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Using unsubtracted dispersion relations for the invariant amplitudes of the process 7N — 7A in
forward and backward direction we derive sum rules relating { channel to s and # channel resonances.
We saturate these sum rules by p, N, and A and obtain for the P coupling constants

5
Csm =%; C4m2 = Csm?2 =43

where m is the average mass of N and A. Assuming vector meson dominance of the electromagnetic
vertex NAy these become the values of the Gourdin-Salin coupling constants in reasonable agreement

with experiment.

The assumption that the f channel cut of back-
ward dispersion relations of pion nucleon scatter-
ing can be dominated by a p meson for Iy = 1 and
that the coupling constants of p can be related to
the electromagnetic couplings of the nucleons via
the vector meson dominance hypothesis has led
to three successful sum rules for kY, the anoma-
lous isovector magnetic moment [1]. These sum
rules emerge by equating the value of the am-
plitudes A(S, B(-) and A'(-) (the ¢ channel heli-
city flip amplitude) at threshold obtained from a
lispersion relation at 6g = 7 with the value ob-
tained from a forward dispersion relation and
saturating the integrals with sharp resonances.
We have found that a similar procedure applied
to the corresponding invariant amplitudes of
7N - 7A scattering leads to good sum rules for
the NAY vertex. The kinematics of these sum
rules are, in general, quite involved. The cal-.
culation becomes, however, very simple if one
works at zero pion mass, is content with a satu-
ration by means of N and A only, and assume,
moreover, that the masses of these particles are
degenerate.

Let the invariant amplitudes * be defined by

* Our normalization is (ﬂ(q')[n(q)> = 2¢,(2m363(q'-q)

P,
and {N(p" | N()) =22 (2m363(p'-p)

while T is defined by §= 1-1(2m)45(4)(P -R)

@@ a@) T |7 Np)) = (1)

TH (A +@BY?) @, + (AR +@BEIKH u(p)
with

Q= 3(g+q") K=3(g-q" ()
and
a2 o a{) I?f) + Ag“)zl(f’s 3)

etc., where / +) and J -) are the isospin matrices
of Iy =1 and Iy = 2 [2].

Then we find that A and B can be expressed in
terms of the s channel helicity amplitudes

~(S - T L - 1 S
Ti,; = cos ENERY 3 0 sin -] 30 Ti'?h 4)

in the form

f(s)
Al T?ﬁz 1/2
A2 T\S
2 ams,05) | V3 LRV ©)
1 3 -l2172
By Tg-ss)/z 1/

where W is given in forward direction by

(W= Vs)
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m 0 m 0
0amw |T ™ 0 -m -2W
L »
s-m Lua
0 W 0 0
m
2 W 0 0
while for backward angle g = 7 we find
2
s+m
0 0 m - W2
0 0 -m -S_u';l
Vamw
Wis, ) = -22mW L
(s-m?) stm?2  m 0 m
s w w
s-m2 m 0 _m
S w w

Here m has to be taken as the average mass of
nucleon and A resonance.

Consider the Iy = 1 amplitudes. From the def-
inition (1) we see that A(' s B(-) are even func-

in s -u while Ag') and B{™) are odd. As usual, we

divide the factor 2/s-u) out of AG) ang B in or-
der to obtain functions of (s-#)2 and ¢ only. Ap-
plying the Regge pole hypothesis we find that

() 2 ,0) () )
Ay smfyh swBi o B ®

behave asymptotically as

an-1 ap-1 ap-3 ap-1
sp ,SP ,SP ,SP

in forward direction where &, is the intercept of
the p trajectory (= 0.5). Hence, we can write an
unsubtracted dispersion relation in s for the
threshold point s = m2, ¢ = 0**,

In the backward direction the same amplitudes
have only dynamic singularities in the variable ¢.
To see this, we just note that (s-u)2 =¢(f - 4m2),
such that no kinematic singularity comes from
the variable (s —u)z. The baryon trajectory with
ap ~ 0.19 governs the asymptotic behaviour of

a{-a0, 5080, a0 wa0) ana 585
by

aB-3/2

t ¢

aB—3/2 ;

aB-]./Z taB-l/Z
2
Hence, another set of unsubtracted dispersion

** In this letter, we shall not discuss the more strin-
gent superconvergence relations obeyed by
2/(s-u)B(1‘) and 2/(s-u)Ag‘).
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relations can be written in the variable £ for the
threshold point ¢ = 0. ~(s)
Let us calculate the imaginary parts of T %
at a baryon pole. We find it most convenient to
use PCAC and state the result in terms of the
collinear invariant matrix elements x,()) of the
axial current at g2 = (p' - p)2 = 0 between baryons
of helicity A which satisfy SU(2)XSU(2) algebra

[3]
[Xb(x)’ Xa(h)] = izbac TC . (9)

One finds for a baryon resonance of mass my
and spin J

5 (8)
o o)
2 -~

where the square bracket denotes antisymmetri-
zation with respect to the pion indices b and a
and dy ) is defined in terms of the standard
dy,(0) functions analogously to (4). As a conse-
quence, the baryon resonance contributes to the
unsubtracted dispersion relation of

Al
_quas E%E Aél) Iba
2 0 | O

su Bl

-)

5}

in forward direction
9‘(?}3(3 =m2,t=0) =

(m2 - m2) (T + D -1 xpExa ()]
V3 [xb(3), Xa(®)]
-1 V3 [xp(3), Xa(3)]

(m - 2y 2T DT - Dixp(xa3)]

(2, 0) J (11)

while for the backward direction it gives
d‘:a(s =m2,t=0)p =
- m? J+3 [T 7<) \
n (T+)(I - 2)xp3)r xa ()]
ng 2
-nﬁ[xb(%)xa(%)] (12)
V3XxpEXa(3)]

4_ 4
%— T+ - Dxp(xa)]

-u‘m(mf,ﬂﬁ
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Here n is the parity of the intermediate state
while » denotes the normality z = ¢ (-)J‘l/2 *,
The threshold value obtained by subtracting all
backward contributions (12) from all forward
ones (11) should be equal to the { channel cut of
the backward amplitude

dba _ Eﬂba _ Zdba
¢ y vi v vb

Let us assume that this cut is dominated by a

p meson. We introduce the p couplings to N and

A according to Gourdin and Salin [4]**.

Then the unsubtracted ¢ channel contribution is

given by ***

(13)

mp
-2mC3+—5(Cq - Cs)

-(C4+Cs)
A =m2 1=0) = VE-L T
F 2

t 0
T
\ -2C3

Inserting eqs. (11), (12) and (14) into eq. (13),
we can write down explicitly our sum rule for
the NAy coupling constants Cg, C4, C5. We shall
not do so here, however, but shall proceed di-
rectly to the approximation of saturating this
sum rule with a nucleon and a A only. Then{

d:?a(s =m2,t=0) =

(15)
e Sm
1 V6 T -
F22m 0 [Foxahy + %’}Z [Xb(2)xa(2)]a
-1 g

Introduce the coupling constants Gﬂa of a pion
to particles 8 and « {i.

* Also we have used the property of X (N [3].
XaMBa = -mpna Xa(-M B
(A i NG V= 29, TV ICs Y -a) M)
+ Calap'gll-q p' M + Cslapelf-4,pM) 1 U )
where in our convention 2'yp = &pmr ~2.5.

*** We have used the KSFR relatior y, = (mg /8F2) to
eliminate y,.
i The XAM3/£) matrix element does not occur due to
the helicity condition for elastic matrix elements

XaaMXaal') = A/

which follows directly from the definition (10).
11 For the normalization of Ggy see ref. [5].
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Thus we find
-m (GANGNN+ZSGAAGAN)
115
-= 222G AG

g 1.8 |'m 2 7ANTAN (16)

t Tp22/2 | 115,
m m 2 AAGAN

~GANGNN +25Gpp GAN)

We have to insert values for the coupling con-
stants. Within the spirit of our approximation we
shell not use the experimental values but those
are determined from the SU(2) X SU(2) algebra (9)
for the NA system only. These coupling constants
satisfy the algebraic relations t{{

2 2 _

Gy = Oyp2 =1 (17)
G 2 - 1 G 2 — 1 18
AA” - 2 GAN® = (18)
GANGNN - 5 Gan Gan =0 (19)

They are solved by

(GNN’ GNA: GAA) = (g, ';’) 1)- (20)

With these values d(p') becomes

1
2
) 20 1/4m
t = ygF2 |-1/4m2 (21)
m
1/m

Comparing with (14) we obtain our final result
_ 5 2 _ 9_125
C3m— \/3 5 C4m = C5m = 4 ﬁ (22)

The sum rule for B{~) cannot be fulfilled since
the nucleon does not contribute and, at least, one
resonance of spin> 3/2 is needed to obtain the
required zero. The ANp coupling constants (22)
can be compared with experiment if one assumes
that the electro-magnetic current of the NA tran-
sition is dominated by a p meson.

In this case, our C's become directly the
Gourdin-Salin electromagnetic coupling con-
stants. They have been measured to be [4,6]

Cym~ 2.3, Cym? + Cgm? ~0.54 [4]  (23)
~2.0 [6]
We see that the agreement with the theoretical

value in (22) is as good as the approximation in-
volved.

111 obviously, these are the Adler-Weisberg sum rules

for 7N, A and 7#N— 7A scattering.
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A lot more algebraic effort is necessary to
lift the degeneracy of N and A and to include
higher resonances. The discussion of such a cal-
culation will be presented elsewhere.
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