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Abstract

Recently developed strong-coupling theory opens up the possibility of treating quantum-mechanical systems with
hard-wall potentials via perturbation theory. To test the power of this theory we study here the exactly solvable quantum
mechanics of a point particle in a one-dimensional box. Introducing an auxiliary harmonic frequency term v, the
ground-state energy EŽ0. can be expanded perturbatively in powers of p 2rv d2, where d is the box size. The removal of the
infrared cutoff v requires the resummation of the series at an infinitely strong coupling. We show that strong-coupling
theory yields a fast-convergent sequence of approximations to the well-known quantum-mechanical energy EŽ0.sp 2r2 d2.
q 1999 Published by Elsevier Science B.V. All rights reserved.

w x1. Variational perturbation theory 1 permits us to convert divergent weak-coupling expansions into
convergent strong-coupling expansions. In particular, a constant strong-coupling limit of a function can be
evaluated from its weak-coupling expansion with any desired accuracy. As an important application, this has led

w xto a novel way of calculating critical exponents without using the renormalization group 2 .
Given this theory, new classes of physical systems become accessible to perturbation theory. For instance,

w xthe important problem a the pressure exerted by a stack of membranes upon the enclosing walls 3 has now
become calculable analytically with the help of perturbation theory. For a single membrane, this has already be

w xdone successfully 4,5 . Realistic physical problems have usually the disadvantage that the maximally accessible
order of perturbation theory is quite limited. If we want to gain a better understanding of the convergence of the
successive approximations as the order goes to infinity it is useful to study a system where the result is known
exactly. This will be done in the present note for a quantum-mechanical point particle in a one-dimensional box.

Ž0. 2 2 Ž .The ground state energy of this system is known exactly, E sp r2 d in natural units , where d is the size
of the box. We shall demonstrate how this result is found via strong-coupling theory from a perturbation

w xexpansion, thus illustrating the reliability of the earlier membrane calculations 4,5 .
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Ž .2. The partition function of a particle in a box is given by the Euclidean path integral always in natural units

Ž .21r2 dt E uHZs DDu t e 1Ž . Ž .H
Ž . Ž .where the particle coordinate u t is restricted to the interval ydr2Fu t Fdr2. Since such a hard-wall

Ž .restriction is hard to treat analytically in the path integral Eq. 1 , we make the hard-walls soft by adding to the
Ž .Euclidean action E in the exponent of Eq. 1 a potential term diverging near the walls. Thus we consider the

auxiliary Euclidean action
1 2

Es dt E u t qV u t , 2Ž . Ž . Ž .Ž .� 4H
2

Ž .where V u is given by
22 2v d p u v 2

2 4V u s tan s u q gu q . . . . 3Ž . Ž .ž / ž /2 p d 2 3

On the right-hand side we have introduced a parameter g'p 2rd 2.

3. The expansion of the potential in powers of g can now be treated perturbatively, leading to an expansion of
Ž .Z around the harmonic part of the partition function, in which the integrations over u t run over the entire

u-axis and yield

Z seyŽ1 r2.Tr log ŽE 2qv 2 . . 4Ž .v

For L™`, the exponent gives a free energy density fsyLy1 log Z equal to the ground state energy of the
harmonic oscillator

v
f s . 5Ž .0 2

The treatment of the interaction terms can be organized in powers of g, and give rise to an expansion of the free
energy with the generic form

` kg
fs f qv a . 6Ž .Ý0 k ž /vks1

The calculation of the coefficients a in this expansion proceeds as follows. First we expand the potential in Eq.k
Ž .2 to identify the power series for the interaction energy

2 2 `v v kq1int 4 2 6 3 8 k 2E s dt g´ u qg ´ u qg ´ u q . . . s dt g ´ u t , 7Ž . Ž .� 4 ÝH H4 6 8 2 kq22 2 ks1

with coefficients
2 17 62 1382 21844 929569

´ s , ´ s , ´ s , ´ s , ´ s , ´ s ,4 6 8 10 12 143 45 315 14175 467775 42567525
6404582 443861162 18888466084 113927491862

´ s , ´ s , ´ s , ´ s ,16 18 20 22638512875 97692469875 9280784638125 126109485376875
58870668456604 8374643517010684 689005380505609448

´ s , ´ s , ´ s ,24 26 28147926426347074375 48076088562799171875 9086380738369043484375
129848163681107301953 1736640792209901647222

´ s , ´ s ,30 323952575621190533915703125 122529844256906551386796875
418781231495293038913922

´ s , . . . . 8Ž .34 68739242628124575327993046875
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w 2Ž .xkq1The interaction terms Hdt u t and their products are expanded according to Wick’s rule into sums of
products of Wick contractions representing harmonic two-point correlation functions

dk e i kŽ t1yt 2 . eyv < t1yt 2 <

² :u t u t s s . 9Ž . Ž . Ž .H1 2 2 22p 2vk qv

² 2:Associated local expectation values are u s1r2v, and

dk k
² :uE u s s0H 2 22p k qv

dk k 2 v
² :E uE u s sy , 10Ž .H 2 22p 2k qv

where the last integral is calculated using dimensional regularization in which Hdk k a s0 for all a . The Wick
contractions are organized with the help of Feynman diagrams. Only the connected diagrams contribute to the
free energy density. The graphical expansion of free energy up to four loops is

Ž .11

n Ž .Note different numbers of loops contribute to the terms of order g . The calculation of the diagrams in Eq. 11
is simplified by the factorization property: If a diagram consists of two subdiagrams touching each other at a
single vertex, the associated Feynman integral factorizes into those of the subdiagrams. In each diagram, the last
t-integral yields an overall factor L, due to translational invariance along the t-axis, the others produce a factor

Ž .1rv. Using the explicit expression Eq. 10 for the lines in the diagrams, we find the following values for the
Feynman integrals:

Ž .12

Ž Ž .. 3Adding all contributions in reftextEq. Eq. 11 , we obtain up to the order g :

2 31 3 g 15 21 g 105 45 333 g
2 3f sv q ´ q ´ y ´ q ´ y ´ ´ q ´ , 13Ž .3 4 6 4 8 4 6 4ž / ž / ž /½ 52 8 v 16 32 v 32 8 128 v
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Ž .which has the generic form 6 . We can go to higher orders by extending the Bender–Wu recursion relation for
the ground-state energy of the quartic anharmonic oscillator as follows:

n ny11 k2 jC s jq1 2 jq1 C y y1 ´ C , jyky1y C C , j, 1F jF2n ,Ž . Ž . Ž .Ý Ýn , j n , j 2 kq2 nyk k ,1 nyk2 ks1 ks1

C s1, C s0 nG1, j-1 .Ž .0,0 n , j

14Ž .
Ž . Ž .kq1After solving these recursion relations, the coefficients a in Eq. 6 are given by a s y1 C . Fork k k ,1

brevity, we list here the first sixteen expansion coefficients for f , calculated with the help of the algebra
program REDUCE:

1 1 1 1 1
a s , a s , a s , a s0, a sy , a s0, a s , a s0,0 1 2 3 4 5 6 72 4 16 256 2048

5 7 21
a sy , a s0, a s , a s0, a sy , a s0,8 9 10 11 12 1365536 524288 8388608

33 429
a s , a s0, a sy , . . . . 15Ž .14 15 1667108864 4294967296

Ž .4. We are now ready to calculate successive strong-coupling approximations to the function f g . It will be
2 2 ˜Ž . Ž .convenient to remove the expected correct d dependence p rd from f g , and study the function f g '

Ž .f g rg which depemds only on the dimensionless reduced coupling constant gsgrv. The limit v™0
corresponds to a strong-coupling limit in the reduced coupling constant g. According to the general theory in

)˜ ˜w x Ž .Refs. 2,1 , the Nth order approximation to the strong-coupling limit of f g , to be denoted by f , is found by
˜ Ž .replacing, in the series truncated after the Nth term, f grv , the frequency v by the identical expressionN

2 2 2Ž .(V yrg , where r' V yv rg. For a moment, this is treated as an independent variable, whereas V is a
˜ Ž .dummy parameter. Then the square root is expanded binomially in powers of g, and f g is re-expanded up toN

N ˜ Ž .order g . After that, r is replaced by its proper value. In this way we obtain a function f g,V which dependsN

on V , which thus becomes a variational parameter. The best approximation is obtained by extremizing
˜ Ž .f g,V with respect to v. Setting vs0, we go to the strong-coupling limit™`. There the optimal V growsN

˜ Ž .proportionally to g, so that grVs1rc is finite, and the variational expression f g,V becomes a function ofN
˜ nŽ .f 1rc . In this limit, the above reexpansion amounts simply to replacing each power v in each expansionN

yn r2˜ Ž . Ž . Ž .terms of f g by the binomial expansion of 1y1 truncated after the Nyn th term, and replacing gN
˜ ˜Ž . Ž .by 1rc. The first nine variational functions f 1rc are listed in Table 1. The functions f 1rc are minimizedN N

Table 1
˜ Ž .First eight variational functions f 1rcN

1 1 3 c˜ Ž .f 1rc s q q2 4 16 c 16

1 3 5 c˜ Ž .f 1rc s q q3 4 32 c 32

1 1 15 35 c˜ Ž .f 1rc s y q q34 4 256 c 128 c 256

1 5 35 63 c˜ Ž .f 1rc s y q q35 4 512 c 256 c 512

1 1 35 315 231 c˜ Ž .f 1rc s q y q q5 36 4 2048 c 2048 c 2048 c 2048

1 7 105 693 429 c˜ Ž .f 1rc s q y q q5 37 4 4096 c 4096 c 4096 c 4096

1 5 63 1155 3003 6435 c˜ Ž .f 1rc s y q y q q7 5 38 4 65536 c 16384 c 32768 c 16384 c 65536

1 45 231 3003 6435 12155 c˜ Ž .f 1rc s y q y q q7 5 39 4 131072 c 32768 c 65536 c 32768 c 131072
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˜ Ž .Fig. 1. Variational functions f 1rc up to Ns16 are shown together with their minima whose y-coordinates approach rapidly the correctN

limiting value 1r2.

˜ ˜ ˜Ž . Ž . Ž .starting from f 1rc and searching the minimum of each successive f 1rc , f 1rc , . . . nearest to the2 3 3
˜ Ž .previous one. The functions f 1rc together with their minima are plotted in Fig. 1. The minima lie atN

˜minN , f s 2, 0.466506 , 3, 0.492061 , 4, 0.497701 , 5, 0.499253 , 6, 0.499738 , 7, 0.499903 ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .N

8, 0.499963 , 9, 0.499985 , 10, 0.499994 , 11, 0.499998 , 12, 0.499999 ,Ž . Ž . Ž . Ž . Ž .

13, 0.5000 , 14, 0.50000 , 15, 0.50000 , 16, 0.5000 . 16Ž . Ž . Ž . Ž . Ž .

They converge exponentially fast against the known result 1r2, as shown in Fig. 2.

Ž .5. The alert reader will have noted that the expansion coefficients 15 possesses two special properties: First,
w 2Ž .xkq1they lack the factorial growth at large orders which would be found for a single power u t of the

w xinteraction potential 6 . The factorial growth is canceled by the specific combination of the different powers in
Ž . Ž .the interaction 7 , making the series 6 convergent inside a certain circle. Still, since this circle is has a finite

Ž .radius the ratio test shows that it is unity , this convergent series cannot be evaluated in the limit of large g
which we want to do, so that variational strong-coupling theory is not superfluous. However, there is a second

Ž .remarkable property of the coefficients 15 : They contain an infinite number of zeros in the sequence of

Fig. 2. Exponentially fast convergence of the strong-coupling approximations towards the exact value.
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coefficients for each odd number, except for the first one. We may take advantage of this property by separating
2 2 2 2 Ž̃ .off the irregular term a gsgr4sp r4d , setting asg r4v , and rewriting f g as1

N1 1
2 nq1 nf̃ a s 1q h a , h a ' 2 a a . 17Ž . Ž . Ž . Ž .Ý 2 n'4 a ns0

Ž Ž .. Ž .Inserting the numbers Eq. 15 , the expansion of h a reads

a a 2 a 3 5 7 21 33 429
4 5 6 7 8h a s1q y q y a q a yy a q a y a q . . . . 18Ž . Ž .

2 8 16 128 256 1024 2048 32768

' Ž .We now realize that this is the binomial power series expansion of 1qa . Substituting this into Eq. 17 , we
Ž Ž ..find the exact ground state energy for the Euclidean action Eq. 2

2 2 4p 1 p d
Ž0. 2E s 1q 1q s 1q 1q4v . 19Ž .((2 2 4ž / ž /a4d 4d p

Here we can go directly to the strong-coupling limit a™` to recover the exact ground-state energy
EŽ0.sp 2r2 d2.

Ž .6. The energy 9 can of course be obtained directly by solving the Schrodinger equation associated with the¨
Ž .potential 7

2 21 E l 1yl dŽ .
y q y1 c x s Ec x , 20Ž . Ž . Ž .2 2 2½ 52 E x cos x p

2 4 4 Ž .where we have replaced u™dxrp and set v d rp 'l ly1 , so that

41 d
2ls 1q 1q4v . 21Ž .( 4ž /2 p

Ž . w xEq. 20 is of the Poschl–Teller type and has the ground state wave function 7¨

c x sconstPcoslx , 22Ž . Ž .0

2 Ž0. 2 Ž 2 . Ž .with the eigenvalue p E rd s l y1 r2, which agrees of course with Eq. 19 .
'Ž . Ž .If we were to apply the variational procedure to the series h a r a in f of Eq. 19 , by replacing the factor

2 n n 2'1rv contained in each power a by Vs V yra and reexpanding now in powers of a rather than g, we
Ž .would find that all approximation h 1rc would posses a minimum with unit value, such that the correspond-N

˜ Ž .ing extremal functions f 1rc yield the correct final energy in each order N.N

7. With the exact result being known, let us calculate the exponential approach of the variational approximations
Ž .obeserved in Fig. 2. Let us write the exact energy 19 as

1
Ž0. 2 2(E s gq g q4v , 23Ž .ž /4

2(After the replacement v™ V yrg , this becomes

V
Ž0. 2(E s gq g y4rgq4 . 24Ž .ˆ ˆ ˆž /4
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2 Ž . Ž0. Ž Ž ..where g'grV . The Nth-order approximant f g of E is obtained by expanding Eq. 24 in powers ofˆ N

g up to order N,ˆ
N

kf g sV h r g , 25Ž . Ž . Ž .ˆÝN k
0

Ž 2 . 2 2 2and substituting r by 1yv rg, with v 'v rV . The resulting function of g is then optimized.ˆ ˆ ˆ ˆ
ŽŽ .It is straightforward to find an integral representation for f g . Setting rg'z, we haveˆN

1 dz 1yz Nq1

f s f z , 26Ž . Ž .EN Nq12p i 1yzzC0

where the contour C refers to small circle around the origin and0

2V z z 1
f z s q y4 zq4 s zq zyz zyz , 27(Ž . Ž . Ž . Ž .( ž /1 22ž /4 r 4rr

2 2(with branch points at z s2 r 1" 1y1rr . For z-1, we rewritež /1,2

2Nq1 N Ny11yz s 1yz 1qzq . . . qz s 1yz Nq1 y 1yz Nq Ny1 zq . . . qzŽ . Ž . Ž . Ž . Ž . Ž .
28Ž .

and estimate this for zf1 as

Nq1 < < 2 21yz s 1yz Nq1 qOO 1yz N . 29Ž . Ž . Ž .Ž .
Ž . Ž .With 28 , divided the approximant 26 divided by V , indicated by a hat, becomes the sum of the

discontinuities across each branch cut

2ˆ `Nq1 dzf z Nq1 dzŽ . Ž . Ž .
ŽN .ˆ ˆ ˆ ˆf s f z s f 0 s Nq1 f z 30Ž . Ž . Ž . Ž . Ž .ÝE HN Nq1 Nq12p i N !z zC z0 iis1

Ž .The integral over the cuts in f z yields a constant plus a product

Nq1 Ny3r2 ! 1 1Ž . Ž .
ˆD f f , 31Ž .N N N2 2N ! r 1qrŽ . Ž .

which for large N can be approximated by

A 2yr NˆD f f e . 32Ž .N N2 'r NŽ .

In the strong-coupling limit of interest here, v 2 s0, and rs1rgsVrgsc. In Fig. 1 we see that the optimalˆ ˆ
ˆ yNc-values tend to unity for N™`, so that D f goes to zero like e , as observed in Fig. 2.N
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