second term, all momentum
operators have to be moved to the left [19], by repeatedly applying the identity

fpug(x) = (py +1id,) f(x)g(x), (26)

where f(x) and g(x) are arbitrary functions and the derivative d,, acts only on the next object to the right,
while the derivative p,, acts on everything to the right.
The typical momentum integrals showing up at the one-loop order are of the form

de g km+D~l—2n infrared,
fn = (2m)P kG (k) ~ /dk kmHP=1=4 yltraviolet, 27

with m,n > 0. They diverge in the infrared when m + D — 1 — 2n < —1, and in the ultraviolet when
m+ D —1—4n > —1. For D =2 these conditions become m — 2n < —2, m — 4n 2> —2, respectively, and the
two types of divergences are seen to be separated by a wedge of finite integrals in the (m, n)-plane starting at
(-2,0).

After a tedious and lengthy calculation, involving of the order of 10* terms, done with help of a program
written in FORM [23], we obtained the divergent terms to second order in derivatives of the field v,

BE([V) + ua] _)BEI[VA]-_—/de{ Mo 1 [ Vu 4] (( Suv + AL )quu}

477"(02 (1+‘72)1/2 U/‘ 5 l_+_‘72)l/2 (1+V2)3/2
31 1 2 V#Vp Vﬂvy V(;Vp
T 8me [m(@dlﬂ) - ZW 0,000 + W 340,900,
L LB AAAR
T Ar e | 711 2\32 Oglyg — ———— » .
47 €; [(1 + V2)3/2 0y UpOg 0 (117252 Fulydalp (28)

In deriving this expression we also encountered infrared divergences. These are regularized in the same scheme
as used to regularize the ultraviolet divergences. To distinguish the two we gave epsilon an index ir in case of an
infrared divergence. We leave the discussion of the infrared divergences to the next paragraph, and first analyze
the uitraviolet ones. Comparing (28) to (15) with V(V)) given by (23), we see that the terms proportional
to o precisely correspond to the first two terms at the right-hand side of (15), as it should be. Moreover, we
conclude that the Z-functions in (15) are given by

- 31 1 = 1 .V
Zl V)= — - _ , ZZ V) = = I‘_V ,
(V) 8mBe (1+ V2)1/2 wr (V) 4mBe (1 + V2)3/2
. 31 v,WV,V,
ZS V) = — I V_(] P ‘
/,va( A) 877‘36(14—\/2)5/2 (29)
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By replacing the constant V) with the full background field V.(x) =d,P(x), we obtain for the divergent parts
of the expansion (14) the explicit form

BE|[®] = —1—/d2x V14 (60)2
4mexy

{Mo— 3_"2[ (8°®)? 3,D3,93,,9, P3P (a#qbaycpa#ap)z]}
2

T+ 002 " (1+ 6002 1+ (a0)] (30)

We sce that the thermally generated terms at the one-loop level are precisely of the same form as those present
in the original energy expression (10). In addition, the relative weights of the curvature terms produced by
the fluciations are the same as those fonnd there. They can therefore e combined with the origing yerms by
introducing the renormalized rigidity
31
K ——— 31
eff = Ko prpm B e’ 3

whose value is in agreement with Refs. citepeliti,forster,klein1,fluid,gompper.

As seen in (28), the one-loop corrections seem to have introduced infrared divergences in the theory. A
closer inspecnon reveals that the mfrared-divergent copribndons 2 siem Srom e surface energy term i 11D),
so that it suffices to analyze the one-loop corrections to the truncated energy

E(’)=p,0/d2x\/1 + (d¢)2. (32)

Infrared divergences in this model have previously been studied in Ref. [24], where they were shown to
disappear for an infinitely small dimension D of the membrane to all orders in D. In our calculation the
problem arises for D = 2 — e. When calculating the effective action, we expand (32) around the background
field ¢ exwemizing £, i2.,

SE),
o |4

which reads explicitly

-0, (33)

PR _ 3pP3,P3,0,®
[T+ (a@)2]1/2 [1+ (30)?132

The presence of the implicitly assumed sources turns this equation in a nontrivial one. Rewriting d,&(x) =
V. + v, (x), expanding to linear order in v, and substituting the resulting expression in (28), we see the
mfrared divergences to vanish for a two-dimensional membrane.

In conclusion, we have demonstrated that all logarithmically divergent one-loop corrections induced by
thermal fluctuations are precisely of the same form as in the original energy (10), so that they can be removed
by a renormalization of the surface tension and bending rigidity.

=0. (34)
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