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Abstract

Ž .We develop a method for extracting accurate critical exponents from perturbation expansions of the O n -symmetric
nonlinear s-model in Ds2qe dimensions. This is possible by considering the e-expansions in this model as strong-cou-

Ž . Ž .pling expansions of functions of the variable ´'2 4yD r Dy2 , whose first five weak-coupling expansion coefficients˜
Ž . 4of powers of ´ are known from ´-expansions of critical exponents in O n -symmetric f -theory in Ds4y´ dimensions.˜

q 2000 Published by Elsevier Science B.V. All rights reserved.
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Ž .1. Critical exponents of the O n -universality class
can be calculated with high accuracy from standard
resummation procedures of renormalization group

4 w xfunctions of f -field theory 1,2 . For the classical
Heisenberg model, where ns3, the critical expo-
nent n governing the divergence of the coherence

< <ynlength as jA TyT has been calculated fromc

seven-loop perturbation expansions in three dimen-
w x w xsions 2 as ns0.7073"0.0030 1 , whereas five-

w xloop expansions in Ds4y´ dimensions 3,4 ex-
w xtrapolated to ´s1 give ns0.7050"0.0055 1 .

Apart from the initial expansion coefficients, the
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resummation procedures incorporate information on
the large-order growth of the coefficients obtained

w xfrom semiclassical considerations 5,6 . Results very
close to the above numbers were recently obtained

4 w xfrom a novel strong-coupling f -theory 7–10 in
w x w xDs3 9,10 as well as 4y´ dimensions 12–14 .

It is generally accepted that, as a consequence of
the uniÕersality hypothesis of critical phenomena of
all systems with equal Goldstone bosons, the same
critical exponents should be obtainable from renor-

Ž .malization group studies of O n -symmetric nonlin-
ear s-models in Ds2qe dimensions at es1, if
the second-order character of the transition is not
destroyed by fluctuations. These conditions restrict

Ž .the comparison to n)2. For ns1 Ising case ,
Žthere are no Goldstone bosons, and for ns2 XY-

.model , the transition is of infinite order, for which
the divergence of the correlation length with temper-
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< <ynature cannot be parametrized like jA TyT , asc

shown by Kosterlitz and Thouless.
Unfortunately, the e-expansions of the nonlinear

s-models have, up to now, remained rather useless
for any practical calculation, due to their non-Borel

w xcharacter 15 . This has led some authors to doubt
the use of such expansions around the lower critical

w xdimension altogether 16 . Basis of these doubts is
the increasing relevance of ignored higher powers of

w xthe derivative term in the calculations 17 . Such a
situation would be quite unfortunate, since it would
jeopardize other interesting theories which depend
on similar relationships, such as Anderson’s theory

w xof localization 18 .
Fortunately, the counter-arguments are not com-

pletely convincing since they involve an interchange
of limits in the analytic continuation in e and the

w xincrease of the number of derivatives 19 , so that
hope remains. The purpose of this note is to confirm
this hope and to lend further support to the intimate
relationship of e- and ´-expansions. This is done by
determining from a combination of the two expan-
sions an accurate critical exponent n for the classical
Heisenberg model for all dimensions 2FDF4.

2. So far, the e-expansions of ny1 and the anoma-
lous dimension h have been calculated up to the

4 w xpowers e 15,20–23 :

e 2 e 3
y1n e seq qŽ .

ny2 2 ny2Ž .
2y 30y14qn q 54y18n z 3Ž . Ž .

=
e 4

q . . . , 1Ž .34 ny2Ž .
e ny1 e 2 n ny1 e 3Ž . Ž .

h e s y qŽ . 2 3ny2 ny2 2 ny2Ž . Ž .
2y ny1 y6q2 nqnŽ .

4e
2q y12qnqn z 3Ž . Ž . 44 ny2Ž .

q . . . . 2Ž .
The singularity at ns2 reflects the above-discussed
restriction of the upcoming considerations to n)2.
When evaluated at es1, the first series yields for

Ž .the three-dimensional O 3 -model the diverging suc-
y1 Ž .cessive values n s 1, 2, 2.5 ,3.25 . The often-em-

ployed Pade approximations do not help, with the´
w xbest of them, the 1,2 -approximation, giving the too

large value ns2. So far, the only result which is not
too far from the true value has been obtained via the

w xPade–Borel transform 15´
e t

w1 ,2xP e ,t s , 3Ž . Ž .2 21ye tr2qe t r6

from which one obtains the e-dependent inverse
critical exponent

`
y1 yt w1,2xn e s dt e P e ,t . 4Ž . Ž . Ž .H

0

Its value at es1 is ny1 f1.252, corresponding to
nf0.799, which is still considerably larger than the
accurate value 0.705. The other Pade–Borel approxi-´
mants are singular and thus of no use. See Fig. 1 for
plots of the integrands.

A direct evaluation of the series for the other
critical exponent, the anomalous dimension h, yields

Ž .the successive values 2,y2, 4,y5 , which are com-
pletely useless. Here the nonsingular Borel–Padé

w x w x w xapproximations 2,1 , 1,2 , and 1,1 yield 0.147,
0.150, and 0.139, rather than the correct value 0.032.

3. The remedy for these problems comes from a
w xcombination of the theory developed in Refs. 7–10

w xwith a procedure developed in Ref. 11 . The theory
allows us to extract the strong-coupling properties of
a f 4-theory from perturbation expansions. In partic-
ular, it renders the power behavior of the renormal-
ization constants for large bare couplings g , and0

from this all critical exponents of the system. By
using the known expansion coefficients of the renor-
malization constants in three dimensions up to six
loops, we were able to derive extremely accurate
values for the critical exponents. The method is a

w xsystematic extension to arbitrary orders 24 of the
Feynman–Kleinert variational approximation to path

w x 1integrals 25 . For an anharmonic oscillator, this
w xso-called Õariational perturbation theory 28 yields

1 A similar approach has been pursued independently by Refs.
w x26,27 .



( )H. KleinertrPhysics Letters A 264 2000 357–365 359

Ž . w x w x w x w x w x w xFig. 1. Integrands of the Pade–Borel transform 4 for the Pade approximants 1,3 , 3,1 , 2,2 and for 1,1 , 2,1 , 1,2 at es1. Only the´ ´
last is integrable, yielding ny1 f1.25183f1r.79883.

expansions which converge uniformly in the cou-
pling strength and exponentially fast, like

Ž 1r3.exp yconst=N in the order N of the approxi-
w xmation, as was observed in 29,30,28 and proved in

w x 231 . The extension to field theory was achieved in
w xRefs. 7,8 , and showed to same type of convergence,

but with the fractional power 1r3 replaced by the
irrational power 1yv, where v is the critical expo-
nent governing the approach to scaling.

This theory is combined with the procedure of
w xRef. 11 which allows us to interpolate variationally

functions for which we know strong- and weak-cou-
pling expansions. The resummation to be performed
will be based on rewriting the above e-expansions in
such a way that they may be considered as strong-
coupling expansion of functions, whose weak-cou-
pling expansions are provided by power series ex-
pansion in powers of ´s4yD, which are known
from f 4-theory in Ds4y´ dimensions. In this
way we shall be able to derive accurate critical

y1 Ž .exponents n from the non-Borel expansion 1 .

4. Let us briefly recall the interpolation procedure
w x11 by which a divergent weak-coupling expansion

2 A convergence proof for the anharmonic oscillator which is
w x w xcompletely equivalent to our results in 31 was given by 32 .

Predecessors of these works which failed to explain the exponen-
tially fast convergence in the strong-coupling limit observed in

w x w xRef. 30 are Refs. 33–37 .

in some variable g of the type0

N
nE g s a gŽ . ÝN 0 n 0

ns0

can be combined with a strong-coupling expansion
of the type

M
mpr q y2r qE g sg b g .Ž . Ž .ÝM 0 0 m 0

ms0

w xPreviously treated examples 11 were the anhar-
monic oscillator with parameters ps1r3, qs3 for
the energy eigenvalues, and the Frohlich polaron¨
with ps1, qs1 for the ground-state energy and
ps4, qs1 for the mass. As described in detail in
w x28 , the first step is to rewrite the weak-coupling
expansion with the help of an auxiliary scale parame-
ter k as

nN g0pE g sk a 5Ž . Ž .ÝN 0 n qž /kns0

where k is eventually set equal to 1. We shall see
below that the quotient prq parametrizes the lead-
ing power behaÕior in g of the strong-coupling0

expansion, whereas 2rq characterizes the approach
to the leading power behavior. In a second step we
replace k by the identical expression

2 2 2'k™ K qk yK 6Ž .
containing a dummy scaling parameter K. The series
Ž .5 is then reexpanded in powers of g up to the0

order N, thereby treating k 2 yK 2 as a quantity of
order g . The result is most conveniently expressed0
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in terms of dimensionless parameters g 'g rK qˆ0 0
Ž 2 .and s' 1yk rg , where k'krK. Then theˆ ˆ ˆ0

Ž .replacement 6 amounts to
1r2

k™K 1ys g , 7Ž .Ž .ˆ0

so that the reexpanded series reads explicitly
N

npW g ,s sK ´ s g , 8Ž . Ž .Ž . Ž .ˆ ˆÝN 0 n 0
ns0

with the coefficients
n pyqj r2Ž . ny j

´ s s a ys . 9Ž . Ž . Ž .Ýn j ž /ny j
js0

For any fixed g , we form the first and second0
Ž .derivatives of W g , K with respect to K , calcu-N 0

late the K-values of the extrema and the turning
points. If there is a unique extremum, this supplies
us with an optimal scaling parameter K . If noN

extremum exists, we use the turning point to deter-
mine K . If there are more than one extremum orN

turning point, we take the smallest of these as K .N

This procedure is called optimization. The function
Ž . Ž .W g 'W g , K constitutes the Nth varia-N 0 N 0 N

Ž . Ž .tional approximation E g to the function E g .N 0 0

It is easy to take this approximation to the
strong-coupling limit g ™`. For this we observe0

Ž .that 8 has the scaling form

W g , K sK p w g ,k 2 . 10Ž . Ž .ˆ ˆŽ .N 0 N 0

For dimensional reasons, the optimal K increasesN

with g like K fg1r qc , so that g scyq andˆ0 N 0 N 0 N

ss1rg scq remain finite in the strong-couplingˆ0 N

limit, whereas k 2 goes to zero like 1rˆ
w Ž q.1r q x2c g rk . HenceN 0

W g , K fg pr qc p w cyq ,0 . 11Ž . Ž .Ž .N 0 N 0 N N N

Here c plays the role of the variational parameterN

to be determined by applying the optimization pro-
p Ž yq .cess described above to the function c w c ,0 .N N N

The full strong-coupling expansion is obtained from
Ž 2 . 2the Taylor series of w g ,k in powers of k sˆ ˆ ˆN 0

Ž q .y2r qg rk g , which yieldsˆ0 0

y2rqg0pr qW g sg b g qb gŽ . Ž . Ž .ˆ ˆN 0 0 0 0 1 0 qž /k

y4rqg0
qb g q . . . 12Ž .Ž .ˆ2 0 qž /k

with

1
Ž .n 2 nyp rqŽ .b g s w g ,0 g , 13Ž .Ž . Ž .ˆ ˆ ˆn 0 N 0 0n!

Žn.Ž 2 .where w g ,k is the nth derivatives ofˆ ˆN 0
Ž 2 . 2w g ,k with respect to k . Explicitly:ˆ ˆ ˆN 0

N lyn1 pyqj r2Ž .lqnŽn.w g ,0 s y1 aŽ .Ž .ˆ Ý ÝN 0 j ž /ly jn! ls0 js0

=
jly j yg . 14Ž .Ž .ˆ0ž /n

Ž .The optimal expansion of the energy 12 is obtained
by expanding

y2rq y4rqg g0 0
g sg qg qg q . . . ,ˆ0 0 1 2q qž / ž /k k

15Ž .

where g scyq , and finding the optimal extremum0 N
Ž .or turning point in the resulting polynomials of
g ,g , . . . . In this way we obtain a systematic1 2

strong-coupling coupling expansion in powers of
g rk q y2r q

. This is done as follows: We firstŽ .0

optimize the leading strong-coupling coefficient
Ž .b g in g , and identify the optimal position byˆ ˆ0 0 0

Ž . Ž .g . Optimizing W g with the expansion 15 , in0 N 0

g , g , . . . , yields for the parameters psy2,qs21 2
Ž .at the coefficients g ,g , . . . and optimal b g ’sˆ1 2 n 0

by the equations listed in Table 1.
w xIt was demonstrated in 11 how one can now find

a variational perturbation series for functions for
which one knows N weak-coupling and M strong-
coupling expansion coefficients. We must merely
extend the set of of coefficients a , . . . ,a by M1 N

unknown ones a , . . . ,a , and determine theNq1 NqM

latter via a fit of the resulting strong-coupling coeffi-
cients b , . . . ,b to the known ones.0 My1

5. This interpolation procedure will now be ap-
Ž .plied to the perturbation expansion 1 in 2qe

dimensions, considering it as the strong-coupling
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Table 1
Ž . Ž . yq Ž .Equations determining the coefficients b g in the strong-coupling expansion 12 and the associated g 'c d in 15 from theˆn 0 i n i

Ž .functions b 'b g and their derivatives. For brevity, we have suppressed the argument g in these functions.n n 0 0

n b ygn ny1

X XX X XX1 22 b qg b q g b b rb2 1 1 1 0 1 02

X X XX XX X XX XX1 1 12 3 Ž3. 2 Ž3.Ž .3 b qg b qg b qg g b q g b q g b b qg b q g b rb3 2 1 1 2 1 2 0 1 1 1 0 2 1 1 1 0 02 6 2

X X X XX X XX XX1 2 Ž3.Ž . Ž4 b qg b qg b qg b q g qg g b b qg b qg b qg g b4 3 1 2 2 1 3 2 1 3 0 3 2 1 1 2 1 2 02

XX XX XX1 1 1 1 1 12 2 Ž3. 3 Ž3. 4 Ž4. 2 Ž3. 3 Ž4..qg g b q g b q g g b q g b q g b q g b q g b rb1 2 1 1 2 1 2 0 1 1 1 0 1 1 1 0 02 2 6 24 2 6

Ž .expansion of a series in the variable ´s2 4yD r˜
Ž .Dy2 s
Ž . Ž .4 1yer2 res´r 1y´r2 :

ny4 ny4
y1 y1 y2 y3n ´ s4 ´ y8 ´ q16 ´Ž .˜ ˜ ˜ ˜

ny2 ny2

y32 52q108z 3Ž .�
´y4˜

2y 16q36z 3 nqnŽ . 4 3ny2Ž .
q . . . . 16Ž .

The variable ´ plays the role of the variable g in˜ 0

the general formulas of the last section. The weak-
y1Ž .coupling expansion of n ´ in powers of ´ can be˜ ˜

obtained directly from the ´-expansions of Refs.
w x3,4 , and has for ns3,4,5,1, the numerical form

ns3: ny1 s2y0.45455 ´q0.071375 ´ 2˜ ˜
q0.15733 ´ 3 y0.52631 ´ 4 q . . . ,˜ ˜

17Ž .

ns4: ny1 s2y0.5 ´q0.0833333 ´ 2˜ ˜
q0.147522 ´ 3 y0.499944 ´ 4˜ ˜
q1.47036 ´ 5 q . . . , 18Ž .˜

Table 2
Coefficients of the successive extension of the expansion coeffi-

Ž .cients in Eq. 20 for ns3 determined from Ms1, 2, 3, 4
Ž . Ž .strong-coupling coefficients 4, 8,y16, 160 of Eq. 16 .

n a a a a6 7 8 9

1 y203.827
2 y5.67653 17.6165
3 y4.25622 9.04109 y15.7331
4 y3.80331 6.87304 y10.0012 12.3552

ns5: ny1 s2y0.538462 ´q0.0955849 ´ 2˜ ˜
q0.135442 ´ 3 y0.469842 ´ 4˜ ˜
q1.34491 ´ 5 q . . . , 19Ž .˜

ns1: ny1 s2y0.333333 ´q0.0493827´ 2˜ ˜
q0.158478 ´ 3 y0.539937´ 4˜ ˜
q1.78954 ´ 5 q . . . . 20Ž .˜

Extending these series by four more terms a ´ 6 q˜6

a ´ 7 qa ´ 8 qa ´ 9, we calculate the strong-cou-˜ ˜ ˜7 8 9
Ž . Ž . Ž .pling coefficients 13 by extremizing 12 with 15 ,

Ž .after identifying g with ´ . The parameters p,q˜0
Ž .are equal to y2,2 , as follows directly from a

comparison of the strong-coupling powers

Table 3
Coefficients of the successive extension of the expansion coeffi-

Ž .cients in Eq. 20 for ns4 determined from Ms1, 2, 3, 4
Ž . Ž .strong-coupling coefficients 4, 0, 0, 221.096 of Eq. 16 .

n a a a a6 7 8 9

1 y147.508
2 y7.91064 37.1745
3 y4.59388 12.3044 y27.0837
4 y3.72613 7.47851 y12.2129 16.9547

Table 4
Coefficients of the successive extension of the expansion coeffi-

Ž .cients in Eq. 20 for ns5 determined from Ms1, 2, 3, 4
Ž . Ž .strong-coupling coefficients 8,y8r3, 16r3, 106.131 of Eq. 16 .

n a a a a6 7 8 9

1 y108.648
2 y10.1408 60.7217
3 y4.75598 15.1045 y38.9689
4 y3.57909 7.84272 y14.1142 21.6045
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Table 5
Coefficients of the successive extension of the expansion coeffi-

Ž .cients in Eq. 20 for ns1 determined from Ms1, 2, 3, 4 strong-
Ž . Ž .coupling coefficients 4,y24, 48, 3825.54 of Eq. 16 .

n a a a a6 7 8 9

1 y413.921
2 y5.25285 12.1104
3 y442759 12450066 y196950675
4 y5.7343 13.7134 y25.226 38.0976

Fig. 2. Inverse of the critical exponent n for the classical Heisen-
Ž .berg model in the O 3 -universality class. Solid curve represents

the interpolation result of fourth order. Lower dashed curves show
interpolations of first, second, and third order. Upper short-dashed
curves display, with decreasing dash length, the first three and

Ž .four terms of the e-expansion 2 , respectively. Dotted curve is
w xPade 1,2 –Borel approximations The fat dot corresponds to the´

seven-loop result in Ds3 dimensions, n s0.7073 of Refs.
w x Ž . Ž1,9,10 . The four interpolations give n ,n ,n ,n s 0.87917,1 2 3 4

.0.75899, 0.731431, 0.712152 . These are extrapolated in Fig. 3 to
infinite order, yielding n s0.695.

Ž .Fig. 3. Same plot as in Fig. 2, but for the O 4 -universality class.
Fat dot represents six-loop result in Ds3 dimensions n s0.737

w x Ž .of Refs. 7,8 . The four interpolations give n ,n ,n ,n s1 2 3 4
Ž .0.88635, 0.810441, 0.786099, 0.768565 . The extrapolation to in-
finite order shown in Fig. 7 yields n s0.735.

Ž .Fig. 4. Same plot as in Fig. 2, but for the O 5 -universality class.
There exists no Pade–Borel approximation. Fat dot represents´

w xix-loop result in Ds3 dimensions n s0.767 of Refs. 7,8 .
Ž . ŽThe four interpolations give n ,n ,n ,n s 0.89278, 0.842391,1 2 3 4

.0.820491, 0.802416 . The extrapolation to infinite order shown in
Fig. 8 yields n s0.766.

Ž .Fig. 5. Same plot as in Fig. 2, but for the O 1 -universality class
Ž .of the Ising model . Again there is no Pade–Borel approximation.´
Fat dot represents seven-loop result in Ds3 dimensions n s

w x0.6305 of Refs. 1,9,10 . The four interpolations give
Ž . Ž .n ,n ,n ,n s 0.862357, 0.665451, 2.08686, 0.729231 . Their1 2 3 4

failure to converge is illustrated graphically in Fig. 9.

Ž .Fig. 6. The four successive approximations n ,n ,n ,n s1 2 3 4
Ž . Ž0.87917, 0.75899, 0.731431, 0.712152 for ns 3 Heisenberg

. y1 .8model plotted as a function of xs M which makes them lie
a smooth parabola line with the intercept n s0.695"0.010.`

Numbers on top show extrapolated value and highest approxima-
Ž .tion in parentheses .
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Ž .Fig. 7. The four successive approximations n ,n ,n ,n s1 2 3 4
Ž .0.88635, 0.810441, 0.7860990.768565 for ns4 plotted as a
function of xs My1 .2 which puts them on a smooth parabola
with the intercept n s0.735"0.010. Numbers on top show`

Ž .extrapolated value and highest approximation in parentheses .

pr q y2r q Ž .e 1q´ q . . . with 16 . The coefficientsŽ .˜ ˜
a ,a , a , a are now determined to make6 7 8 9
Ž . Ž . Ž . Ž . Ž .b g ,b g ,b g ,b g agree with 16 . Theˆ ˆ ˆ ˆ0 0 1 0 2 0 3 0

technique of doing this is described in detail in Ref.
w x11 .

In order to see how the result improves with the
Ž .number M of additional terms in 15 , we go through

this procedure successively for Ms1,2,3,4. The
successive additional expansion coefficients for the
Ž .O n universality classes with ns3, 4, 5, 1 are listed

in Tables 2–5, respectively. The four resulting curves
y1Ž .for n ´ are shown in Figs. 2–4. For ns3, the

successive critical exponents n at ´s1 taken from
Ž . ŽFig. 2 are n ,n ,n ,n s 0.87917, 0.75899,1 2 3 4

.0.731431, 0.712152 . Their M-dependence is plotted
in Fig. 6 as a function of the variable xsMy1.8

which makes them lie approximately on a smooth
parabola intercepting the n-axis at n s0.695"`

0.010. This extrapolated value is in good agreement
with the above-quoted value f0.705 from seven-

w xloop calculations in 4y´ dimensions 1,9,10 . The

Ž .Fig. 8. The four successive approximations n ,n ,n ,n s1 2 3 4
Ž .0.89278, 0.842391, 0.820491, 0.802416 for ns5 plotted as a
function of xs My1 .2 which puts them on a smooth parabola
with intercept n s0.766"0.010. Numbers on top show extrapo-`

Ž .lated value and highest approximation in parentheses .

Ž .Fig. 9. The four successive approximations n ,n ,n ,n s1 2 3 4
Ž .0.862357, 0.665451, 2.08686, 0.729231 for ns1 plotted as a
function of xs My2 . They show no tendency of convergence
towards the known seven-loop exponent n s0.630.`

Ž . Ž .results for the other O 4 and O 5 universality
classes are displayed analogously. The respective
n-values 0.735"0.010 and 0.766"0.010 agree well
with the highest available six-loops results of Refs.
w x7,8 , which are 0.737 and 0.767.

As discussed above, the relation between the e-
and ´-expansions is expected to be restricted to
n)2, for physical reasons. It is instructive to see
that the variational interpolation method reflects this
problem at two places. First, the expansion coeffi-
cients in Table 5 shows a large irregularity for ns1.
Second, the successive approximations for ny1 in
Fig. 5 display no tendency of convergence with
increasing order M of approximation.

Ž .Finally, we plot our highest Ms4 approxima-
tions for ns3, 4, 5 together with the large-n approx-
imations for ns`, 20, 10, 6 in Fig. 10 to see the
change of the ´-behavior for increasing n, which˜
shows that the latter for ns6 is still far from the
exact curve. This can also be seen in Fig. 3 of Ref.
w x Ž w x.7 see also 8 .

Fig. 10. Comparison of ny1 from the highest approximations of
Ž .our interpolating resummation for the O n universality classes

Ž .with ns3,4,5 counting from the top , with the values obtained
2 Žfrom the 1rn-expansion to order 1rn for ns`,20,10,6 count-

.ing from the bottom . The ns6 curve is still far from the exact
one.
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Ž .For the critical exponent h, the series 2 reads in
the variable ´ :˜

´y1 ´y2˜ ˜
h ´ s y2nŽ .˜ 2ny2 ny2Ž .

´y3˜
q8n ny1 q16 ny1Ž . Ž .3ny2Ž .
= 2 2w6y2n 12ynyn z 3Ž . . Ž .

=
´y4˜

q . . . , 21Ž .4ny2Ž .
whereas the weak-coupling expansion in powers of ´̃

w xobtained from the ´-expansions of Refs. 3,4 has,
for Ns3,4,5,1, the numerical form

Ns3: hre 2 s5r242q0.0183987 ẽ

y0.0166488 e 2 q0.032432 e 3˜ ˜
q . . . , 22Ž .

Ns4: hre 2 s1r48q0.0173611 ẽ

y0.0157657e 2 q0.029057e 3˜ ˜
q . . . , 23Ž .

Ns5: hre 2 s7r338q0.0161453 ẽ

y0.0148734 e 2 q0.0259628 e 3˜ ˜
q . . . , 24Ž .

Ns1: hre 2 s1r54q0.01869 ẽ

y0.0176738 e 2 q0.0386577e 3˜ ˜
q . . . . 25Ž .

These series can again be extended by four more
terms a ´ 4 qa ´ 5 qa ´ 6 qa ´ 7, making the˜ ˜ ˜ ˜4 5 6 7

Ž .strong-coupling coefficients b ,b ,b ,b , in Eq. 130 1 2 3
Ž . Ž .calculated for Eqs. 22 – 25 agree with those of the

2 Ž .2expansion of hre shr 2y´ obtained from Eq.˜
Ž .21 . Here, however, we encounter problems: The
h-values from the interpolation come out too large
by about a factor 2. Also g does not interpolate well.
A more convenient combination of critical exponents
will have to be found to apply this method.
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