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Abstract

We develop a method for extracting accurate critical exponents from perturbation expansions of the O(n)-symmetric
nonlinear o~-model in D = 2 + € dimensions. This is possible by considering the e-expansions in this model as strong-cou-
pling expansions of functions of the variable &= 2(4 — D) /(D — 2), whose first five weak-coupling expansion coefficients
of powers of £ are known from e-expansions of critical exponents in O(n)-symmetric ¢*theory in D = 4 — & dimensions.
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1. Critical exponents of the O(n)-universality class
can be calculated with high accuracy from standard
resummation procedures of renormalization group
functions of ¢*-field theory [1,2]. For the classical
Heisenberg model, where n= 3, the critica expo-
nent v governing the divergence of the coherence
length as £ |T—T,™” has been calculated from
seven-loop perturbation expansions in three dimen-
sions [2] as v= 0.7073 + 0.0030 [1], whereas five-
loop expansions in D =4 — & dimensions [3,4] ex-
trapolated to £=1 give »=0.7050 4+ 0.0055 [1].
Apart from the initial expansion coefficients, the
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resummation procedures incorporate information on
the large-order growth of the coefficients obtained
from semiclassical considerations [5,6]. Results very
close to the above numbers were recently obtained
from a novel strong-coupling ¢*-theory [7—10] in
D =319,10] as well as 4 — & dimensions [12-14].
It is generally accepted that, as a consequence of
the universality hypothesis of critical phenomena of
al systems with equal Goldstone bosons, the same
critical exponents should be obtainable from renor-
malization group studies of O(n)-symmetric nonlin-
ear o-modelsin D=2+ € dimensions a €= 1, if
the second-order character of the transition is not
destroyed by fluctuations. These conditions restrict
the comparison to n> 2. For n=1 (Ising case),
there are no Goldstone bosons, and for n=2 (XY-
model), the transition is of infinite order, for which
the divergence of the correlation length with temper-
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ature cannot be parametrized like £ [T —T,|77, as
shown by Kosterlitz and Thouless.

Unfortunately, the e-expansions of the nonlinear
o-models have, up to now, remained rather useless
for any practical calculation, due to their non-Borel
character [15]. This has led some authors to doubt
the use of such expansions around the lower critical
dimension altogether [16]. Basis of these doubts is
the increasing relevance of ignored higher powers of
the derivative term in the calculations [17]. Such a
situation would be quite unfortunate, since it would
jeopardize other interesting theories which depend
on similar relationships, such as Anderson’s theory
of localization [18].

Fortunately, the counter-arguments are not com-
pletely convincing since they involve an interchange
of limits in the analytic continuation in e and the
increase of the number of derivatives [19], so that
hope remains. The purpose of this note is to confirm
this hope and to lend further support to the intimate
relationship of e- and e-expansions. This is done by
determining from a combination of the two expan-
sions an accurate critical exponent v for the classical
Heisenberg model for all dimensions2 < D < 4.

2. So far, the e-expansions of »~* and the anoma-
lous dimension n have been calculated up to the
powers € [15,20-23]:

2 E3

v i(e) =€+ n_2+ 2(n=2)

—[30— 14+ n?+ (54— 18n) £ (3)]

64

mer . (1)
€ (n—1)e®> n(n—-1)€
M) = T s T 22y
—(n-1)[-6+2n+n?
+(—12+n+n2)§(3)]m
+o (2)

The singularity at n = 2 reflects the above-discussed
restriction of the upcoming considerations to n > 2.
When evaluated at € = 1, the first series yields for

the three-dimensional O(3)-model the diverging suc-
cessive values v~ ! = (1, 2,2.5,3.25). The often-em-
ployed Padé approximations do not help, with the
best of them, the [1,2]-approximation, giving the too
large value v = 2. So far, the only result which is not
too far from the true value has been obtained via the
Pade—Bore transform [15]

et
: 3
1—et/2+ €’t?/6 (3)

from which one obtains the e-dependent inverse
critical exponent

PtA(e,t) =

vi(e)= foodt e 'PM( e t). (4)
0

Its value at e=1is v~ = 1.252, corresponding to
v = 0.799, which is still considerably larger than the
accurate value 0.705. The other Padé—Borel approxi-
mants are singular and thus of no use. See Fig. 1 for
plots of the integrands.

A direct evaluation of the series for the other
critical exponent, the anomalous dimension 7, yields
the successive vaues (2, — 2,4, — 5), which are com-
pletely useless. Here the nonsingular Borel—Pade
approximations [2,1], [1,2], and [1,1] yield 0.147,
0.150, and 0.139, rather than the correct value 0.032.

3. The remedy for these problems comes from a
combination of the theory developed in Refs. [7—10]
with a procedure developed in Ref. [11]. The theory
alows us to extract the strong-coupling properties of
a ¢*-theory from perturbation expansions. In partic-
ular, it renders the power behavior of the renormal-
ization constants for large bare couplings g,, and
from this al critical exponents of the system. By
using the known expansion coefficients of the renor-
malization constants in three dimensions up to six
loops, we were able to derive extremely accurate
values for the critical exponents. The method is a
systematic extension to arbitrary orders [24] of the
Feynman—Kleinert variational approximation to path
integrals [25] 1. For an anharmonic oscillator, this
so-called variational perturbation theory [28] yields

1 A similar approach has been pursued independently by Refs.
[26,27].
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Fig. 1. Integrands of the Padé—Borel transform (4) for the Padé approximants [1,3], [3,1], [2,2] and for [1,1], [2,1], [1,2] & €= 1. Only the

last is integrable, yielding »~! = 1.25183 = 1,/.79883.

expansions which converge uniformly in the cou-
pling strength and exponentially fast, like
exp(—const X N*/3) in the order N of the approxi-
mation, as was observed in [29,30,28] and proved in
[31] 2. The extension to field theory was achieved in
Refs. [7,8], and showed to same type of convergence,
but with the fractional power 1/3 replaced by the
irrational power 1 — w, where w isthe critical expo-
nent governing the approach to scaling.

This theory is combined with the procedure of
Ref. [11] which allows us to interpolate variationally
functions for which we know strong- and weak-cou-
pling expansions. The resummation to be performed
will be based on rewriting the above e-expansions in
such a way that they may be considered as strong-
coupling expansion of functions, whose weak-cou-
pling expansions are provided by power series ex-
pansion in powers of ¢=4— D, which are known
from ¢*theory in D =4— ¢ dimensions. In this
way we shall be able to derive accurate critical
exponents »~ ! from the non-Borel expansion (1).

4. Let us briefly recall the interpolation procedure
[11] by which a divergent weak-coupling expansion

ZA convergence proof for the anharmonic oscillator which is
completely equivalent to our results in [31] was given by [32].
Predecessors of these works which failed to explain the exponen-
tialy fast convergence in the strong-coupling limit observed in
Ref. [30] are Refs. [33-37].

in some variable g, of the type

N
EN(go) = Z angg
n=0
can be combined with a strong-coupling expansion
of the type

M
Ew(do) =98° ¥ bu(g5¥9)".
m=0

Previously treated examples [11] were the anhar-
monic oscillator with parameters p=1/3, q= 3 for
the energy eigenvalues, and the Frohlich polaron
with p=1,q=1 for the ground-state energy and
p=4,q=1 for the mass. As described in detail in
[28], the first step is to rewrite the weak-coupling
expansion with the help of an auxiliary scale parame-
ter k as

) < L 22 e

where k is eventually set equal to 1. We shall see
below that the quotient p/q parametrizes the lead-
ing power behavior in g, of the strong-coupling
expansion, whereas 2/q characterizes the approach
to the leading power behavior. In a second step we
replace « by the identical expression

k= VK?+ k2 —-K? (6)

containing a dummy scaling parameter K. The series
(5) is then reexpanded in powers of g, up to the
order N, thereby treating x* — K? as a quantity of
order g,. The result is most conveniently expressed
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in terms of dimensionless parameters §, = g,/K1
and o=(1-k?/§, where k= «k/K. Then the
replacement (6) amounts to

k= K(1-8)"", (7)

so that the reexpanded series reads explicitly

wN(@o.o)=KP§O%(U)(@0>”. (8)

with the coefficients

(0)- X a ((pnq‘f/ )( AT
J

For any fixed g,, we form the first and second
derivatives of Wy(gy,K) with respect to K, calcu-
late the K-values of the extrema and the turning
points. If there is a unique extremum, this supplies
us with an optimal scaling parameter K. If no
extremum exists, we use the turning point to deter-
mine K. If there are more than one extremum or
turning point, we take the smallest of these as K.
This procedure is caled optimization. The function
WL (go) = Wy (go,Ky) constitutes the Nth varia-
tional approximation E(g,) to the function E(g,).

It is easy to take this approximation to the
strong-coupling limit g, — . For this we observe
that (8) has the scaling form

Wy (9o, K) = KPwy(§o.Kk?). (10)
For dimensional reasons, the optimal K, increases
with g, like Ky =gg 9%y, so that §,=cy? and
o=1/§,=cg remain finite in the strong-coupling

limit, whereas k2 goes to zero like 1/
[cn(go/ kDY ]2 Hence

Wy (9o, Ky) = 987 9ckwy (cy9.0). (11)
Here c, plays the role of the variational parameter
to be determined by applying the optimization pro-
cess described above to the function cfwy(cy9,0).
The full strong-coupling expansion is obtained from
the Taylor series of wy(§,,<?) in powers of k2=
(9o/k%Gy) /9, which yields
. ~ 9

Wy (9o) = g(?/q[bo( Go) + by( go)(ﬁ)

-2/4q

4—b2(g0)( % )4/q4—... (12)

with

1
b(Go) = —7WK"(Go.0) §6*" P/, (13)

where w("(§,,k?) is the nth derivatives of
wy (§y, &%) with respect to 2. Explicitly:

Z(_l)H—ni ]((p q])/2)

1
—wW{"( §,.,0) =
nt " 1=0 j=0 =]

<) -a0)" (14)

The optimal expansion of the energy (12) is obtained
by expanding

- A 9o\ ¥
90:7’0+71(_q) +72(—q) + ...,
K K

(15)

where vy, = cy9, and finding the optimal extremum
(or turning point) in the resulting polynomials of
Y1,Y2,--- - IN this way we obtain a systematic
strong- couplmg coupling expansion in powers of
(do/k®) "% This is done as follows. We first
optimize the leading strong-coupling coefficient
by(§,) in §,, and identify the optimal position by
Yo- Optimizing Wy, (g,) with the expansion (15), in
Y1, Va2 .-+, Yi€lds for the parameters p= —2,g=2
at the coefficients y,,v,,... and optima b.(§,)'s
by the equations listed in Table 1.

It was demonstrated in [11] how one can now find
a variational perturbation series for functions for
which one knows N weak-coupling and M strong-
coupling expansion coefficients. We must merely
extend the set of of coefficients a;,...,ay by M
unknown ones ay. q,---,8y.m, and determine the
latter via a fit of the resulting strong-coupling coeffi-
cients b, ...,by_, to the known ones.

5. This interpolation procedure will now be ap-
plied to the perturbation expansion (1) in 2+ €
dimensions, considering it as the strong-coupling
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Table 1

Equations determining the coefficients b,(§,) in the strong-coupling expansion (12) and the associated v, = ¢, 9§, in (15) from the
functions b, = b,(v,) and their derivatives. For brevity, we have suppressed the argument vy, in these functions.

n b, -1

2 b, + v,b; + 3y7bg by /bg

3 by + .04 + y1b5 + y17, 05 + 370 + 7 (b, + 7,07 + 7B /B

4 b, + 3y + v, + y1b5 + Gy + y1v2)b5 (05 + ;07 + ;b5 + y,v,b§

: o S22 -
+ 917207 + 5705 + 3y7y, b + 5P +

bg? + 377D + $y7bi") /g

expansion of a series in the variable £=2(4 — D)/
(D-2)=
d1-¢e/2/e=¢e/(1—¢/2):

n—4 n—4
vi(8)=4z1-8 £2+16 g3
n-—2 n-—2
—32{[52 + 108 (3)]
2 &
—[16+36£(3 P —
[16 + 36 ( )]n+n}(n—2)3
+.... (16)

The variable & plays the role of the variable g, in
the general formulas of the last section. The weak-
coupling expansion of v~ (&) in powers of £ can be
obtained directly from the s-expansions of Refs.

[3,4], and has for n= 3,4,5,1, the numerical form
n=3: v 1=2-0.45455%+ 0.071375 &2

+0.15733% - 0.526312* + ...,

(17)
n=4: v 1=2-05%+0.08333335°
+0.147522 5% — 0.499944 34
+1.47036 55+ ..., (18)

Table 2

Coefficients of the successive extension of the expansion coeffi-
cients in Eq. (20) for n=3 determined from M=1,2 3,4
strong-coupling coefficients (4,8, — 16,160) of Eq. (16).

v~ 1 =2-0.538462 £ + 0.0955849 £°
+ 0.135442 23 — 0.469842 2*
+1.34491 2%+ ..., (19)

n=1 » '=2-0.3333335+ 0.04938272*
+ 0.158478 £ — 0.539937
+1.789548° + ... (20)

Extending these series by four more terms a, £° +
a, &'+ a5 8%+ a, 2° we calculate the strong-cou-
pling coefficients (13) by extremizing (12) with (15),
after identifying g, with 2. The parameters (p,q)
are equal to (—2,2), as follows directly from a
comparison of the strong-coupling powers

]
I
a

Table 3

Coefficients of the successive extension of the expansion coeffi-
cients in Eq. (20) for n=4 determined from M =12 3,4
strong-coupling coefficients (4,0, 0,221.096) of Eq. (16).

n 35 a7 3 2H)

1 —147.508

2 —7.91064 37.1745

3 —4.59388 12.3044 —27.0837

4 —3.72613 7.47851 —12.2129 16.9547
Table 4

Coefficients of the successive extension of the expansion coeffi-
cients in Eq. (20) for n=5 determined from M =12 3,4
strong-coupling coefficients (8, — 8,3,16,/3,106.131) of Eq. (16).

n 3 a7 3 N n 3 h 3 X

1 —203.827 1 —108.648

2 —5.67653 17.6165 2 —10.1408 60.7217

3 —4.25622 9.04109 —15.7331 3 —4.75598 15.1045 — 38.9689

4 —3.80331 6.87304 —10.0012 12.3552 4 —3.57909 7.84272 —14.1142 21.6045




362 H. Kleinert / Physics Letters A 264 (2000) 357-365

Table 5

Coefficients of the successive extension of the expansion coeffi-
cientsin Eq. (20) for n= 1 determined from M = 1,2, 3,4 strong-
coupling coefficients (4, — 24, 48,3825.54) of Eq. (16).

8 ay ag 8
1 —413.921
2 —5.25285 12.1104
3 — 442759 12450066 — 196950675
4 —5.7343 13.7134 —25.226 38.0976

Fig. 2. Inverse of the critical exponent v for the classical Heisen-
berg model in the O(3)-universality class. Solid curve represents
the interpolation result of fourth order. Lower dashed curves show
interpolations of first, second, and third order. Upper short-dashed
curves display, with decreasing dash length, the first three and
four terms of the e-expansion (2), respectively. Dotted curve is
Pade [1,2]-Borel approximations The fat dot corresponds to the
seven-loop result in D=3 dimensions, v =0.7073 of Refs.
[1,9,10]. The four interpolations give (v,,v,,v5,v,) = (0.87917,
0.75899,0.731431,0.712152). These are extrapolated in Fig. 3 to
infinite order, yielding v = 0.695.

e=4-D

Fig. 3. Same plot asin Fig. 2, but for the O(4)-universality class.
Fat dot represents six-loop result in D = 3 dimensions v = 0.737
of Refs. [7,8]. The four interpolations give (vy,v,,v5,v,)=
(0.88635,0.810441,0.786099, 0.768565). The extrapolation to in-
finite order shown in Fig. 7 yields v = 0.735.

e=4-D

Fig. 4. Same plot asin Fig. 2, but for the O(5)-universality class.
There exists no Padé-Borel approximation. Fat dot represents
ix-loop result in D=3 dimensions » =0.767 of Refs. [7,8].
The four interpolations give (v,,v,,v3,v,) = (0.89278,0.842391,
0.820491,0.802416). The extrapolation to infinite order shown in
Fig. 8 yields v = 0.766.

Fig. 5. Same plot as in Fig. 2, but for the O(1)-universality class
(of the Ising model). Again there is no Padé—Borel approximation.
Fat dot represents seven-loop result in D =3 dimensions v =
0.6305 of Refs. [1,9,10]. The four interpolations give
(vq,v,,v3,1,) = (0.862357, 0.665451, 2.08686, 0.729231). Their
failure to converge is illustrated graphically in Fig. 9.

0.695001 (0.712152)
0.875 -
0.85 T M=1
v 0.825 s

0.8 5
0.775

0.75 4 3 o
0.725¢ _*

02 04 06 08 1
o= M-18

o

Fig. 6. The four successive approximations (vy,v,,vs,v,) =
(0.87917,0.75899, 0.731431,0.712152) for n=3 (Heisenberg
model) plotted as a function of x = M~® which makes them lie
a smooth parabola line with the intercept 1, = 0.695+ 0.010.
Numbers on top show extrapolated value and highest approxima-
tion (in parentheses).
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0.73453 (0.768565)

0.88
0.86
vo0.84
0.82

0.78
.
0.76 4

0.74
z=M"12

Fig. 7. The four successive approximations (vq,v,,vs,v,) =
(0.88635,0.810441,0.7860990.768565) for n=4 plotted as a
function of x= M~'2 which puts them on a smooth parabola
with the intercept 1, = 0.735+0.010. Numbers on top show
extrapolated value and highest approximation (in parentheses).

€P/9(1+ 2729+ ...) with (16). The coefficients
a; ,a,, ag, 8, are now determined to make
bo(§o),b,(§y),b,(§y),bs(G,) agree with (16). The
technique of doing this is described in detail in Ref.
[11].

In order to see how the result improves with the
number M of additional termsin (15), we go through
this procedure successively for M= 1,234 The
successive additional expansion coefficients for the
O(n) universality classes with n= 3,4,5,1 are listed
in Tables 25, respectively. The four resulting curves
for v~ (&) are shown in Figs. 2—4. For n= 3, the
successive critical exponents v at ¢ =1 taken from
Fig. 2 are (v,,v,,vsv,) = (0.87917, 0.75899,
0.731431,0.712152). Their M-dependence is plotted
in Fig. 6 as a function of the variable x=M"18
which makes them lie approximately on a smooth
parabola intercepting the r-axis at 1, = 0.695 +
0.010. This extrapolated value is in good agreement
with the above-quoted value = 0.705 from seven-
loop calculations in 4 — ¢ dimensions [1,9,10]. The

0.766316 (0.802416)

0.88 M1
, 086 2

0.84 3

0.82 »

Iod Nia

0.781/ ’

Fig. 8. The four successive approximations (vq,v,,vs,v,) =
(0.89278,0.842391,0.820491,0.802416) for n=5 plotted as a
function of x= M~12 which puts them on a smooth parabola
with intercept 1, = 0.766 + 0.010. Numbers on top show extrapo-
lated value and highest approximation (in parentheses).

z=M"12

ot
0.95 5
0.9 M=1
v 0.85 °
0.8
0.75 *
0.7
0.65

0.2 0.4 0.6 0.8 1

Fig. 9. The four successive approximations (v,,v,,vz,v,)=
(0.862357,0.665451, 2.08686,0.729231) for n=1 plotted as a
function of x= M~2. They show no tendency of convergence
towards the known seven-loop exponent 1, = 0.630.

results for the other O(4) and O(5) universality
classes are displayed analogously. The respective
pr-values 0.735 + 0.010 and 0.766 + 0.010 agree well
with the highest available six-loops results of Refs.
[7,8], which are 0.737 and 0.767.

As discussed above, the relation between the e-
and e-expansions is expected to be restricted to
n> 2, for physical reasons. It is instructive to see
that the variational interpolation method reflects this
problem at two places. First, the expansion coeffi-
cientsin Table 5 shows alarge irregularity for n= 1.
Second, the successive approximations for »~* in
Fig. 5 display no tendency of convergence with
increasing order M of approximation.

Finally, we plot our highest (M = 4) approxima-
tions for n = 3,4, 5 together with the large-n approx-
imations for n=,20,10,6 in Fig. 10 to see the
change of the &-behavior for increasing n, which
shows that the latter for n= 6 is still far from the
exact curve. This can also be seen in Fig. 3 of Ref.
[7] (see aso [8)).

0.5 1 1.5 2
e=4-D

Fig. 10. Comparison of »~! from the highest approximations of
our interpolating resummation for the O(n) universality classes
with n=3,4,5 (counting from the top), with the values obtained
from the 1/ n-expansion to order 1/n? for n=1,20,10,6 (count-
ing from the bottom). The n= 6 curve is till far from the exact
one.
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For the critical exponent 7, the series (2) reads in
the variable &:
5—1 -2

”7(5)= n—2 _Zn(n—2)2

2,—3

+8n(n—l)m +16(n—1)

g

x[(6-2n%)[12—n—m){(3)]
5—4
X——— + ...
(n-2)
whereas the weak-coupling expansion in powers of &
obtained from the e-expansions of Refs. [3,4] has,
for N=3,4,5,1, the numerical form

N=3: 7/e?=5/242+ 0.0183987¢

: (21)

—0.0166488 €2 + 0.032432 €3

+..., (22)
N=4: n/e?’=1/48+0.0173611¢

— 0.0157657&2 + 0.029057 €3

+..., (23)
N=5: 7/e?>=7/338+ 0.0161453 ¢

—0.0148734 €2 + 0.0259628 €3

+ ..., (24)
N=1: 7n/e?=1/54+ 0.01869¢

—0.0176738 €2 + 0.0386577°
+.... (25)

These series can again be extended by four more
terms a, 8%+ a; 8%+ a5 2%+ a, &/, making the
strong-coupling coefficients by,b,,b,,bs, in Eqg. (13)
caculated for Eqgs. (22)—(25) agree with those of the
expansion of n/e€2=1/(2 — &)? obtained from Eq.
(21). Here, however, we encounter problems: The
n-values from the interpolation come out too large
by about a factor 2. Also y does not interpolate well.
A more convenient combination of critical exponents
will have to be found to apply this method.
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