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Abstract

We argue that the spontaneous breakdown of symmetry in the chirally symmetric Nambu—Jona-Lasinio model which was
supposed to illustrate the origin of the low mass of pions in hadron physics does not occur due to strong fluctuations in the
o—m field space. Although quarks acquire a constituent mass, o and 7 turn out to have equal heavy masses of the order of
the constituent quark mass. © 2000 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The chirally symmetric Nambu—Jona-Lasinio
model [1] was the first theoretical laboratory to
illustrate how light pions arise from a spontaneous
breakdown of chiral symmetry in hadron physics.
The first redistic formulation of the model which
included flavored quarks, possessed chiral symmetry
V(3) X (3), and aspectrum of o, 7, p, A; Mesons
and their SU(3) partners, was formulated and investi-
gated in 1976 by one of the authors[2], and has been
the source of inspiration for many papers in nuclear
physics in the past twenty years [3]. By eliminating
the Fermi fields in favor of a pair of collective scalar
and pseudoscalar fields o and 7, as well as vector
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and axial vector mesons, a Ginzburg—Landau like
collective field action was derived. This had been
studied in detail earlier as an effective action guaran-
teeing al low-energy properties of hadronic strong
interactions which were known from current algebra
and partial conservation of the axial current (PCAC).

In two important respects, however, the model
was unsatisfactory. First it was not renormalizable in
four dimensions, but required a momentum space
cutoff A to produce finite results. Moreover, to
obtain physical quantities of the correct size, the
cutoff had to be rather small, below one GeV, thus
limiting the reliability of the predictions to very low
energies. Second, if the fermions were identified
with quarks, the model could not account for their
confinement.

The nonrenormalizability was removed in [2] by
replacing the four-fermion interaction by the ex-
change of a massive vector meson. The different
attractive meson channels were obtained by a Fierz
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transformation. The mass of the vector meson took
over the role of the cutoff. The energy range of
applicability was, however, not increased since the
model would still allow for free massive quarks.

The purpose of this note is to point out a much
more severe problem with the model which seems to
invalidate most conclusions derived from it in the
literature: If chiral fluctuations are taken into account
in a certain nonperturbative approximation, the spon-
taneous symmetry breakdown disappears, and the
Zero-mass pions acquire the same mass as the o-me-
sons, both of the same order as the constituent quark
mass. The nonperturbative nature of the argument
seems to be the reason why the phenomena has been
overlooked until now.

Since the Nambu—Jona-Lasinio model is inca
pable of accounting for confinement, it gave no
reason for introducing colored quarks. It is curious to
observe that the restoration of symmetry by chiral
fluctuations would offer such areason, albeit with an
unphysical number of colors: the physically desired
spontaneous symmetry breakdown conclusion can
only be achieved by introducing at least five identi-
cal replica of fermions. The existing three colors are
insufficient to save the purpose of the model.

The non-perturbative arguments used in this paper
are analogous to those applied before in a discussion
of the Gross—Neveu model [4] in 2 + & dimensions
[5], where it was shown that this model has two
phase transitions, one where quarks become massive
and another one where chiral symmetry breaks spon-
taneously. They have aso been applied to explain
the experimental observation of two transitions in
high-T, superconductors [6], and to show that direc-
tional fluctuations in Ginzburg—L andau theories with
spontaneously broken O(N) symmetry disorder the
system before size fluctuations of the order field
become relevant [7].

2. Nambu-Jona-L asinio model

Let us briefly recall the relevant features of the
Nambu—Jona-Lasinio model for our considerations.
The model contains N, quark fields (), one for
each flavor. Each of them may appear with N,
colors, such that the total number of quarksis N =
N; X N,. Since the fluctuation phenomenon to be

discussed will be caused by the almost massless
modes, we may restrict ourselves to the aimost mass-
less up and down quarks. We will comment later on
the effect of the heavier quarks.

The Lagrangian of the model is given by [3]

Z=(id—me)ip+ f—lflc[(w)z + (v )]
(1)

where an implicit summation over a=1,23 is as-
sumed. A small diagonal quark mass matrix m,
breaks dlightly the SU(2) x SU(2) part of the chiral
symmetry which lifts the mass of the pion to a small
nonzero value. We have omitted the flavor symmet-
ric vector gluon exchange used in Ref. [2] which
would have given rise, after a Fierz transformation,
to additional vector and axial vector interactions,
which would not influence the chiral fluctuations to
be investigated here. Thus we use the origina non-
renormalizable interaction corresponding to an infi-
nite vector gluon mass. The coupling constant in (1)
is defined with the number of colors N, in the
denominator, to alow for a finite N, — o limit of
the model at a fixed g,. The 2 X 2-dimensional
matrices A,/2, with a=1,...,3 generate the funda-
mental representation of flavor SU(2), and are nor-
malized by tr(A A,) = 23,,.

Via a Hubbard—Stratonovich transformation, the
Lagrangian (1) is converted into a theory of collec-
tive scalar and pseudoscalar fields o and . Defin-
ing the propagator in the presence of the meson
fields

(2)

and adding external quark sources m,m, one can
integrate out the quark fields from the corresponding
Lagrangian. Summing over colors, the generating
functional of the Green functions takes the well-
known form

- id—mg—o—iysA,m,’

Z = f@&r.%-rexp{iNc[—iTr/IniGl
1
29,

+iNC‘1dedey7;Gn”. (3)

deX(0'2+ 7Ta2)
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The term inside the brackets is the collective field
action /[ o,7], whereas the symbol Tr' includes
both, the functional spacetime ‘‘index’’ x, and the
internal trace over spin and flavor indices: Tr' =
JdPxtr tr.

By extremizing /[ o,7] at zero sources 7,7, we
obtain the field equation for the collective field

(o,m):
1o
trytrf[G( x,x)( i)\::?’s)} = g—o Wa(())(()) )

For constant fields, this equation becomes a gap
equation. Its solutions will be marked by a super-
script ‘s’ for ‘‘stationary phase approximation’’.
From now on, unless explicitly stated, we shall
consider the model with zero mass, my;= 0. The
stationary pseudoscalar solutions 7 can aways be
chosen to be vanishing, while the scalar solutions
can be o°=0, or o°=p,. In the first case, the
ground state is chirally symmetric, in the second the
symmetry is spontaneously broken. This is the state
of physical interest whose stability will now be
discussed.

(4)

3. Effective potential and gap equation

In the limit N, — o, the generating functional is
given exactly by the extrema field configurations,
which will be parameterized as (o %(x),m (X)) =
(po(x),0). The system has an effective action per
quark

I'(py, V. %)

1
= —iTr'niG,, - 5— [d®xp}
N, Po 29,
1 Dwvilric— U
+Efd XT,iG, W, (5)

where ¥ = iG, 7 is the expectation value (¢ ) of the
quark field, and G, its propagator

[
G, = .
Po id_ Po
This shows that the solution of the gap equation with
po # 0 describes quarks with anonzero mass M = p,

which has been generated by the spontaneous sym-
metry breakdown, and is referred to as the con-

(6)

stituent quark mass. In the present approximation of
zero bare mass m,, the constituent quark mass is
about equal to 300 MeV for up and down quarks
(see the discussion in Refs. [2,8]). In either case, the
Green function (2) in the stationary field is diagonal
in flavor space.

In the absence of external quark sources, the
ground state expectation value of a fermion field is
aways zero, and the expectation vaue py(x) is
constant, so that (5) reduces into

I'(p)

= —iTrlniG*l—i[deP2 (7)
P 29, ,

where we have allowed the fields ¢ and 7, to be
nonextremal, defining o2+ 7.2 = p?, and reserving
the notation pg for the extremum. This is deter-
mined, after a Wick rotation to euclidean momenta
Pe With py=ipgy, id°p— —d®pg, p? > —pZ, by
the gap equation

1 dP 1
—=2><2D/2[ pEDﬁ.
Yo (2m)” PE*po

We have divided the two sides of the gap equation
by a common factor p,, Since we want to study the
spontaneously broken phase.

The gap equation must be regularized, which may
be done in many ways. Here, we shall use two
methods: analytic continuation in the dimension D,
and a cutoff A in momentum space. The former is
mathematically more elegant and has the advantage
of relating the properties in four dimensions to those
in 2+ &. It has, however, some unphysical proper-
ties which require special attention, as we shall see.
Such problems are absent in a cutoff regularization
scheme, which exhibits clearly the physical diver-
gences caused by the infinite number of degrees of
freedom of the field system. Factorizing the integral
in (8) into direction and size of the momentum pg,
we bring the gap equation to the form

1 ,I'(1-D/2)

— =2p) F— . 9
9% Po (27T)D/2 (9)

(8)

Denoting by 0 the D-dimensional volume [dPx,
the volume density v(p) = —I'(p)/Q of the effec-
tive action (7) is the effective potential per quark.
Performing the internal traces, and subtracting a
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divergent constant term associated with the chiraly
symmetric state with p, = 0, we obtain the conden-
sation energy in euclidean space:

Av(p)
N[l , 4
S BWF(l—D/Z) :
(10)

In an even number of dimensions D, both the gap
equation (9) and the effective potential (10) are
divergent, due to a pole in the factor I'(1—D/2).
Introducing the diverging parameter b =21(1—
D/2) /[ D(27)P/2], we can rewrite the gap equation
and effective potential in the more compact form as

1
— =Dpg " %h,, (11)
0

1

Ao p) = | 2= 2008, . (12)
219

In the more physical regularization with a cutoff A

in momentum space, these expressions look more
complicated:

! 2 A? 2In| 1 i (13)
— = —poIn|1+—1],
9% (2m)° ° P
N, [ 1 2 pzA2
au(p) = | o= | o
9 (2m) 2
A4 p2 4 AZ
+—1In 1+—2 — —In 1+—2 .
2 A 2 p

(14)

The results (11) and (12) of the analytic regular-
ization scheme can be mapped roughly into the
cutoff results (13) and (14) if we recall the special
property of dimensional regularization that all inte-
grals over pure momentum powers vanish identi-
caly: [d°k(k)*=0 (Vetman's rule). Thus, arbi-
trary pure powers of the cutoff A**° have no
counterpart in dimensional regularization. Only loga
rithmic divergences can be related to diverging pole
terms 1/e — « for € — 0. It is therefore inconsistent
to relate € to A by setting I'(e/2— 1) = A?/p?, as
proposed by Krewald and Nakayama [9]. Only the
logarithmic divergence in (13) can be mapped to the

small-e divergence in (11), setting I'(e/2—1) =
—In(1+ A?/p?). With their inconsistent identifica-
tion, Krewald and Nakayama matched A by an
€ > 2 which lies in the wrong region D <2, the
physicaly relevant range being D (2+ €,4— €).
Note that the matching of the logarithm at the level
of the effective potential leads to the properly
matched gap equation, thus having circumvented the
unphysical properties of the analytic regularization.
The free use of this scheme in renormalizable field
theories relies on the fact that all infinities are even-
tually absorbed in unobservable bare quantities, such
that the artificial zeros of the integrals over pure
powers of momenta cannot produce problems. In
nonrenormalizable theories, on the other hand, only a
cutoff (or a related Pauli—Villars regularization) is
physical, and analytic regularization must be treated
with caution. This is seen even more dramaticaly in
integrals which do not have logarithmic infinities.
For example the condensation energy (10) in D =3
dimensions would be a finite negative number in
analytic regularization, while being a linearly diver-
gent positive function of the cutoff.

4, Chiral fluctuations

Since the physical number of quarks N is finite,
the fields perform fluctuations of magnitude 1/ \/E
around their extremal value. As long as N, can be
considered as a large number, the deviation from the
extrema field configuration (o',7}) = (o — py,,)
are small, and the action can be expanded in powers
of (o',m}). The quadratic terms in this expansion
define the propagators of the collective fields
(o',m}). The higher expansion terms of the trace of
the logarithm in (3) define the interactions. With this
decomposition, the inverse of the quark propagator
(2) can be decomposed into a constant and a fluctuat-
ing part, setting iG™!'=iG, '~ (o' +iysA,m),
with G, of Eg. (6). Then we have

TriniG™t = TrIniGp’o1
+Trn[1+iG, (o' +iysA,m)]-
(15)

An expansion of the last term up to the second order
in the fields gives an approximate partition function
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(with 2o = exp[ — QN ( po)] and Qg is the eu-
clidean volume)

i
Z=20/90-977exp(iN0{ETr’[iGpo(o’

2 1 2 2
+i'y5/\a77a’)] - Z—%dex(g-' + )})
(16)

The functional matrix between the fields in the expo-
nent gives us directly the inverse of the desired
collective free field propagators G,.,G_.. In momen-
tum space, we identify

1
sto[o' '] = = [d°a[m(a) G, ()

+0'(a)G, o'(—a)], (17)
where
d®pe
(2m)°

G, L=2x2°/°N [‘ay [
0

02 + P + (Zpg,O)
[(a2 +2pcae)y + P2+ p3]”

(18)

In this expression, the gap equation (8) has been
used to eliminate the term 1 /g,,. The notation (2 p2,0)
indicates that only the equation for o contains an
extraterm 2p3.

In four spacetime dimensions, the integral evalu-
ated in dimensional regularization reduces to g2/2
for the pseudoscaars, and to (g2 + 4p3)/2 for the
scalars, both with a diverging coefficient. The first
leads to a zero mass for pions as a manifestation of
Goldstone's theorem, the second to a mass equal to
twice the constituent quark mass for the o-mesons.
For a finite result, the integrals must be regularized.
In D=4-¢€ dimensions, the inverse euclidean
propagator is seen to start out for small g2 like

2

D 1 ¢t

G '=N|[1-—|Db———

" N°( 2) “po 0 2
=Z(po)ag +(ag). (19)

with the same b, as defined above Eq. (11). If the
theory is regularized with a cutoff A in momentum
space, this becomes

—1=L In 1+A_2 _A_2 2
T (2m) P A b
=Z"( po) G- (20)

In the right-hand part of the two equations, the
factors in front of g2 have been identified as the
wave function renormalization constants Z_( p,) of
the pion field in the two regularization schemes.

As a consequence of the spontaneous symmetry
breakdown, the fluctuations of the pseudoscalar fields
are massless. These fields appear in the x-space
version of the action (17) in a pure gradient form

wolw]= 2 [oex{am01%, (21)

with B=Z_. Due to chiral symmetry, this gradient
action can be extended to the gradient action of an
arbitrary field (o,m,). Introducing the directional
unit vector fields n;=(o',7) =(o'\7))/p, We
find:

So[n] = %pz)pz/de(ani)z, i=1,...,N,,
(22)

with N, = 4 and

B(p)=2.(p). (23)

This chirally invariant action describes the massless
pions with all multipion interactions. > The prefac-
tor B iscaled the stiffness of the directional fluctua-
tions [5,7,10-12]. In analytic regularization, the re-
sult (19) shows that the stiffness of pion fluctuations
in D = 2 dimensions becomes

- &, (24)

2mpg

thus coinciding with the stiffness calculated in Ref.
[5] in the Gross—Neveu model (which contained a

2 Only two approximations are involved: the first one consists
in freezing the size p of the fluctuations. The second one neglects
corrections due to the finiteness of the sigma mass. The latter
corrections are expected to be of the order 2 /(4M?) = 3%.
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factor N to be identified with the present N; X N, =
2N,).

With the more physical cutoff regularization in
D = 4 dimensions, the stiffness of directional fluctu-
ations is

B= Z;A)( Po)

AN A2
‘i) @

This is the crucial quantity leading to our fatal
conclusions for the restoration of chiral symmetry.
The stiffness (25) is far too smdl to let the direc-
tional field settle in a certain direction, required for
spontaneous symmetry breakdown. The disordering
effect of phase fluctuations is well-known from many
model studies of the O(4)-symmetric Heisenberg
model on a lattice. High-temperature expansions and
Monte Carlo simulations have shown that there ex-
ists a critical stiffness below which the system goes
over into a disordered state.

For an analytic estimate of the critical stiffness,
we relax the unit vector constraint for the vectors n;
in (22) by introducing an additional field A(x) play-
ing the role of a Lagrange multiplier. The n;-fields
can then be integrated out in the partition function,
leading to an action

S= %Trln[—a2 +A(X)]

—B(pz)pzdeXLZX), (26)

where Tr denotes the functional trace (the summa
tion over the fields component has aready been
performed). For a large number N, of components,
the fluctuations are suppressed, and the field A(x)
becomes a constant satisfying a second gap equation

N, . d°k 1
b= i )

If there is a nonzero solution A # O, this will play
the role of a sguare mass of the n;-fluctuations, and
represents an order parameter in the directional phase

transition. The model has a phase transition at a
critical stiffness

N, . d°k 1

Bc=?pr- (28)

For a smaller stiffness, the phase fluctuations are so
violent that the system goes into a disordered phase
with A = 0 giving al fields n, a nonzero sguare
mass A. Since the fields n; are the normalized o
and m, fields of the model, this determines an egual
nonzero square mass of ¢ and 7, mesons, and thus
a restoration of chiral symmetry.

Note that the quarks are still massive: their con-
stituent mass is a consequence of the formation of
the pairs, which are strongly bound for small N..
The phase transition taking place at the critical value
of the stiffness, on the other hand, is related to the
Bose—Einstein condensation of the pairs. At small
N, the two processes are widely separated. This
separation of the two transitions (pair formation and
pair condensation) can be judged by the simple
fluctuation criterion in Ref. [7].

In our model, the number N, is equal to four,
which is not very large. Fortunately, Monte Carlo
studies of the model [13-15] have shown that N, = 4
is large enough to ensure the existence of the transi-
tion and the quantitative reliability of the theoretical
estimate of the critical stiffness (28). From an evalu-
ation of (28) on a lattice, and a comparison with
Monte Carlo studies, we estimate that the critical
stiffness obtained from (28) is correct to within less
than 2% [14] ° or 6% [13,15] *. The same maximal
error is expected if we work in the continuum using
a momentum cutoff scheme.

% Simulations of the four-dimensional 0(4) model on a simple-
cubic lattice gives B = 0.6090 [14]. This is to be compared with
the approximation (28) calculated for a simple-cubic lattice, where

¢ =4x0.1549 = 0.6196 which is thus correct to within less
than 2%. (For Refs. [13,15], we find B¢ = 0.584 (6%) and
B = 0.64 (3%), respectively.) The value 0.1549 is taken from the
list of lattice Coulomb potentials at the origin in Table 6.4 of the
textbook [12] on p. 178.

* See footnote 3.
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For N, =4 and a cutoff A_ in the integral (28)
over pion momenta, the critical stiffnessis given by

4 A2

w

- 16772?'

Be (29)

By comparing this with the stiffness of the model in
(25), we find

SRIGIE

(e |
1+ ( A/Po)2

(30)

This equation determines the number N, of identical
quarks which is necessary to produce a large enough
stiffness B to prevent the restoration of chiral sym-
metry. Only if the number of colors exceeds this
critical value, will the model possess a phase in
which the pion is a massless Goldstone boson, and o
a meson with a mass twice as large as that of the
congtituent quarks. The critical number (30) is plot-
ted as the solid curve in Fig. 1 for A_= A. We see
that N,=5 would be the smallest allowed value.
This number, however, is incompatible with color
SU(3). This suggests that the Nambu—Jona-Lasinio
model always remains in the symmetric phase, due
to chiral fluctuations. It can therefore not be used to
describe the chiral symmetry breakdown of quark
physics, as has been claimed by many publications,
which have appeared in particular in nuclear physics
[3].

Can this conclusion be avoided by a different
choice of parameters? To obtain a critical value
smaller than N, =3 would require a pionic cutoff
A, < 0.8 A. However, the cutoff cannot be chosen at
will. Let us study the cutoff dependence more pre-
cisely. For this, we refine the previous crude esti-
mate (28), (29) of the critical stiffness, which will
henceforth be called Approximation 1, by taking
better account of the shorter wavelength fluctuations,
replacing the action (22) by

0] = %zdexni(X)Gw_l(_az)ni(X)v (31)

—_
(=}

| ymy =0 |

1
T 1me = 2po |
1 |

2
S = NN W R NN o O

o

3 4 5 6 7 8 9 10
(A/p)?

Fig. 1. Solid curve shows Approximation 1 to critical number of
colors N&' as a function of the extremal value of p =yo?+ 72,
above which chira symmetry is restored. The dashed curves
indicate the solutions to the two gap equations (34) and (35) for
three different values of the constituent quark mass p, = M in the
symmetry-broken phase above N. The three quark masses lie
above (py> p*), below (py < p*), andat p* = M * =y0.46 A
where N takes the minimal value 4.62, with a constituent quark
mass above NI of 0.678 A (short-dashed curve). The medium-
dashed curve corresponds to a constituent quark mass 0.479A, and
the long-dashed to 1.342 A.

with G *(—d?) from Eq. (18). This exchanges 1/k?
in Eq. (28) by the full pion propagator G_(k?)/z"
associated with the action (31). The cutoff A makes
the integral over pion momenta finite. Its size is
fixed by physical considerations. The pion fields in
the symmetry-broken phase are composite, and will
certainly not be defined over length scales much
shorter than the inverse binding energy of the pair
wave function, which is equal to 2M = 2p,. Thus
we perform the integral in the modified Eq. (28) up
to the cutoff 4M?2. This is Approximation 2, yielding
the solid curve in Fig. 3.

The phase with broken symmetry for three colors
would be reached only if the quark loop integration
is cut off at A?> 11M?. Such a large value, how-
ever, is incompatible with the experimental value of
the pion decay constant f_= 0.093 which is given,
in the large-N, limit of the model, by f_ /M=
ZY2(M). For typical estimates of constituent quark
masses M € (300,400) MeV [2], wefind that A%/M?
should lie in the range (3.3,7.3), the highest value
corresponding to the lowest possible mass 300 MeV.
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The above study has given us only the critical
point, where the pion mass goes to zero. We can do
more and determine the common nonzero sguare
masses M2 = m2 = A of o and -fieldsin the phase
of restored chira symmetry. This is the subject of
the next section.

5. Meson masses

The chiral fluctuations give rise to a change of the
effective potential. They add to Av( p) in Eq. (14)
an additional energy coming from the stationary
point of the action (26) at a constant A(x) = A

Aw( p.A)

2 dgZ g2
_ 1 AL E E
= 2AZoP 2_[ 1672 QE"')\]
(32)
Ao p,A) = =3AZ( p)p?
ﬁngdqé g2
2 )y 1672

XIn[G™Y(a2)/Z(p) +A],  (33)

for Apprs. 1 and 2, respectively, where the latter has
— 92 replaced by G_*(—0%)/Z(p). Extremizing
Av(p) + Ay v( p,)) yields two coupled gap equar
tions replacing the independent gap equations (13)
and (27). Introducing the reduced quantities Z(x) =
In(1+x 1) —(Q+x7% and x=p?/A%y=
A/ A?, we have for Appr. 1:

yd, _
XIn(1+x5") + E&[XZ( x)| =xIn(1+x71),
(34)

N, xZ( x)

For Appr. 2, the coupled gap equations are more
complicated since the full g?-dependence of Z_ has
to be taken into account. They read

(An/ MY 241.2 (%)
{/ ) [()]

xil—z(_"z’x(’)]} + 2 [)

XoIn(1+x5") +

dXo | Z( %)
=xIn(1+x71)
__n f(A”/A) _ k4dki
8N, | /o k2[Z(K?,x)/Z(x)| +y

d Z(k2,x) %
x| Z(x) ||’ (30)

N, XZ( x)
_ (_)f(Aﬂ/A)Z k2dk2
4 )Jo k2[Z(K?,x) /Z( x)] +

(37)

where Z(k?, x) is taken from the pion propagator
(18), and is given by
Z(k2,x)
Nc 1 1 (1 - Z) dz
= (_2 f p2dp2f 5.
27" Vo o [p2+k2z(1—-2) +x]
(38)

There is no need to write down the lengthy analytic
solution to this double integral. The coupling con-
stant g, has been eliminated in favor of the reduced
mass X, which characterizes the model uniquely
above NS, where y = 0 and thus A = 0. In that case,
Eg. (34) of Appr. 1 reduces to (13). Egs. (35) and
(37), on the other hand, determine the common
square mass A of o and m, as a function of N,
which begins developing for N, <NS. Note that
going from Appr. 2 to 1 corresponds to using a
momentum-independent pion normalization Z(k?,x)
= Z(x). This makes (36) and (37) coincide with (34)
and (35).

The solutions of (34)—(37) are plotted in Figs.
1-4. Figs. 1 and 2 are for Appr. 1, restricted to the
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Fig. 2. Common square masses m2 = m2 = A as a function of N,
in Approximation 1. The three curves start at different critical
values N which can be read off Fig. 1.

case A_= A. Qualitatively, the pictures remain the
same for different ratios A_/ A. Quantitatively, there
is only a shift in the critical number of color (solid
curve of Fig. D to N =3 as A_/A is lowered to
0.8, while it increases above the given curve if
A_/A> 1 Thisis due to the fact thet at the critical
point corresponding to A = 0, one sees from Eq. (30)
(or from Eg. (35) with y=0) that N" o (A_/A)>
The dashed curves of Figs. 1 and 2 are explained in
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Fig. 3. Same plot as in Fig. 1, but for Approximation 2, the
dashed curves indicating the solutions of the two gap equations
(36) and (37). The three mass values are now py > p*, pg<p”,
po=p", with p* =M"* =y0.092 A, corresponding to the mini-
mal criticadl number of colors NS =3, implying a constituent
quark mass above NS =3 of 0.303A (short-dashed curve). The
medium-dashed curve are for a constituent quark mass 0.447A,
and the long-dashed for 0.224 A.
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Fig. 4. Common square masses m2 = m2 = A as a function of N,
in Approximation 2. The three curves start at different critical
values NS which can be read off Fig. 3.

the corresponding legends. Here we only remark that
the shape of the dashed curves in Fig. 1 can be
understood from the gap equations (34) and (35)
without solving them, because xZ(x) is maximal at
the minimum of NS

Figs. 3 and 4 correspond to Appr. 2, in which the
full momentum dependence for the pion normaliza-
tion constant is taken into account, and in which the
pionic cutoff is A2=4M?2, for which we get the
ratio (A_/A)?=4x,. The solid curve in Fig. 3
gives the critical number of color in this particular
case. Although the conclusion is not as strong as in
Appr. 1, our result concerning the lack of breaking
of chiral symmetry is robust, since the crossing with
the line N, = 3 takes place at a cutoff A2/M? > 11,
which lies outside of the admissible range (3.3,7.3)
implied by the physical value of the pion decay
constant f_= 93 MeV, as discussed at the end of the
previous section.

Finaly, we give in Fig. 5 the stiffness as a
function of the number of color for Appr. 1. The
three curves depend so weskly on p, that they seem
to coincide. To make the p,-dependence visible, we
have plotted an extra dotted curve for a very small
value p, = 0.224 A (dotted).

Let us emphasize that these conclusions cannot be
reached in the dimensional regularization scheme
since, as explained at the end of Section 3, the
integral in (28) determining the critical stiffness van-
ishes. Here the unphysical nature of dimensional
regularization makes its application impossible.
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Fig. 5. Approximation 1. Reduced stiffness as a function of
N, /N&. The three curves below NS cannot be distinguished on
this scale. The dotted curve corresponds to an extra low value of
po, just to show that below N the curves deviate from a straight
line.

Before concluding, let us aso remark that the
cutoff chosen in Appr. 2 is completely different from
that in Appr. 1, where the ratio of cutoffs is a
constant. In Appr. 2, the ratio of cutoffsis afunction
of x,: A2/A?=4x,. If we had taken the cutoff in
the same way as in Appr. 1 (A2 /A% = 1), the curve
giving the critical number of colors would also have
had the same shape as in Appr. 1, athough the
integration would have been much more involved:
the minimum number of color would then be 5.2,
whatever the value of A2/p3, avalue which is even
higher than in Appr. 1. We see that Appr. 2 as
presented above, with the physically motivated cut-
off A2 =4M?, gives then the lowest critical number
of colors.

Our conclusions were derived from a study of
only the o, 7 fields. The inclusion of other flavors
does not help preventing the restoration since the
associated pseudoscalar mesons are quite massive,
making their fluctuations irrelevant to the described
phenomenon.

6. Conclusion

We have shown that within a certain nonperturba-
tive approximation, the Nambu—Jona-Lasinio model

does not really display the spontaneous symmetry
breakdown for whose illustration it was constructed.
The fluctuations of o- and m,-fields restore chiral
symmetry and make o and 7 equally massive. If
our conclusion survives more refined approxima-
tions, this would invalidate a large number of publi-
cations, especially in nuclear physics, which have
been based on the existence of a symmetry-broken
ground state of the model. In particular, all studies of
the temperature dependence of the symmetry-broken
state [3] would deal with nonexisting objects, thus
calling for further investigations. Finaly, we note
that our no-go result for the Nambu—Jona-Lasinio
model does not imply problems with the effective-
action approach to chiral dynamics. Certainly, there
exists an effective chiral action for the meson sector
of quantum chromodynamics which does contain
almost massless pions for N,=3. It is only the
Nambu—Jona-Lasinio model as it stands which is
incapable of describing these for such a low number
of colors. In fact, a recent paper [16] prompted by a
first version of our preprint points out that an exten-
sion of the Nambu—Jona-Lasinio model by interac-
tions involving higher-dimensional operators is not
subject to our no-go theorem. Another escape is
possible by adding gradient and quartic interaction
terms for o~ and wfields to the initia action, thus
extending the Nambu—Jona-Lasinio model to alinear
sigma model [17].
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