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Abstract

For a single membrane of stiffness k fluctuating between two planar walls of distance d, we calculate analytically the
pressure law

p 2 k 2 T 2
B

ps .3128 k dr2Ž .

The prefactor p 2r128;0.077115 . . . is in very good agreement with results from Monte Carlo simulations 0.079"0.002.
q 1999 Elsevier Science B.V. All rights reserved.

1. A stack of n parallel, thermally fluctuating
membranes exerts upon the enclosing planar walls a
pressure which depends on the stiffness k and the
temperature T as follows:

2n k 2 T 2
B

psa , 1Ž .n 3nq1 k dr nq1Ž .
where k is Boltzmann’s constant and d the dis-B

Ž .tance between the walls see Fig. 1 .
This law, first deduced from dimensional consid-

w xerations by Helfrich 1 , is of fundamental impor-
tance in the statistical mechanics of membranes just
as the ideal gas law pVsN k T in the statisticalB

1 E-mail kleinert@physik.fu-berlin.de, URL http:rr
www.physik.fu-berlin.der ; kleinert.

mechanics of point particles. We would therefore
like to know the size of the prefactor, the stack
constant a as accurately as possible. So far, itsn

value was determined only by extensive Monte Carlo
w xsimulations as being 2,3

a s0.101"0.002. 2Ž .`

For a single membrane, the following value was
w xfound 4,3 :

a s0.079"0.002. 3Ž .1

So far, there exists no analytic theory to explain
these values.

The purpose of this note is to fill this gap for the
constant a , by calculating analytically the pressure1

of a single membrane between parallel walls. The
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Fig. 1. Membrane fluctuating between walls of distance d, exert-
ing a pressure p.

theoretical tool for this has only recently become
available: A strong-coupling theory developed origi-

w xnally in quantum mechanics 5 , was extended suc-
w xcessfully to quantum field theories 6 , where it has

been used to obtain extremely accurate values for the
Ž .critical exponents of O n -symmetric scalar fields

4 w xwith w -interactions 6 .

2. Strong-coupling theory gives direct access to
the large-g behavior of divergent truncated power
series expansions of the type

N kg
f g sV a q a . 4Ž . Ž .ÝN 0 k qž /Vks1

Ž . )The g™`-limit of f g , to be denoted by f , isN N

obtained by setting V'cg1r q and optimizing the
function

1r q ˜f c sg f cŽ . Ž .N N

N
1r q N 1yqk N'g ca b q a c b , 5Ž .Ý0 0 k kž /

ks1

where
Nyk 1ykq r2Ž .lNb s y1 6Ž . Ž .Ýk ž /lls0

Ž .Ž1yk q .r2is the binomial expansion of 1y1 trun-
Ž .cated after the Nyk th term. Optimizing means

˜ Ž .extremizing f c in c or, if an extremum does notN
˜X Ž .exist, extremizing the derivative f c .N

3. We apply this theory to a membrane between
walls by proceeding as follows. The partition func-

tion of the membrane is given by the functional
integral

k 22 2Zs DD u x exp y d x E u xŽ . Ž .H H½ 52k TB

'eyA f r k BT , 7Ž .
Ž .where u x is a vertical displacement field of the

membrane fluctuating between horizontal walls at
usydr2 and dr2. The quantities A and f are the
wall area and the free energy per unit area, respec-
tively. Such a restriction of a field is hard to treat
analytically.

We therefore perform a transformation which
Ž .maps the interval ug ydr2,dr2 to an infinite

w-axis,

d pw p 2w 2 p 4w 4

us arctan sw 1y q q . . . ,2 4ž /p d 3d 5d

8Ž .

and add to the fluctuation energy E in the exponent
Ž .of 7 a potential energy which keeps the membrane

Ž .between ydr2 and dr2 Poschl–Teller potential :¨
k

pot pot int 2 4 2E sE qE s d x m f u xŽ .Ž .H0 2
2 k4 `k m u xŽ .

2 2s d x u x q ´ p ,Ž . ÝH k½ 52 dks2

9Ž .

with expansion coefficients ´ ,´ ,´ , . . . :2 3 4

1 17 31 691 10922, , , , , . . . . 10Ž .3 90 315 14175 467775

The potential energy per area is plotted in Fig. 2. Its
presence destroys the simple scaling properties of the

Ž .partition function 7 , which depends only on the

Fig. 2. Smooth Potential replacing box walls.
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dimensionless variable k d2rk T. The new partitionB

function Z associated with the modified energy Eq
E pot has an additional dependence on the dimension-
less variable gsp 2rm2d2. The original hard-wall
system is obtained in the strong-coupling limit g™

`.
In the opposite limit where g goes to zero, the

energy EqE pot becomes harmonic,

k 22 2 4 2E s d x E u x qm u x , 11Ž . Ž . Ž .H ½ 50 2

leading to a partition function

1 A
4 4 2Ž .y Trlog E qm y mZ se sconst=e , 12Ž .2 80

where A is the area of the walls.
For a finite distance d, the interaction energy E int

is treated perturbatively order by order in g, expand-
ing the exponential eyE int r k BT in a power series, and
each power in a sum of all pair contractions. These
are pictured by loop diagrams whose lines represent
the correlation function

k d2 k 1
i kŽ x yx .1 2² :u x u x s e .Ž . Ž . H1 2 2 4 4k T k qm2pŽ .B

13Ž .

The free energy density fsyk TAy1 log Z is ob-B

tained from all connected loop diagrams. For sim-
plicity, we shall use natural units with krk Ts1.B

The lowest contribution to the free energy density
comes from the expectation value of the u4-inter-
action or the loop diagram 3 which is of the
order 1rd2:

m4 m4
24 2² : ² :u s 3 u , 14Ž .2 22 d 2 d

the line representing the pair expectation

d2 k 1 1
2² :u s s . 15Ž .H 2 4 4 2k qm 8m2pŽ .

Ž .Together with the exponent in 12 , we thus obtain
first-order free energy density

m2 1 p 2

f s q . 16Ž .1 2 28 32 m d

Continuing the perturbation expansion, yields an ex-
pansion of the general form

22 21 p p
12f sm q qa q . . .N 28 2 2 2 2ž /64 m d m d

N2p
qa , 17Ž .N 2 2ž /m d

where a , . . . ,a are dimensionless numbers. By2 N
Ž . 2comparison with 4 we identify psqs1, Vsm ,

2 2 Ž . Ž .gsp rd . The function f c of Eq. 5 describingN

the limiting large-g behavior is obtained by setting
V'cp 2r2 d2, and reads

p 2 c a21N Nf c s b q q b q . . .Ž .N 0 2642 ž 4 cd
aN Nq b . 18Ž .NNy1 /c

According to the above-described strong-coupling
˜ Ž .theory, we must optimize the expression f c inN

parentheses. Since the second term does not contain
c, we separate this term out, and write

c a21 1 N N˜ ˜f c s qD f c ' q b q b q . . .Ž . Ž .N N 0 264 64 ž 4 c
aN Nq b , 19Ž .NNy1 /c

˜ Ž .with only the remainder D f c to be optimized. LetN
˜)D f be ist optimal value. If we know only a , weN 2

)find the approximation D f s 3a r16 . Ignoring(2 2
) Ž .D f for a moment, the first term in 19 yields theN

lowest estimate for the free energy density of the
original system

p 2 1
)f s , 20Ž .1 264 d

implying a pressure law

E f p 2 1
psy s . 21Ž .3E d 32 d

Ž .By comparison with the general pressure law 1 , we
identify the prefactor as being

p 2
1 1

a s = f =0.077115. 22Ž .1 2 2128
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Without the prefactor factor 1r2, this would agree
Ž .perfectly with the Monte Carlo value 3 . Thus we

˜)expect the contribution of D f for N™` to beN

equal or almost equal to 1r64.
The calculation of the higher-order terms

a , a , . . . is tedious, and will be presented in a2 3
w xseparate detailed publication 7 . In this note we shall

circumvent it by exploiting a close relationship of
the present problem with a closely analogous exactly
solvable one, which may be treated in precisely the
same way: The euclidean version of a quantum-
mechanical point particle in a one-dimensional box

Ž .ug ydr2,dr2 .

4. The partition function of a particle in a box is

Ž .2yŽ k r2 k T . d x E u yA f r k THB BZs DDue 'e . 23Ž .H
The quantum-mechanical ground state energy of this

Ž . 2 2system is exactly known: k Trk p r2 d , corre-B

sponding to a free energy density

k 2 T 2 p 2
B

fs . 24Ž .2k 2 d
Ž .The path integral 23 may now be treated as before,

Ž .i.e., we transform u to w via 8 , and separate the
Ž .field energy into a Gaussian energy in natural units

k 22 4 2E s dx E u x qm u x 25Ž . Ž . Ž .H ½ 50 2
and an interaction energy which looks the same as
Ž . 29 , except that the integration Hd x runs now only
over one dimension, Hdx.

The first-order contribution to the free energy
Ž .density is now in natural units with krk Ts1B

m4 m4
24 2² : ² :u s 3 u , 26Ž .2 22 d 2 d

with the pair expectation

dq 1 1
2² :u s s , 27Ž .H 2 4 22p q qm 2m

leading to a first-order free energy density

m2 1 p 2

f s q , 28Ž .1 22 2 d
and a full perturbation expansion of the form

1 p 2 p 4
12fsm q qa q . . . . 29Ž .22 2 2 4 4ž /2 m d m d

Ž .From this we find the function f c defined in Eq.N
Ž .5 governing the strong-coupling limit d™0 by
setting Vsm2 'cp 2r2 d2:

p 2

˜f c s f c , 30Ž . Ž . Ž .N N2d

with
c a21 1 N N˜ ˜f c s qD f c ' q b q b q . . .Ž . Ž .N N 0 24 4 ž 4 c

aN Nq b . 31Ž .NNy1 /c

Here the first term yields the lowest approximation

1 p 2

f s , 32Ž .1 24 d

which is precisely half the exact result. Thus we
conclude that the optimal value of the neglected

Ž .expression D f c must be once more equal to 1r4N

in the limit N™`. In order to see how this happens,
we extend the Bender–Wu recursion relation for the
perturbation coefficients of the anharmonic oscillator
w x8 . It yields for the ground state energy an expansion

3p 2 p 4
1 2q ´ y 21´ y15´Ž .4 4 62 2 44d 8d

p 6
3q 333´ y360´ ´ q105´Ž .4 4 6 8616d

p 8
4 2 2y 30885´ y44880´ ´ q6990´Ž 4 4 6 68128d

q1512´ ´ q3780´ q . . . . 33Ž ..4 8 10

Ž .Inserting the coefficients 10 we find a ,a ,a , . . . :2 4 6

1 1 1 5 7 21,y , , y , , y , . . . , 34Ž .16 256 2048 65536 524288 8388608

whereas the odd coefficients a ,a ,a , . . . vanish.3 5 7

˜ Ž . Ž .Fig. 3. Plots of the functions D f c of Eq. 35 , all being optimalN
˜)exactly at cs1 with D f s1r4.N
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Table 1
˜ ˜)Ž . Ž .The functions D f c of Eq. 35 , and their optimal values D fN N

)˜ ˜Ž .N D f c D fN N

y1c c 11 q4 16 c 4
y1 y33c 3c c 12 q y16 32 256 4

y1 3 y55c 15c 5c c 13 q y q32 128 512 2048 4
y1 3 y 535 c 35c 35c 7c 5 14 q y q y256 256 3048 4096 65536 4

y1 3 y 5 y 7 y 963 315c 105c 63c 45c 7c 15 q y q y q512 2048 4096 16384 131072 524288 4

To account for this fact, we resum the series contain-
ing only the even terms

c a a a2 4 2 NN N N˜D f s q b q b q b , 35Ž .N 1 2 N3 54 c c c
N Ž .taking the coefficients b of Eq. 6 with the param-i

˜ Ž .eters ps1, qs2. This yields the functions D f cN

plotted in Fig. 3 and listed in Table 1. For all
˜ Ž .D f c , optimization yields a strong-coupling valueN
˜)D f equal to 1r4, thus raising the initial value 1r4N
Ž .in 31 to the correct final value 1r2.

5. To exploit this property of a particle in a box
for the system at hand, the membrane between walls,
we make the following crucial observation: The
Feynman integrals determining the first two terms in

Ž .the free energy densities in Eq. 16 for a membrane
Ž .and in Eq. 28 for a particle are related to each other

by a simple transformation of the integration vari-
ables. The membrane integrals

d2 k m2
4 4log k qm s ,Ž .H 2 42pŽ .

d2 k 1 1
s 36Ž .H 2 4 4 2k qm 8m2pŽ .

go over into those of the particle in the box

dq dq 1 1
2 4 2log q qm sm , sŽ .H H 2 4 22p 2p q qm 2m

37Ž .

by the transformation
2

`d k dq
12k ™q , ™ .H H42 2py`2pŽ .

Thus, if we multiply each loop integral by a factor
1r4, we find immediately the free energy density f1

Ž .of the membrane in Eq. 16 from that of the particle
Ž .in the box in Eq. 28 .

But the analogy carries further: By differentiation
Ž . Ž . 236 and 37 with respect to m , we see that also all

2 Ž .2Ž 4 4.nFeynman integrals Hd kr 2p k qm are re-
Ž .Ž 2 4.nlated to the Hdqr 2p q qm by the same factor

1r4. This property has the consequence that most of
the connected loop diagrams contributing to the per-
turbation expansion of the free energy density, shown
in Fig. 4 up to five loops, are related by a factor
Ž .L1r4 , where L is the number of loops. In particu-
lar, all such diagrams coincide which are usually

Žsummed in the Hartree–Fock approximation chain
.diagrams, daisy diagrams, etc. . Only the topological

more involved diagrams 3–1, 4–1, 4–2, 4–5, 5–
2, 5–3, 5–5, 5–6, 5–7, 5–11, 5–12, 5–15 in Fig. 4 do
not follow this pattern. For a particle in a box, we
can easily calculate the associated Feynman integrals

w xin x-space as described in Chapter 3 of Ref. 5 , and
find that they contribute less than 5% to the sum of
all diagrams at each loop level. This implies that the
corresponding results for the membrane between
walls will differ at most by this relative amount from
those for the particle in the box. We therefore con-

˜ Ž .clude that since the optimal value of D f c in Eq.N
Ž .31 doubles the initial value for N™`, the analo-
gous function for the membrane between walls in

Ž .Eq. 19 will double approximately. For the quantita-
w xtive deviations see the forthcoming publication 7 . A

Ž .precise doubling of the result 22 leads to a very
Ž .good agreement with the Monte Carlo number 2 .

Fig. 4. Vacuum diagrams up to five loops.
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6. The alert reader will have noted that the field
Ž .transformation 8 is rather special. We may, for

instance, chose any mapping
w

us
1r nn2 2 2 4 4w Ž . x1q8p w r3d qw w rd q . . . q 2wrd4

p 2
2 3 5sw y w q . . . q OO w , 38Ž . Ž .3 2d

which has a doubled coefficient of w 3 with respect
Ž .to the expansion 8 . As a consequence, the functions

˜ Ž . Ž . Ž .f c in 19 and 31 would have a doubled firstN

term. Since this would be the correct final value, the
˜ Ž .remaining functions D f c would have to convergeN

Žto a vanishing optimal value for N™` in the
particle case exactly, in the membrane case approxi-

.mately . To reach this goal, the coefficients
Ž .w ,w , . . . in 38 can be chosen rather arbitrarily,4 6

although there are a few convenient ways for which
the speed of convergence is fast. A preferred choice
is one in which all coefficients a ,a ,a , . . . of the2 3 3

perturbation expansion vanishes for a particle in a
box. This and other possibilities will be studied

w xseparately 9,10 .
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