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Abstract

On the basis of recent seven-loop perturbation expansion forν−1 = 3/(2− α) we perform a careful reinvestigation of the
critical exponentα governing the power behavior|Tc −T |−α of the specific heat of superfluid helium near the phase transition.
With the help of variational strong-coupling theory, we findα = −0.01126± 0.0010, in very good agreement with the space
shuttle experimental valueα =−0.01056± 0.00038. 2000 Elsevier Science B.V. All rights reserved.

1. The critical exponentα characterizing the power
behavior|Tc − T |−α of the specific heat of superfluid
helium near the transition temperatureTc is presently
the best-measured critical exponent of all. A micro-
gravity experiment in the Space Shuttle in October
1992 rendered a value with amazing precision [1]:

(1)αss=−0.01056± 0.00038.

This represents a considerable change and improve-
ment of the experimental number found a long time
ago on earth by Ahlers [2]:

(2)α =−0.026± 0.004,

in which the sharp peak of the specific heat was
broadened to 10−6 K by the tiny pressure difference
between top and bottom of the sample. In space, the
temperature could be brought to within 10−8 K close
to Tc without seeing this broadening.
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The exponentα is extremely sensitive to the pre-
cise value of the critical exponentν which determines
the growth of the coherence length when approaching
the critical temperature,ξ ∝ |T − Tc|−ν . Sinceν lies
very close to 2/3, andα is related toν by the scal-
ing relationα = 2− 3ν, a tiny change ofν produces
a large relative change ofα. Ahlers’ value was for
many years an embarrassment to quantum field the-
orists who never could findα quite as negative — the
field theoreticν-value came usually out smaller than
νAhl = 0.6753± 0.0013. The space shuttle measure-
ment was therefore extremely welcome, since it comes
much closer to previous theoretical values. In fact, it
turned out to agree extremely well with the most re-
cent theoretical determination ofα by strong-coupling
perturbation theory [3] based on the recent seven-loop
power series expansions ofν [4], which gave [5]

(3)αsc=−0.0129± 0.0006.

The purpose of this note is to present yet another
resummation of the perturbation expansion forν−1

and forα = 2− 3ν by variational perturbation theory
applied in a different way than in [5]. Since it is
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a priori unclear which of the two results should be
more accurate, we combine them to the slightly less
negative average value with a larger error

(4)αsc=−0.01126± 0.0010.

Before entering the more technical part of the
paper, a few comments are necessary on the reliability
of error estimates for any theoretical result of this
kind. They can certainly be trusted no more than
the experimental numbers. Great care went into the
analysis of Ahlers’ data [2]. Still, his final result (2)
does not accommodate the space shuttle value (1).
The same surprise may happen to theoretical results
and their error limits in papers on resummation of
divergent perturbation expansions, since there exists
so far no safe way of determining the errors. The
expansions in powers of the coupling constantg are
strongly divergent, and one knows accurately only
the first seven coefficients, plus the leading growth
behavior for large ordersk like γ (−a)kk!k0(k + b).
The parameterb is determined by the number of zero
modes in a solution to a classical field equation,a is
the inverse energy of this solution, andγ the entropy
of its small oscillations.

The shortness of the available expansions and their
divergence make estimates of the error range of the re-
sult a rather subjective procedure. All publications re-
summing critical exponents such asα calculate some
sequences ofN th-order resummed approximations
αN , and estimate an error range from the way these
tend to their limiting value. While these estimates may
be statistically significant, there are unknown system-
atic errors. Otherwise one should be able to take the
expansion for any functioñf (g) ≡ f (α(g)) and find
a limiting numberf (α) which lies in the correspond-
ing range of values. This is unfortunately not true in
general. Such reexpansions can approach their limit-
ing values in many different ways, and it is not clear
which yields the most reliable result. One must there-
fore seek as much additional information on the series
as possible.

One such additional information becomes avail-
able by resumming the expansions in powers of the
bare coupling constantg0 rather than the renormal-
ized oneg. The reason is that any function of the
bare coupling constantf (g0) which has a finite crit-
ical limit approaches this limit with a nonleading in-
verse power ofgω0 , whereω is called thecritical ex-

ponent of approach to scaling, whose size is known to
be about 0.8 for superfluid helium. Any resummation
method which naturally incorporates his power behav-
ior should converge faster than those which ignore it.
This incorporation is precisely the virtue of variational
perturbation theory, which we have therefore chosen
for the resummation ofα.

For a second additional information we take advan-
tage of our theoretical knowledge on the general form
of the large-order behavior of the expansion coeffi-
cients:

(5)γ (−a)kk!k0(k + b)
(

1+ c
(1)

k
+ c

(2)

k2 + · · ·
)
.

In the previous paper [5] we have done so by choos-
ing the nonleading parametersci to reproduce ex-
actly the first seven known expansion coefficients ofα.
The resulting expression (5) determines all expansion
coefficients. The so-determined expression (5) pre-
dicts approximatelyall expansion coefficients, with
increasing precision for increasing orders. The ex-
tended power series has then been resummed for in-
creasing ordersN , and from theN -behavior we have
found theα-value (3) with quite a small error range.

As a third additional information we use the fact
that we know from theory [3] in which way the in-
finite-order result is approached. Thus we may fit the
approximate valuesαN by an appropriate expansion in
1/N and achieve in this way a more accurate estimate
of the limiting value than without such an extrapola-
tion. The error can thus be made much smaller than
the distance between the last two approximations, as
has been verified in many model studies of divergent
series [6].

The strategy of this Letter goes as follows: We
want to use all the additional informations on the
expansion of the critical exponentα as above, but
apply the variational resummation method in two more
alternative ways. First, we reexpand the seriesα(g0) in
powers of a variableh whose critical limit is no longer
infinity buth= 1. The closer distance to the expansion
point h = 0 leads us to expect a faster convergence.
Second, we resum two different expansions, one forα,
and one forf (α) = ν−1 ≡ 3/(2 − α). From the
difference in the resultingα-values and a comparison
with the earlier result (3) we obtain an estimate of the
systematic errors specified in Eq. (4).
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2. The seven-loop power series expansion forν in
powers of the unrenormalized coupling constant of
O(2)-invariantφ4-theory which lies in the universality
class of superfluid helium reads [4,7,8]

ν−1= 2− 0.4g0+ 0.4681481481482289g0
2

− 0.66739g0
3+ 1.079261838589703g0

4

− 1.91274g0
5+ 3.644347291527398g0

6

(6)− 7.37808g0
7+ · · · .

By fitting the expansion coefficients with the theoret-
ical large-order behavior (5), this series has been ex-
tended to higher orders as follows [5]:

1ν−1= 15.75313406543747g0
8− 35.2944g0

9

+ 82.6900901520064g0
10− 202.094g0

11

+ 514.3394395526179g0
12− 1361.42g0

13

+ 3744.242656157152g0
14− 10691.7g0

15

(7)+ · · · .
The renormalized coupling constant is related to the

unrenormalized one by an expansiong =∑7
k=1akg

k
0.

Its power behavior for largeg0 is determined by a
series

s = d logg(g0)

d logg0
= 1− g0+ 947g0

2

675

− 2.322324349407407g0
3

+ 4.276203609026057g0
4

− 8.51611440473227g0
5

+ 18.05897631325589g0
6

(8)+ · · · .
A similar best fit of these by the theoretical large-order
behavior extends this series by

1s = 40.38657228730114g0
7

+ 94.6453399123477g0
8

− 231.3922442162566g0
9

+ 588.3206172579102g0
10

− 1552.116358404217g0
11

+ 4242.372685080157g0
12

− 12001.18866491822g0
13

+ 35115.23006646194g0
14

− 106234.4643086436g0
15

(9)+ 332239.2175082959g0
16+ · · · .

Scaling implies thatg(g0) becomes a constant for
g0→∞, implying that the powers goes to zero in this
limit. By inverting the expansion fors, we obtain an
expansion forν−1 in powers ofh≡ 1− s as follows:

ν−1(h)= 2− 0.4h− 0.093037h2+ 0.000485012h3

− 0.0139286h4+ 0.007349h5

− 0.0140478h6+ 0.0159545h7

− 0.029175h8+ 0.0521537h9

− 0.102226h10+ 0.224026h11

− 0.491045h12+ 1.22506h13

− 3.00608h14+ 8.29528h15

(10)− 22.5967h16.

This series has to be evaluated ath= 1. For estimating
the systematic errors of our resummation, we also
calculate from (10) a series forα = 2− 3ν:

α(h)= 0.5− 0.3h− 0.129778h2− 0.0395474h3

− 0.0243203h4− 0.0032498h5

− 0.0121091h6+ 0.00749308h7

− 0.0194876h8+ 0.0320172h9

− 0.0651726h10+ 0.14422h11

− 0.315055h12+ 0.802395h13

− 1.95455h14+ 5.49143h15

(11)− 14.8771h16+ · · · .

3. In order to get a rough idea about the behavior of
the reexpansions in powers ofh, we plot their partial
sums ath = 1 in the upper row of Fig. 1. After an
initial apparent convergence, these show the typical
divergence of perturbation expansions.

A rough resummation is possible using Padé ap-
proximants. The results are shown in Table 1. The
highest Padé approximants yield

(12)αPad=−0.0123± 0.0050.

The error is estimated by the distance to the next lower
approximation.
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Fig. 1. Upper plots: Results of partial sums of series (10) forν−1 up to orderN , once plotted asνN = 1/ν−1
N , and once asαN = 2− 3νN .

The third plot shows the corresponding partial sums of the series forα. The dotted line is the experimental space shuttle valueαss of Eq. (1).
Lower plots: The corresponding resummed values and a fit of them byc0+ c1/N2+ c2/N4. The constantc0 is written on top, together with
the seventh-order approximation (in parentheses). The square brackets on top of the left-hand plot forν shows the correspondingα-values.

Table 1
Results of the Padé approximationsPMN(h) at h= 1 to the power seriesν−1(h) andα(h). The parentheses show the associated values ofα

andν

M N ν (α) (ν) α

4 4 0.678793 (−0.0363802) (0.678793) −0.0363802

5 4 0.671104 (−0.0133107) (0.670965) −0.0128940

4 5 0.670965 (−0.0128940) (0.670901) −0.0127031

5 5 0.670756 (−0.0122678) (0.670756) −0.0122678

4. We now resum the expansionsν−1(h) andα(h)
by variational perturbation theory. This is applicable
to divergent perturbation expansions

(13)f (x)=
∞∑
n=0

anx
n,

which behave for largex like

(14)f (x)= xp/q
∞∑
m=0

bmx
−2m/q.

It is easy to adapt our function to this general behavior.
Plotting the successive truncated power series for

ν−1(h) againsth in Fig. 2, we see that this function
will have a zero somewhere aboveh= h0= 3.

We therefore go over to the variablex defined by
h = h(x) ≡ h0x/(h0 − 1 + x), in terms of which
f (x) = ν−1(h(x)) behaves like (14) withp = 0
and q = 2, and has to be evaluated atx = 1. The
large-x behavior is imposed upon the function with
expansion (13) as follows. We insert an auxiliary scale
parameterκ and define the truncated functions

(15)fN(x)≡ κp
N∑
n=0

an

(
x

κq

)n
.
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Fig. 2. Successive truncated expansions ofν−1(h) of orders
N = 2, . . . ,12.

The parameterκ will be set equal to 1 at the end.
Then we introduce a variational parameterK by the
replacement

(16)κ→
√
K2+ κ2−K2.

The functionsfN(x) are so far independent ofK.
This is changed by expanding the square root in
(16) in powers ofκ2 − K2, thereby treating this
difference as a quantity of orderx. This transforms
the terms κpxn/κqn in (15) into polynomials of
r ≡ (κ2−K2)/K2:

κp
xn

κqn
→Kp xn

Kqn

[
1+

(
(p− qn)/2

1

)
r

+
(
(p− qn)/2

2

)
r2+ · · ·

(17)+
(
(p− qn)/2
N − n

)
rN−n

]
.

Setting now κ = 1, and replacing the variational
parameterK by v defined byK2 ≡ x/v, we obtain

from (15) atx = 1 the variational expansions

(18)fN(v)=
N∑
n=0

anv
qn−p/2[1+ (v − 1)

](p−qn)/2
N−n ,

where the symbol[1+ A](p−qn)/2N−n is a short notation
for the binomial expansion of(1 + A)(p−qn)/2 in
powers ofA up to the orderAN−n.

The variational expansions are optimized inv by
minima for odd, and by turning points for evenN ,
as shown in Fig. 3. The extrema are plotted as
a function of the orderN in the lower row of
Fig. 1. The left-hand plot shows directly the extremal
values ofν−1

N (v), the middle plot shows theα-values
αN = 2− 3νN corresponding to these. The right-hand
plot, finally, shows the extremal values ofαN(v). All
three sequences of approximations are fitted very well
by a largeN expansionc0 + c1/N

2 + c2/N
4, if we

omit the lowest five data points which are not yet very
regular. The inverse powers 2 and 4 ofN in this fit
are determined by starting from a more general ansatz
c0 + c1/N

p1 + c2/N
p2 and varyingp1,p2 until the

sum of the square deviations of the fit from the points
is minimal.

The highest-order data point is taken to be the one
with N = 12 since, up to this order, the successive as-
ymptotic valuesc0 change monotonously by decreas-
ing amounts. Starting withN = 13, the changes in-
crease and reverse direction. In addition, the mean
square deviations of the fits increasing drastically, in-
dicating a decreasing usefulness of the extrapolated
expansion coefficients in (7) and (9) for the extrap-
olationN →∞. From the parameterc0 of the best
fit for α which is indicated on top of the lower right-

Fig. 3. Successive variational functionsν−1
N
(h) andαN(h)withN = 3, . . . ,12 of Table 2 plotted forh= x = 1 against the variational parameter

K =√x/v, together with their minima for oddN , or turning points for evenN . These points are plotted againstN in the lower row of Fig. 1,
where they are extrapolated toN→∞, yielding the critical exponents.
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Table 2
Variational reexpansions ofν−1

N
(h) andαN(h) for N = 2, . . . ,9 ath= x = 1 which are plotted in Fig. 3 and whose minima and turning points

are extrapolated toN =∞ in the lower left- and right-hand plots of Fig. 1. The lists are carried only toN = 9, to save space, whereas the plots
are forN = 3, . . . ,12

ν−1
2 = 2− 1.2v + 0.69067v2

ν
−1
3 = 2− 1.8v + 2.07200v2 − 0.72036v3

ν−1
4 = 2− 2.4v + 4.14400v2 − 2.88145v3 + 0.53412v4

ν−1
5 = 2− 3.0v + 6.90667v2 − 7.20363v3 + 2.67060v4 + 0.28949v5

ν−1
6 = 2− 3.6v + 10.3600v2 − 14.4073v3 + 8.01180v4 + 1.73692v5 − 2.96286v6

ν−1
7 = 2− 4.2v + 14.5040v2 − 25.2127v3 + 18.6942v4 + 6.07922v5 − 20.7401v6 + 11.1835v7

ν−1
8 = 2− 4.8v + 19.3387v2 − 40.3403v3 + 37.3884v4 + 16.2113v5 − 82.9602v6 + 89.4683v7 − 36.9575v8

ν−1
9 = 2− 5.4v + 24.8640v2 − 60.5105v3 + 67.2992v4 + 36.4753v5 − 248.881v6 + 402.607v7 − 332.617v8 + 121.914v9

α2= 0.5− 0.90v + 0.3830v2

α3= 0.5− 1.35v + 1.1490v2− 0.26997v3

α4= 0.5− 1.80v + 2.2980v2− 1.07989v3 + 0.025254v4

α5= 0.5− 2.25v + 3.8300v2− 2.69972v3 + 0.126271v4 + 0.57604v5

α6= 0.5− 2.70v + 5.7450v2− 5.39945v3 + 0.378812v4 + 3.45629v5 − 2.19244v6

α7= 0.5− 3.15v + 8.0430v2− 9.44903v3 + 0.883895v4 + 12.0970v5 − 15.3471v6+ 6.89011v7

α8= 0.5− 3.60v + 10.724v2− 15.1184v3 + 1.767790v4 + 32.2587v5 − 61.3884v6+ 55.1208v7 − 21.5704v8

α9= 0.5− 4.05v + 13.788v2− 22.6777v3 + 3.182020v4 + 72.5821v5 − 184.165v6+ 248.044v7 − 194.134v8 + 70.781v9

Fig. 4. Survey of experimental and theoretical values forα. The latter come from resummed perturbation expansions ofφ4-theory in 4− ε
dimensions, in three dimensions, and from high-temperature expansions of XY-models on a lattice. The sources (Refs. [1,2,4,5,9–18]) are
indicated below.

hand plot in Fig. 1, we find the critical exponent
α = −0.01126 stated in Eq. (4), where the error es-
timate takes into account the basic systematic errors
indicated by the difference between the resummation
of α = 2− 3ν, and ofν−1, which by the lower mid-

dle plot in Fig. 1 yieldsα =−0.01226. It also accom-
modates our earlier seven-loop strong-coupling result
(3) of Ref. [5]. The dependence on the choice ofh0
is negligible as long as the resummed seriesν−1(x)

andα(x) do not change their Borel character. Thus
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h0 = 2.2 leads to results well within the error limits
in (4).

Our number as well as many earlier results are
displayed in Fig. 4.

The entire subject is discussed in detail in Ref. [19].

Note added in proof

A recent calculation ofα by an improved high-
temperature expansion yields the exponentα =
−0.0150(17) [20].
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