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Abstract

For a single membrane of stiffness « fluctuating between two planar walls of distance d, we calculate analytically the

pressure law

7?2 KZT?

PT84/

The prefactor 7w2/128 ~ 0.077115.... isin very good agreement with results from Monte Carlo simulations 0.079 + 0.002.

© 1999 Elsevier Science B.V. All rights reserved.

1. A stack of n pardlel, thermally fluctuating
membranes exerts upon the enclosing planar walls a
pressure which depends on the stiffness « and the
temperature T as follows:

2n k3T?
a 1
"n+1k[d/(n+1)]°

where kg is Boltzmann's constant and d the dis-
tance between the walls (see Fig. 1).

This law, first deduced from dimensional consid-
erations by Helfrich [1], is of fundamental impor-
tance in the statistical mechanics of membranes just
as the ideal gas law pV = NKkgT in the statistical

p= (1)
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mechanics of point particles. We would therefore
like to know the size of the prefactor, the stack
constant «, as accurately as possible. So far, its
value was determined only by extensive Monte Carlo
simulations as being [2,3]

o, = 0.101 + 0.002. (2)

For a single membrane, the following value was
found [4,3]:

a; = 0.079 + 0.002. (3)

So far, there exists no analytic theory to explain
these values.

The purpose of this note is to fill this gap for the
constant «,, by calculating analytically the pressure
of a single membrane between paralel walls. The
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Fig. 1. Membrane fluctuating between walls of distance d, exert-
ing a pressure p.

theoretical tool for this has only recently become
available: A strong-coupling theory developed origi-
nally in quantum mechanics [5], was extended suc-
cessfully to quantum field theories [6], where it has
been used to obtain extremely accurate values for the
critical exponents of O(n)-symmetric scalar fields
with @*-interactions [6].

2. Strong-coupling theory gives direct access to

the large-g behavior of divergent truncated power
series expansions of the type

fu(g) =0

N g k

ay + Zak(m) } (4
k=1

The g — c-limit of f\(g), to be denoted by f, is

obtained by setting 2= cg'/% and optimizing the
function

fu(c) =g *f\(c)

N
= gl/q(caob(’)“ + ) akcl‘qkka), (5)
k=1
where
(1-ka) /2
SENEEN e (6)
I1=0
is the binomia expansion of (1 — 1)~k9/2 tryn-
cated after the (N — k)th term. Optimizing means
extremizing fy(c) in c or, if an extremum does not
exist, extremizing the derivative f{(c).

3. We apply this theory to a membrane between
walls by proceeding as follows. The partition func-

tion of the membrane is given by the functiona
integral

K

Z= f@ u( x)exp{ - TBT/dZX[aZU( x)]z}

Ee—Af/kBT’ (7)

where u(x) is a vertical displacement field of the
membrane fluctuating between horizontal walls at
u= —d/2 and d/2. The quantities A and f are the
wall area and the free energy per unit area, respec-
tively. Such a redtriction of a field is hard to treat
analytically.

We therefore perform a transformation which
maps the interval ue(—d/2,d/2) to an infinite
@-axis,

d . T 1 w%p? it
u=—arctan— = ¢|1 — + +... 0,
m d A7 3z " s

(8)

and add to the fluctuation energy E in the exponent
of (7) a potential energy which keeps the membrane
between —d/2 and d/2 (Poschl-Teller potential):

. K
EPot — Ept 4 BN — E[dzxm4¢2(u( X))

)t i u( x) 1°
> fd x{u (X)+k¥28k|:77 r } },
(9)

with expansion coefficients ¢,,&5,&,, ... :
1 17 31 691 10922 (10)

3190 315 14175 4677751 """ *

The potential energy per areais plotted in Fig. 2. Its
presence destroys the simple scaling properties of the
partition function (7), which depends only on the
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Fig. 2. Smooth Potential replacing box walls.
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dimensionless variable kd?/kgT. The new partition
function Z associated with the modified energy E +
EP®* has an additional dependence on the dimension-
less variable g= 72/m?d2. The origina hard-wall
system is obtained in the strong-coupling limit g —
ee]

In the opposite limit where g goes to zero, the
energy E + EP' becomes harmonic,

_ K2 2 2 42
Eo_zfd x{[02u(x)]" +mtu(x)}, (11)
leading to a partition function

1 A
ZO —e ETrIog(a‘H m¥) _ const X e~ Emz. (12)

where A is the area of the walls.

For a finite distance d, the interaction energy E™
is treated perturbatively order by order in g, expand-
ing the exponential e ™ /=T in a power series, and
each power in a sum of all pair contractions. These
are pictured by loop diagrams whose lines represent
the correlation function

d?k 1
Ef (27)? K*+

glk(x1=xz)

u(x)u(x;)) =

(13)

The free energy density f= —kzTA tlogZ is ob-
tained from all connected loop diagrams. For sim-
plicity, we shall use natura units with k/kgT = 1.
The lowest contribution to the free energy density
comes from the expectation value of the u“-inter-
action or the loop diagram 3 (X0 which is of the
order 1/d?:
m* m*
2
2—d2<u4>=2_dz3<u2> ) (14)
the line representing the pair expectation
d?k 1 1
(u?) :f 2 14 7" o 2
(2m) kK*+m 8m

(15)

Together with the exponent in (12), we thus obtain
first-order free energy density

m? 1 7?2
fi=—

8 +§_m2d2' (16)

Continuing the perturbation expansion, yields an ex-
pansion of the general form

1 7? w? 2
1
fN=mZ{§+am2d2+a2 oq] T
772 N
+ay mz_dz , (17)
where a,,...,a, are dimensionless numbers. By

comparison with (4) we identify p=q=1, 2= n?,
g= m2/d? Thefunction fy(c) of Eqg. (5) describing
the limiting large-g behavior is obtained by setting
0N =cm?/2d? and reads

m?(c a
fu(c) = F(Zbyh—ﬁ ?Zb§“+

aN N
t Nt by |- (18)

According to the above-described strong-coupling
theory, we must optimize the expression fy(c) in
parentheses. Since the second term does not contain
C, we separate this term out, and write

~ ~ C a
fN(c)=6—a+AfN(c)E6—§+(Zbg+fb2N+

aN N
t Nt by | (19)

with only the remainder Af~N(c) to be optimized. Let
Afy beist optimal value. If we know only a,, we
find the approximation Af,” =3a,/16. Ignoring
Afy for a moment, the first term in (19) yields the
lowest estimate for the free energy density of the
origina system

w2 1
W=aF (20)
implying a pressure law
of w21
P= "% 2@ (21)

By comparison with the general pressure law (1), we
identify the prefactor as being

2

NI~

r
X — =~ 1% 0.077115. (22)
128

o, =
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Without the prefactor factor 1,/2, this would agree
perfectly with the Monte Carlo value (3). Thus we
expect the contribution of Af [ for N—o to be
equal or amost equal to 1/64.

The calculation of the higher-order terms
a,, 85, ... is tedious, and will be presented in a
separate detailed publication [7]. In this note we shall
circumvent it by exploiting a close relationship of
the present problem with a closely analogous exactly
solvable one, which may be treated in precisely the
same way: The euclidean version of a quantum-
mechanical point particle in a one-dimensional box
ue(—d/2,d/2).

4. The partition function of a particle in a box is
7= fguef(x/ZkBT)fdx(ﬂu)z = g Af/keT_ (23)

The quantum-mechanical ground state energy of this
system is exactly known: (kgT/k)7?/2d?, corre-
sponding to a free energy density
k3T? m?

Kk 2d2
The path integral (23) may now be treated as before,

i.e., we transform u to ¢ via (8), and separate the
field energy into a Gaussian energy (in natural units)

E0=§fdx{[82u( x)] + miu?( x)} (25)

and an interaction energy which looks the same as
(9), except that the integration [d®x runs now only
over one dimension, [dx.
The first-order contribution to the free energy
density is now (in natural units with k/kgT = 1)
4 4

uty =
2d2< )= 2d?
with the palr expectation

f= (24)

—3(u?)?, (26)

(w?y = f L (27)
27 g2+ m* T om?
leading to a first-order free energy density
m 1 7?
fl = 7 + E ? , (28)
and a full perturbation expansion of the form
f=n?(+ : 77—2 7T—4 + (29)
2 m2d2 m“d4 S

From this we find the function fy(c) defined in Eq.
(5) governing the strong-coupling limit d — 0 by

setting 2 =n? =cw?/2d?:

772 ~
fu(e) = Zzfu(c), (30)
with

. L~ . (c a,
fN(C) = Z+AfN(C)EZ+ (Zb(')\‘+ ?bg‘-f'

+ o b ) (31)
Here the first term yields the lowest approximation
172
h=24" (32)

which is precisely half the exact result. Thus we
conclude that the optimal value of the neglected
expression Afy(c) must be once more equal to 1/4
in the limit N — . In order to see how this happens,
we extend the Bender—Wu recursion relation for the
perturbation coefficients of the anharmonic oscillator
[8]. It yields for the ground state energy an expansion

N 3r? at
5+ W 8d4 (2184 1586)
6
16d6 (33384 360¢, &g + 10588)
8
~ Toaqe (308854 4488025, + 699052
+1512¢, 64 + 37800) + ... . (33)
Inserting the coefficients (10) we find a,,a,,a, .- :
i1 15 7 - _2_ 34
161 256 1 2048 1 65536 1 524288 ! 83886081 """ ! ( )
whereas the odd coefficients aj,ag,a;,... vanish.
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Fig. 3. Plots of the functions Af(c) of Eq. (35), al being optimal
exactly at c=1 with Afy =1/4.
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Table 1 . .
The functions Afy(c) of Eq. (35), and their optimal values Afy

N afy(o)

-1
Cc [
21 T

SN
>
Z .,

3¢ , 3¢t 3

-

5c , 15¢-t _ 5¢® c 5

2t s 512 T 2088

e 35c~t _ 3s5cd + ¢S _ 5

256 256 3048 ' 4096 65536

<. 315¢' _ 105c3 + 63c"5 _ 45c°7 + 7c”®
512 2048 4096 ' 16384 ~ 131072 ' 524288

g A~ W N P

EN N N . i

To account for this fact, we resum the series contain-
ing only the even terms
~ C & a, A,y

Afy = 27" ?b{“ + gby + Fb,ﬁ‘,
taking the coefficients b of Eq. (6) with the param-
eters p=1, q= 2. This yields the functions Afy(c)
plotted in Fig. 3 and listed in Table 1. For all
Afy(c), optimization yields a strong-coupling value
Afy equal to 1/4, thus raising the initial value 1/4
in (31) to the correct final vaue 1/2.

(35)

5. To exploit this property of a particle in a box
for the system at hand, the membrane between walls,
we make the following crucial observation: The
Feynman integrals determining the first two termsin
the free energy densities in Eg. (16) for a membrane
and in Eq. (28) for a particle are related to each other
by a simple transformation of the integration vari-
ables. The membrane integrals

2

m?
/ 2n)? log(k* +m*) = e
d?k 1 1
/(27)2 Ki+m' 8 (36)
go over into those of the particle in the box
f%log(q2+m4)=m2, %ﬁ=%
(37)

by the transformation
d2k » dq
k? , 7 —.
—4a ,/(277)2_)4 2T

Thus, if we multiply each loop integral by a factor
1/4, we find immediately the free energy density f,;
of the membrane in Eq. (16) from that of the particle
in the box in Eq. (28).

But the analogy carries further: By differentiation
(36) and (37) with respect to m?, we see that also all
Feynman integrals [d?k/(27)?(k* + m*)" are re-
lated to the [dq,/(27)(g? + m*)” by the same factor
1/4. This property has the consequence that most of
the connected |oop diagrams contributing to the per-
turbation expansion of the free energy density, shown
in Fig. 4 up to five loops, are related by a factor
(1/4)", where L is the number of loops. In particu-
lar, al such diagrams coincide which are usually
summed in the Hartree—Fock approximation (chain
diagrams, daisy diagrams, etc.). Only the topological
more involved diagrams 3-1, 4-1, 4-2,4-5, 5-
2,5-3,5-5,5-6,5-7,5-11,5-12,5-15 in Fig. 4 do
not follow this pattern. For a particle in a box, we
can easily calculate the associated Feynman integrals
in x-space as described in Chapter 3 of Ref. [5], and
find that they contribute less than 5% to the sum of
all diagrams at each loop level. This implies that the
corresponding results for the membrane between
walls will differ at most by this relative amount from
those for the particle in the box. We therefore con-
clude that since the optimal value of Afy(c) in Eq.
(31) doubles the initial value for N — o, the analo-
gous function for the membrane between walls in
Eqg. (19) will double approximately. For the quantita-
tive deviations see the forthcoming publication [7]. A
precise doubling of the result (22) leads to a very
good agreement with the Monte Carlo number (2).
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Fig. 4. Vacuum diagrams up to five loops.
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6. The dert reader will have noted that the field
transformation (8) is rather specia. We may, for
instance, chose any mapping

¢
[1+87%2/3d% + w0t /d*+ ... + e/ d)"

772

=i pe Tt (o), (38)
which has a doubled coefficient of ¢ with respect
to the expansion (8). As a consequence, the functions
fy(c) in (19) and (31) would have a doubled first
term. Since this would be the correct final value, the
remaining functions Afy(c) would have to converge
to a vanishing optimal vaue for N— < (in the
particle case exactly, in the membrane case approxi-
mately). To reach this goa, the coefficients
W,,Wg, ... in (38) can be chosen rather arbitrarily,
although there are a few convenient ways for which
the speed of convergence is fast. A preferred choice
is one in which all coefficients a,,a3,a,... of the
perturbation expansion vanishes for a particle in a
box. This and other possibilities will be studied
separately [9,10].

u= 1/n
]
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