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Abstract

We derive the coupling to torsion of massive electroweak vector bosons generated by the Higgs mechanism. q 1998
Elsevier Science B.V. All rights reserved.

w x1. In the Poincare gauge formulation 1 of Ein-´
stein-Cartan gravity, the electromagnetic field cannot
couple minimally to torsion since this would destroy
gauge invariance. If torsion does not propagate, so
that the torsion field is confined to exist only inside
of elementary particles, this would not matter, since
the propagation of photons within matter is much
stronger modified by electromagnetic dispersion and
absorption than by any conceivable gravitational tor-
sion field. In the physically only interesting case of a
propagating torsion, however, a non-gauge-invariant
coupling would have the fatal consequence that the
photon would become massive. Since the photon
mass can be estimated experimentally to be smaller
than 3=10y27 eV, this would lead to the conclusion
that the torsion field in the universe is so small that
there is no need for contriving theories for its possi-
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ble properties, or that the photon does not couple to
torsion via the affine covariant derivative.

Massive vector bosons, on the other hand, such as
the r-meson, whose wave function has a large ampli-
tude in a state of a quark and an antiquark in an
s-wave spin triplet channel, should certainly couple
to torsion via their quark content.

By analogy with photons, the fundamental action
describing electroweak processes should contain no
minimally coupled torsion in the gradient terms of
the bare vector bosons W and Z. However, these
particles acquire a mass via the Meissner-Higgs ef-
fect which makes them essentially composite parti-
cles, their fields being a mixture of the original
massless vector fields and the Higgs fields. By anal-
ogy with the massive r-vector field, we could expect
that also the massive electroweak vector fields cou-
ple to torsion, and the question arises how the Meiss-
ner-Higgs effect is capable of generating such a
coupling.

In general, we do not know the answer to this
problem. In this note we would like to show how
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such a coupling does arise if the torsion is of the
gradient type

1l l lS x s d E s x yd E s x . 1Ž . Ž . Ž . Ž .mn m n n m2

w x2. In the standard Poincare gauge formulation 1´
of gravity it is immediately obvious that a mini-
mally-coupled scalar Higgs field with an action

1
4 mn < <'w xAA f s d x yg g = f= fH m nž 2

m2 l
2 22< < < <y f y f 2Ž ./2 4

cannot equip a previously uncoupled massless vector
field with a torsion coupling. For simplicity, we
consider only a simple Ginzburg-Landau-type theory
with a complex field to avoid inessential complica-
tions. As usual, gsdet g denotes the determinantmn

Ž .of the metric g x , and = is the electromagneticmn m

covariant derivatives = sE y ieV . The square massm m m

is negative, so that the Higgs field has a nonzero
< < 2 2expectation value with f sym rl. From the

derivative term, the vector field acquires a mass term
2 < < 2 me f V V r2, leading to the a free part of them

vector boson action
2 21 e m

4 mn m'w xAA V s d x yg y F F y V V ,H mn nž /4 2l

3Ž .

where F the covariant curl F 'E V yE V . Ofmn mn m n n m

course, the covariant curl of the nonabelian elec-
troweak vector bosons would also have self-interac-
tions, which can however be ignored in the present
discussion since we are only interested in the free-
particle propagation.

Since the Meissner-Higgs effect creates the mass
of the vector bosons by mixing the uncoupled bare
vector boson with the scalar Higgs field, it is obvious
that the massive vector bosons can couple to torsion
only if the scalar Higgs field has such a coupling.

w xIndeed, it has recently been emphasized 2,3 that,
w xcontrary to common belief 4 , trajectories of scalar

particles should be experience a torsion force. This
conclusion was reached by a careful reinvestigation
of the geometric properties of the variational proce-
dure of the action. Taking into account the fact that
in the presence of torsion parallelograms exhibit a

closure failure, the variational procedure required a
w xmodification of this procedure 2,5,6 which led to

the conclusion that scalar particles should move along
autoparallel trajectories rather than geodesic ones as
derived from a minimally coupled scalar field action
w x4 . The modification of the variational procedure
was suggested to us by the close analogy of spaces

w xwith torsion with crystals containing defects 7 .

3. So far, the classical trajectories have been
quantized consistently with unitarity of time evolu-

Ž .tion only for a gradient torsion 1 , and for a com-
w xpletely antisymmetric torsion 2 . In the case of

gradient torsion the Schrodinger equation turns out¨
to be driven by the Laplace operator g mn D D ,m n

where D is the covariant derivative involving them

full affine connection G l, including torsion. Itmn

differs from the Laplace-Beltrami operator in tor-
y1

mn< < < <( (sion-free spaces D' g E g g E by a termm n
nl Ž n .y2S E sy3 E s E . This operator, however, isl n n

hermitian only in a scalar product which contains a
factor ey3 s. 2

In the case of totally antisymmetric torsion, the
two Laplace operators are equal and the original
scalar product ensures hermiticity and thus unitarity
of time evolution. Such a torsion drops also out from
the classical equation of motion, so that autoparallel
and geodesic trajectories coincide. For this reason we
shall continue the discussion only for gradient tor-
sion.

The gradient torsion has the advantage that it can
be incorporated into the classical action of a scalar
point particle in such a way that the modification of

w xthe variational procedure found in Refs. 5,6 be-
comes superfluous. The modified action reads for a

w xmassive particle 8

s Ž x . m nw xAA x symc dt e g x x xŽ . . ˙ ˙(H mn

symc ds es Ž xŽ s.. , 4Ž .H
where t is an arbitrary parameter and s the proper
time. From the Euler-Lagrange equation we find that

2 w xSee Section 11.4 in Ref. 2 . Note that the normalization of
the s-field is normalized differently from the present one by a
factor 2r3. There we introduced d via the relation S n sE s ,mn m

n Ž .whereas here S s 3r2 E s .mn m
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for tss, the Lagrangian under the integral is a
constant of motion, whose value is, moreover, fixed
by the mass shell constraint

s Ž x . m nLse g x x x '1, tss. 5Ž . . Ž .˙ ˙( mn

The necessity of a factor ey3 s Ž x . in the scalar prod-
w xuct discovered in Ref. 2 became the basis of a

w xseries of studies in general relativity 9,10 . In the
latter work, the action of a relativistic free scalar
field f was found to be

4 y3s'w xAA f s d x yg eH

=
1 m2

2mn y2 s< < < <g = f= f y f e . 6Ž .m nž /2 2

The associated Euler-Lagrange equation is

D D mfqm2ey2 s Ž x .fs0, 7Ž .m

Ž . i EE Ž x .whose eikonal approximation f x fe yields
Ž . w xthe following equation for the phase EE x 10 :

2 s Ž x . mn 2e g x E EE x E EE x sm . 8Ž . Ž . Ž . Ž .m n

Since E EE is the momentum of the particle, them

replacement E EE™mx shows that the eikonal Eq.˙m m

Ž . Ž .8 guarantees the constancy of the Lagrangian 5 ,
thus describing autoparallel trajectories.

4. Apart from the factor ey3 s Ž x . accompanying
the volume integral, the s-field couples to the scalar
field like a dilaton, the power of eys being deter-
mined by the dimension of the associated term. If we

Ž .therefore add to the free-field action 6 a quartic
self-interaction to have a Meissner-Higgs effect, this
self-interaction will not carry an extrafactor eys , so
that the proper Higgs action in the presence of
gradient torsion reads

1
4 y3s mn < <'w xAA f s d x yg e g = f= fH m nž 2

m2 l
2 2y2 s 2< < < <y f e y f 9Ž ./2 4

If m2 is negative, and the torsion depends only
weakly on spacetime, the Higgs field has a smooth
vacuum expectation value

m2
2 y2 s< <f sy e . 10Ž .

l

The smoothness of the torsion field is required over
a length scale of the Compton wavelength of the
Higgs particle, i.e. over a distance of the order 1r20
GeV f10y15 cm. For a torsion field of gravitational
origin, this smoothness will certainly be guaranteed.

Ž .From the gradient term in 9 we then extract in the
gauge fs real the mass term of the vector bosons

14 y3s 2 y2 s Ž x . m'd x yg e m e V V , 11Ž .H V m2

where

e2
2 2 2m sy m , m -0. 12Ž .V

l

Taking the physical scalar product in the presence of
torsion into account, we obtain for the massive vec-
tor bosons the free-field action

4 y3s'w xAA V s d x yg eH
= 1 Ž .mn 2 y2 s x my F F qm e V V . 13Ž .Ž .mn V n4

The appearance of the factor ey2 s in the mass term
guarantees again the same autoparallel trajectories in
the eikonal approximation as for spinless particles in

Ž .the action 6 .
Note that the scalar product factor ey3 s Ž x . im-

plies a coupling to torsion also for the massless
vector bosons which is fully compatible with gauge
invariance. Due to the symmetry between Z-boson
and photon, this factor must be present also in the
electromagnetic action.

5. Let us end by remarking that autoparallel tra-
jectories may be considered as a manifestation of a
nonholonomic mapping principle proposed in Refs.
w x3,2 which transforms classical equations of motion
from flat space to spaces with curvature and torsion.
This principle was an essential tool for finding the
solution of a completely different fundamental prob-

w xlem, the path integral of the hydrogen atom 2 .
Autoparallel trajectories are also the most natural

trajectories if a space with torsion is constructed by a
nonholonomic embedding a Riemann-Cartan space

w xin a flat space 11 . The are, moreover, the only
trajectories which do not violate the uniÕersality
principle of spin and angular momentum in the
coupling of fundamental particles to torsion. As was

w xshown in Ref. 12 , this principle greatly restricts
such couplings, since the spin of a fundamental
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particle is always a fluctuating mixture of orbital and
spin angular momenta of its constituents. This mix-
ture cannot be resolved in a representation of the
Poincare group for the composite particle, since its´
states are labeled by the quantum numbers s,s of3

the total spin. This blindness will be inherent in any
gauge theory of this group, if it is to be compatible
with the physics of elementary particles, as long as
we do not possess an ultimate theory of these parti-
cles, which only string people claim to possess, in
spite of a complete disagreement with spacetime
dimensions and particle spectra of the world in which
we live.
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