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Abstract

We argue that the spontaneous breakdown of symmetry in the chirally symmetric Nambu–Jona-Lasinio model which was
supposed to illustrate the origin of the low mass of pions in hadron physics does not occur due to strong fluctuations in the
s–p field space. Although quarks acquire a constituent mass, s and p turn out to have equal heavy masses of the order of
the constituent quark mass. q 2000 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The chirally symmetric Nambu–Jona-Lasinio
w xmodel 1 was the first theoretical laboratory to

illustrate how light pions arise from a spontaneous
breakdown of chiral symmetry in hadron physics.
The first realistic formulation of the model which
included flavored quarks, possessed chiral symmetry

Ž . Ž .SU 3 =SU 3 , and a spectrum of s ,p ,r, A mesons1
Ž .and their SU 3 partners, was formulated and investi-

w xgated in 1976 by one of the authors 2 , and has been
the source of inspiration for many papers in nuclear

w xphysics in the past twenty years 3 . By eliminating
the Fermi fields in favor of a pair of collective scalar
and pseudoscalar fields s and p , as well as vector

1 Alexander von Humboldt Fellow, on leave from absence of
Physique Nucleaire Theorique, B5, Universite de Liege Sart-Til-´ ´ ´ `
man, 4000 Liege, Belgium.`

and axial vector mesons, a Ginzburg–Landau like
collective field action was derived. This had been
studied in detail earlier as an effective action guaran-
teeing all low-energy properties of hadronic strong
interactions which were known from current algebra

Ž .and partial conservation of the axial current PCAC .
In two important respects, however, the model

was unsatisfactory. First it was not renormalizable in
four dimensions, but required a momentum space
cutoff L to produce finite results. Moreover, to
obtain physical quantities of the correct size, the
cutoff had to be rather small, below one GeV, thus
limiting the reliability of the predictions to very low
energies. Second, if the fermions were identified
with quarks, the model could not account for their
confinement.

w xThe nonrenormalizability was removed in 2 by
replacing the four-fermion interaction by the ex-
change of a massive vector meson. The different
attractive meson channels were obtained by a Fierz
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transformation. The mass of the vector meson took
over the role of the cutoff. The energy range of
applicability was, however, not increased since the
model would still allow for free massive quarks.

The purpose of this note is to point out a much
more severe problem with the model which seems to
invalidate most conclusions derived from it in the
literature: If chiral fluctuations are taken into account
in a certain nonperturbative approximation, the spon-
taneous symmetry breakdown disappears, and the
zero-mass pions acquire the same mass as the s-me-
sons, both of the same order as the constituent quark
mass. The nonperturbative nature of the argument
seems to be the reason why the phenomena has been
overlooked until now.

Since the Nambu–Jona-Lasinio model is inca-
pable of accounting for confinement, it gave no
reason for introducing colored quarks. It is curious to
observe that the restoration of symmetry by chiral
fluctuations would offer such a reason, albeit with an
unphysical number of colors: the physically desired
spontaneous symmetry breakdown conclusion can
only be achieved by introducing at least five identi-
cal replica of fermions. The existing three colors are
insufficient to save the purpose of the model.

The non-perturbative arguments used in this paper
are analogous to those applied before in a discussion

w xof the Gross–Neveu model 4 in 2q´ dimensions
w x5 , where it was shown that this model has two
phase transitions, one where quarks become massive
and another one where chiral symmetry breaks spon-
taneously. They have also been applied to explain
the experimental observation of two transitions in

w xhigh-T superconductors 6 , and to show that direc-c

tional fluctuations in Ginzburg–Landau theories with
Ž .spontaneously broken O N symmetry disorder the

system before size fluctuations of the order field
w xbecome relevant 7 .

2. Nambu–Jona-Lasinio model

Let us briefly recall the relevant features of the
Nambu–Jona-Lasinio model for our considerations.

Ž .The model contains N quark fields c x , one forf

each flavor. Each of them may appear with Nc

colors, such that the total number of quarks is Ns
N =N . Since the fluctuation phenomenon to bef c

discussed will be caused by the almost massless
modes, we may restrict ourselves to the almost mass-
less up and down quarks. We will comment later on
the effect of the heavier quarks.

w xThe Lagrangian of the model is given by 3
g 2 20

LLsc iEuym cq cc q cl ig c ,Ž . Ž . Ž .0 a 52 Nc

1Ž .
where an implicit summation over as1,2,3 is as-
sumed. A small diagonal quark mass matrix m0

Ž . Ž .breaks slightly the SU 2 =SU 2 part of the chiral
symmetry which lifts the mass of the pion to a small
nonzero value. We have omitted the flavor symmet-

w xric vector gluon exchange used in Ref. 2 which
would have given rise, after a Fierz transformation,
to additional vector and axial vector interactions,
which would not influence the chiral fluctuations to
be investigated here. Thus we use the original non-
renormalizable interaction corresponding to an infi-

Ž .nite vector gluon mass. The coupling constant in 1
is defined with the number of colors N in thec

denominator, to allow for a finite N™` limit ofc

the model at a fixed g . The 2=2-dimensional0

matrices l r2, with as1, . . . ,3 generate the funda-a
Ž .mental representation of flavor SU 2 , and are nor-

Ž .malized by tr l l s2d .a b ab

Via a Hubbard–Stratonovich transformation, the
Ž .Lagrangian 1 is converted into a theory of collec-

tive scalar and pseudoscalar fields s and p . Defin-a

ing the propagator in the presence of the meson
fields

i
G' , 2Ž .

iEuym ysy ig l p0 5 a a

and adding external quark sources h,h, one can
integrate out the quark fields from the corresponding
Lagrangian. Summing over colors, the generating
functional of the Green functions takes the well-
known form

X y1ZZs DDs DDp exp iN yiTr ln iGH c½
1

D 2 2y d x s qpŽ .H a2 g0

y1 D DqiN d xd y hGh . 3Ž .Hc 5
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The term inside the brackets is the collective field
w x Xaction AA s ,p , whereas the symbol Tr includes

both, the functional spacetime ‘‘index’’ x, and the
internal trace over spin and flavor indices: TrX

'

Hd D x tr tr .g f
w xBy extremizing AA s ,p at zero sources h,h, we

obtain the field equation for the collective field
Ž .s ,p :a

1 s xŽ .1
tr tr G x , x s . 4Ž . Ž .g f il gž / ž /p xŽ .a 5 g a0

For constant fields, this equation becomes a gap
equation. Its solutions will be marked by a super-
script ‘‘s’’ for ‘‘stationary phase approximation’’.
From now on, unless explicitly stated, we shall
consider the model with zero mass, m s0. The0

stationary pseudoscalar solutions p s can always bea

chosen to be vanishing, while the scalar solutions
can be s s s0, or s s 'r . In the first case, the0

ground state is chirally symmetric, in the second the
symmetry is spontaneously broken. This is the state
of physical interest whose stability will now be
discussed.

3. Effective potential and gap equation

In the limit N™`, the generating functional isc

given exactly by the extremal field configurations,
Ž sŽ . sŽ ..which will be parameterized as s x ,p x sa

Ž Ž . .r x ,0 . The system has an effective action per0

quark

G r ,C ,C 1Ž .0 X y1 D 2syiTr ln iG y d xrHr 00N 2 gc 0

1
D y1q d xC iG C , 5Ž .H a r a0Nc

² :where Cs iG h is the expectation value c of ther0

quark field, and G its propagatorr0

i
G s . 6Ž .r0 iEuyr0

This shows that the solution of the gap equation with
r /0 describes quarks with a nonzero mass Msr ,0 0

which has been generated by the spontaneous sym-
metry breakdown, and is referred to as the con-

stituent quark mass. In the present approximation of
zero bare mass m , the constituent quark mass is0

about equal to 300 MeV for up and down quarks
Ž w x.see the discussion in Refs. 2,8 . In either case, the

Ž .Green function 2 in the stationary field is diagonal
in flavor space.

In the absence of external quark sources, the
ground state expectation value of a fermion field is

Ž .always zero, and the expectation value r x is0
Ž .constant, so that 5 reduces into

G r 1Ž .
X y1 D 2syiTr ln iG y d xr , 7Ž .HrN 2 gc 0

where we have allowed the fields s and p to bea

nonextremal, defining s 2 qp 2 'r 2, and reservinga

the notation r 2 for the extremum. This is deter-0

mined, after a Wick rotation to euclidean momenta
p with p s ip , id D p™yd D p , p2

™yp2 , byE 0 E,0 E E

the gap equation

1 d D p 1ED r2s2=2 . 8Ž .H D 2 2g p qr2pŽ .0 E 0

We have divided the two sides of the gap equation
by a common factor r , since we want to study the0

spontaneously broken phase.
The gap equation must be regularized, which may

be done in many ways. Here, we shall use two
methods: analytic continuation in the dimension D,
and a cutoff L in momentum space. The former is
mathematically more elegant and has the advantage
of relating the properties in four dimensions to those
in 2q´ . It has, however, some unphysical proper-
ties which require special attention, as we shall see.
Such problems are absent in a cutoff regularization
scheme, which exhibits clearly the physical diver-
gences caused by the infinite number of degrees of
freedom of the field system. Factorizing the integral

Ž .in 8 into direction and size of the momentum p ,E

we bring the gap equation to the form

1 G 1yDr2Ž .
Dy 2s2 r . 9Ž .0 Dr2g 2pŽ .0

Denoting by V the D-dimensional volume Hd D x,
Ž . Ž .the volume density Õ r 'yG r rV of the effec-

Ž .tive action 7 is the effectiÕe potential per quark.
Performing the internal traces, and subtracting a
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divergent constant term associated with the chirally
symmetric state with r s0, we obtain the conden-0

sation energy in euclidean space:

DÕ rŽ .
N 1 4 1c 2 Ds r yr G 1yDr2 .Ž .Dr22 g D 2pŽ .0

10Ž .

In an even number of dimensions D, both the gap
Ž . Ž .equation 9 and the effective potential 10 are

Ž .divergent, due to a pole in the factor G 1yDr2 .
ŽIntroducing the diverging parameter b s2 G 1ye

. w Ž .D r2 xDr2 r D 2p , we can rewrite the gap equation
and effective potential in the more compact form as

1
Dy 2sDr b , 11Ž .0 eg0

N 1c 2 DDÕ r s r y2 r b . 12Ž . Ž .e2 g0

In the more physical regularization with a cutoff L

in momentum space, these expressions look more
complicated:

21 2 L
2 2s L yr ln 1q , 13Ž .02 2ž /g r2pŽ .0 0

2 2N 1 2 r Lc 2DÕ r s r yŽ . 2½2 g 22pŽ .0

4 2 4 2L r r L
q ln 1q y ln 1q .2 2 5ž / ž /2 2L r

14Ž .
Ž . Ž .The results 11 and 12 of the analytic regular-

ization scheme can be mapped roughly into the
Ž . Ž .cutoff results 13 and 14 if we recall the special

property of dimensional regularization that all inte-
grals over pure momentum powers vanish identi-

D Ž .a Ž .cally: Hd k k s0 Veltman’s rule . Thus, arbi-
trary pure powers of the cutoff LaqD have no
counterpart in dimensional regularization. Only loga-
rithmic divergences can be related to diverging pole
terms 1re™` for e™0. It is therefore inconsistent

Ž . 2 2to relate e to L by setting G er2y1 fL rr , as0
w xproposed by Krewald and Nakayama 9 . Only the

Ž .logarithmic divergence in 13 can be mapped to the

Ž . Ž .small-e divergence in 11 , setting G er2y1 f
Ž 2 2 .yln 1qL rr . With their inconsistent identifica-0

tion, Krewald and Nakayama matched L by an
e)2 which lies in the wrong region D-2, the

Ž .physically relevant range being Dg 2qe ,4ye .
Note that the matching of the logarithm at the level
of the effective potential leads to the properly
matched gap equation, thus having circumvented the
unphysical properties of the analytic regularization.
The free use of this scheme in renormalizable field
theories relies on the fact that all infinities are even-
tually absorbed in unobservable bare quantities, such
that the artificial zeros of the integrals over pure
powers of momenta cannot produce problems. In
nonrenormalizable theories, on the other hand, only a

Ž .cutoff or a related Pauli–Villars regularization is
physical, and analytic regularization must be treated
with caution. This is seen even more dramatically in
integrals which do not have logarithmic infinities.

Ž .For example the condensation energy 10 in Ds3
dimensions would be a finite negative number in
analytic regularization, while being a linearly diver-
gent positive function of the cutoff.

4. Chiral fluctuations

Since the physical number of quarks N is finite,c

the fields perform fluctuations of magnitude 1r N( c

around their extremal value. As long as N can bec

considered as a large number, the deviation from the
Ž X X. Ž .extremal field configuration s ,p ' syr ,pa 0 a

are small, and the action can be expanded in powers
Ž X X.of s ,p . The quadratic terms in this expansiona

define the propagators of the collective fields
Ž X X.s ,p . The higher expansion terms of the trace ofa

Ž .the logarithm in 3 define the interactions. With this
decomposition, the inverse of the quark propagator
Ž .2 can be decomposed into a constant and a fluctuat-

y1 y1 Ž X X.ing part, setting iG s iG y s q ig l p ,r 5 a a0

Ž .with G of Eq. 6 . Then we haver0

Trln iGy1 sTrln iGy1
r 0

X XqTrln 1q iG s q ig l p .Ž .r 5 a a0

15Ž .

An expansion of the last term up to the second order
in the fields gives an approximate partition function
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Žwith ZZ 'exp yV N Õ r and V is the eu-Ž .0 E c 0 E
.clidean volume

i
X X

ZZsZZ DDs DDp exp iN Tr iG sŽH0 c r 0½ž 2

12X X 2 X 2Dqig l p y d x s qp .. Ž .H5 a a a 5 /2 g0

16Ž .

The functional matrix between the fields in the expo-
nent gives us directly the inverse of the desired
collective free field propagators G X ,G X . In momen-s p

tum space, we identify

1
X X X XD y1w xAA s ,p s d q p q G p yqŽ . Ž .H0 a p a2

X Xy1qs q G s yq , 17Ž . Ž . Ž .s

where

d D p1 Ey1 D r2G s2=2 N dyH Hs ,p c D
0 2pŽ .

=
q2 qp q q 2 r 2 ,0Ž .E E E 0

. 18Ž .22 2 2q q2 p q yqp qrŽ .E E E E 0

Ž .In this expression, the gap equation 8 has been
Ž 2 .used to eliminate the term 1rg . The notation 2 r ,00 0

indicates that only the equation for s contains an
extra term 2 r 2.0

In four spacetime dimensions, the integral evalu-
ated in dimensional regularization reduces to q2r2E

Ž 2 2 .for the pseudoscalars, and to q q4r r2 for theE 0

scalars, both with a diverging coefficient. The first
leads to a zero mass for pions as a manifestation of
Goldstone’s theorem, the second to a mass equal to
twice the constituent quark mass for the s-mesons.
For a finite result, the integrals must be regularized.
In Ds4ye dimensions, the inverse euclidean
propagator is seen to start out for small q2 likeE

D 1 q2
Ey1G fN 1y Dbp c e 4yDž /2 2r0

'Z Že . r q2 qOO q4 . 19Ž . Ž .Ž .p 0 E E

Ž .with the same b as defined above Eq. 11 . If thee

theory is regularized with a cutoff L in momentum
space, this becomes

2 2N L Lcy1 2G s ln 1q y qp E2 2 2 2ž /r L qr2pŽ . 0 0

'Z ŽL. r q2 . 20Ž . Ž .p 0 E

In the right-hand part of the two equations, the
factors in front of q2 have been identified as theE

Ž .wave function renormalization constants Z r ofp 0

the pion field in the two regularization schemes.
As a consequence of the spontaneous symmetry

breakdown, the fluctuations of the pseudoscalar fields
are massless. These fields appear in the x-space

Ž .version of the action 17 in a pure gradient form

b 2X XDw xAA p s d x Ep x , 21Ž . Ž .½ 5H0 a2

with bsZ . Due to chiral symmetry, this gradientp

action can be extended to the gradient action of an
Ž .arbitrary field s ,p . Introducing the directionala

Ž X X . Ž X X.unit vector fields n s s ,p ' s ,p rr, weˆ ˆi a a

find:

b r 2Ž . 22 Dw xAA n s r d x E n , is1, . . . , N ,Ž .H0 i i n2
22Ž .

with N s4 andn

b r sZ r . 23Ž . Ž . Ž .p

This chirally invariant action describes the massless
pions with all multipion interactions. 2 The prefac-
tor b is called the stiffness of the directional fluctua-

w xtions 5,7,10–12 . In analytic regularization, the re-
Ž .sult 19 shows that the stiffness of pion fluctuations

in Ds2 dimensions becomes

Nc
bs , 24Ž .22pr0

thus coinciding with the stiffness calculated in Ref.
w x Ž5 in the Gross–Neveu model which contained a

2 Only two approximations are involved: the first one consists
in freezing the size r of the fluctuations. The second one neglects
corrections due to the finiteness of the sigma mass. The latter

2 Ž 2 .corrections are expected to be of the order f r 4M f3%.p
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factor N to be identified with the present N =N sf c
.2 N .c

With the more physical cutoff regularization in
Ds4 dimensions, the stiffness of directional fluctu-
ations is

bsZ ŽL. rŽ .p 0

2 2N L Lc
s ln 1q y . 25Ž .2 2 2ž /½ 5r r qL2pŽ . 0 0

This is the crucial quantity leading to our fatal
conclusions for the restoration of chiral symmetry.

Ž .The stiffness 25 is far too small to let the direc-
tional field settle in a certain direction, required for
spontaneous symmetry breakdown. The disordering
effect of phase fluctuations is well-known from many

Ž .model studies of the 0 4 -symmetric Heisenberg
model on a lattice. High-temperature expansions and
Monte Carlo simulations have shown that there ex-
ists a critical stiffness below which the system goes
over into a disordered state.

For an analytic estimate of the critical stiffness,
we relax the unit vector constraint for the vectors ni

Ž . Ž .in 22 by introducing an additional field l x play-
ing the role of a Lagrange multiplier. The n -fieldsi

can then be integrated out in the partition function,
leading to an action

Nn 2Ss Trln yE ql xŽ .
2

l xŽ .
2 2 Dyb r r d x , 26Ž .Ž . H

2

Žwhere Tr denotes the functional trace the summa-
tion over the fields component has already been

.performed . For a large number N of components,n
Ž .the fluctuations are suppressed, and the field l x

becomes a constant satisfying a second gap equation

N d Dk 1n
bs . 27Ž .H2 D 2r k ql2pŽ .

If there is a nonzero solution l/0, this will play
the role of a square mass of the n -fluctuations, andi

represents an order parameter in the directional phase

transition. The model has a phase transition at a
critical stiffness

N d Dk 1n
b s . 28Ž .Hc 2 D 2r k2pŽ .

For a smaller stiffness, the phase fluctuations are so
violent that the system goes into a disordered phase
with l/0 giving all fields n a nonzero squarei

mass l. Since the fields n are the normalized si

and p fields of the model, this determines an equala

nonzero square mass of s and p mesons, and thusa

a restoration of chiral symmetry.
Note that the quarks are still massive: their con-

stituent mass is a consequence of the formation of
the pairs, which are strongly bound for small N .c

The phase transition taking place at the critical value
of the stiffness, on the other hand, is related to the
Bose–Einstein condensation of the pairs. At small
N , the two processes are widely separated. Thisc

Žseparation of the two transitions pair formation and
.pair condensation can be judged by the simple

w xfluctuation criterion in Ref. 7 .
In our model, the number N is equal to four,n

which is not very large. Fortunately, Monte Carlo
w xstudies of the model 13–15 have shown that N s4n

is large enough to ensure the existence of the transi-
tion and the quantitative reliability of the theoretical

Ž .estimate of the critical stiffness 28 . From an evalu-
Ž .ation of 28 on a lattice, and a comparison with

Monte Carlo studies, we estimate that the critical
Ž .stiffness obtained from 28 is correct to within less

w x 3 w x 4than 2% 14 or 6% 13,15 . The same maximal
error is expected if we work in the continuum using
a momentum cutoff scheme.

3 Ž .Simulations of the four-dimensional 0 4 model on a simple-
cr w xcubic lattice gives b f0.6090 14 . This is to be compared with

Ž .the approximation 28 calculated for a simple-cubic lattice, where
b cr s4=0.1549f0.6196 which is thus correct to within less

Ž w x cr Ž .than 2%. For Refs. 13,15 , we find b f0.584 6% and
cr Ž . .b f0.64 3% , respectively. The value 0.1549 is taken from the

list of lattice Coulomb potentials at the origin in Table 6.4 of the
w xtextbook 12 on p. 178.

4 See footnote 3.
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Ž .For N s4 and a cutoff L in the integral 28n p

over pion momenta, the critical stiffness is given by

4 L2
p

b s . 29Ž .c 2 216p r

By comparing this with the stiffness of the model in
Ž .25 , we find

2 22
L L Lp

N s ln 1qc ž / ž / ž /½L r r0 0

y12
LrrŽ .0

y . 30Ž .2 51q LrrŽ .0

This equation determines the number N of identicalc

quarks which is necessary to produce a large enough
stiffness b to prevent the restoration of chiral sym-
metry. Only if the number of colors exceeds this
critical value, will the model possess a phase in
which the pion is a massless Goldstone boson, and s

a meson with a mass twice as large as that of the
Ž .constituent quarks. The critical number 30 is plot-

ted as the solid curve in Fig. 1 for L sL. We seep

that N s5 would be the smallest allowed value.c

This number, however, is incompatible with color
Ž .SU 3 . This suggests that the Nambu–Jona-Lasinio

model always remains in the symmetric phase, due
to chiral fluctuations. It can therefore not be used to
describe the chiral symmetry breakdown of quark
physics, as has been claimed by many publications,
which have appeared in particular in nuclear physics
w x3 .

Can this conclusion be avoided by a different
choice of parameters? To obtain a critical value
smaller than N s3 would require a pionic cutoffc

L Q0.8 L. However, the cutoff cannot be chosen atp

will. Let us study the cutoff dependence more pre-
cisely. For this, we refine the previous crude esti-

Ž . Ž .mate 28 , 29 of the critical stiffness, which will
henceforth be called Approximation 1, by taking
better account of the shorter wavelength fluctuations,

Ž .replacing the action 22 by

r 2
D y1 2w xAA n s d x n x G yE n x , 31Ž . Ž . Ž . Ž .H1 i i p i2

Fig. 1. Solid curve shows Approximation 1 to critical number of
cr 2 2colors N as a function of the extremal value of r s s qp ,(c a

above which chiral symmetry is restored. The dashed curves
Ž . Ž .indicate the solutions to the two gap equations 34 and 35 for

three different values of the constituent quark mass r s M in the0

symmetry-broken phase above N cr. The three quark masses liec
) ) ) ) 'Ž . Ž .above r ) r , below r - r , and at r s M f 0.46 L0 0

where N cr takes the minimal value 4.62, with a constituent quarkc
cr Ž .mass above N of 0.678 L short-dashed curve . The medium-c

dashed curve corresponds to a constituent quark mass 0.479L, and
the long-dashed to 1.342 L.

y1Ž 2 . Ž . 2with G yE from Eq. 18 . This exchanges 1rkp

Ž . Ž 2 . ŽL.in Eq. 28 by the full pion propagator G k rZp p

Ž .associated with the action 31 . The cutoff L makesp

the integral over pion momenta finite. Its size is
fixed by physical considerations. The pion fields in
the symmetry-broken phase are composite, and will
certainly not be defined over length scales much
shorter than the inverse binding energy of the pair
wave function, which is equal to 2 Ms2 r . Thus0

Ž .we perform the integral in the modified Eq. 28 up
to the cutoff 4M 2. This is Approximation 2, yielding
the solid curve in Fig. 3.

The phase with broken symmetry for three colors
would be reached only if the quark loop integration
is cut off at L2 R11M 2. Such a large value, how-
ever, is incompatible with the experimental value of
the pion decay constant f f0.093 which is given,p

in the large-N limit of the model, by f rMsc p
1r2Ž .Z M . For typical estimates of constituent quark

Ž . w x 2 2masses Mg 300,400 MeV 2 , we find that L rM
Ž .should lie in the range 3.3,7.3 , the highest value

corresponding to the lowest possible mass 300 MeV.
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The above study has given us only the critical
point, where the pion mass goes to zero. We can do
more and determine the common nonzero square
masses m2 sm2 sl of s and p -fields in the phases p a

of restored chiral symmetry. This is the subject of
the next section.

5. Meson masses

The chiral fluctuations give rise to a change of the
Ž . Ž .effective potential. They add to DÕ r in Eq. 14

an additional energy coming from the stationary
Ž . Ž .point of the action 26 at a constant l x sl:

D
X
Õ r ,lŽ .1

2 2N dq q2n E EL1 p2 2sy lZ r q ln q ql ,H0 E2 22 16p0

32Ž .

X 1 2D Õ r ,l sy lZ r rŽ . Ž .2 2

N dq2 q2
2n E ELpq H 22 16p0

= y1 2ln G q rZ r ql , 33Ž . Ž .Ž .E

for Apprs. 1 and 2, respectively, where the latter has
2 y1Ž 2 . Ž .yE replaced by G yE rZ r . Extremizingp

Ž . X Ž .DÕ r qD Õ r,l yields two coupled gap equa-Ž1,2.
Ž .tions replacing the independent gap equations 13

Ž . Ž .and 27 . Introducing the reduced quantities Z x s
y1 Ž .y1 2 2ln 1qx y 1 q x , and x ' r rL , y 'Ž .

lrL2, we have for Appr. 1:

y d
y1 y1x ln 1qx q xZ x sx ln 1qx ,Ž . Ž .Ž .0 0 2 dx

34Ž .

N xZ xŽ .c

2 2N L Ln p p y1s yy ln 1q y .ž / ž / ž /½ 54 L L

35Ž .

For Appr. 2, the coupled gap equations are more
complicated since the full q2-dependence of Z hasp

to be taken into account. They read

N Z x2 Ž .n 0L rLŽ .y1 2 2px ln 1qx q k dkŽ . H0 0 2½8 N Z k , x0 Ž .c 0

2d Z k , x y dŽ .0
= q xZ xŽ .5dx 2 dxZ xŽ .0 0

sx ln 1qxy1Ž .

N k 4dk 2
2n L rLŽ .py H 2 2½8 N k Z k , x rZ x qyŽ . Ž .0c

2d Z k , xŽ .
= , 36Ž .5dx Z xŽ .

N xZ xŽ .c

N k 2dk 2
2Ž .n L rLps ,H 2 2ž /4 k Z k , x rZ x qyŽ . Ž .0

37Ž .
2Ž .where Z k , x is taken from the pion propagator

Ž .18 , and is given by

2Z k , xŽ .
N 1yz dzŽ .1 1c 2 2s p dp .H H2 2ž / 2 22p 0 0 p qk z 1yz qxŽ .

38Ž .

There is no need to write down the lengthy analytic
solution to this double integral. The coupling con-
stant g has been eliminated in favor of the reduced0

mass x which characterizes the model uniquely0

above N cr, where ys0 and thus ls0. In that case,c
Ž . Ž . Ž .Eq. 34 of Appr. 1 reduces to 13 . Eqs. 35 and

Ž .37 , on the other hand, determine the common
square mass l of s and p as a function of N ,a c

which begins developing for N -N cr. Note thatc c

going from Appr. 2 to 1 corresponds to using a
2Ž .momentum-independent pion normalization Z k , x

Ž . Ž . Ž . Ž .sZ x . This makes 36 and 37 coincide with 34
Ž .and 35 .

Ž . Ž .The solutions of 34 – 37 are plotted in Figs.
1–4. Figs. 1 and 2 are for Appr. 1, restricted to the
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Fig. 2. Common square masses m2 s m2 s l as a function of Ns p c

in Approximation 1. The three curves start at different critical
values N cr which can be read off Fig. 1.c

case L sL. Qualitatively, the pictures remain thep

same for different ratios L rL. Quantitatively, therep

Žis only a shift in the critical number of color solid
. crcurve of Fig. 1 to N s3 as L rL is lowered toc p

0.8, while it increases above the given curve if
L rL)1. This is due to the fact that at the criticalp

Ž .point corresponding to ls0, one sees from Eq. 30
Ž Ž . . cr Ž .2or from Eq. 35 with ys0 that N A L rL .c p

The dashed curves of Figs. 1 and 2 are explained in

Fig. 3. Same plot as in Fig. 1, but for Approximation 2, the
dashed curves indicating the solutions of the two gap equations
Ž . Ž . ) )36 and 37 . The three mass values are now r ) r , r - r ,0 0

) ) ) 'r s r , with r s M f 0.092 L, corresponding to the mini-0

mal critical number of colors N cr s3, implying a constituentc
cr Ž .quark mass above N s3 of 0.303L short-dashed curve . Thec

medium-dashed curve are for a constituent quark mass 0.447L,
and the long-dashed for 0.224L.

Fig. 4. Common square masses m2 s m2 s l as a function of Ns p c

in Approximation 2. The three curves start at different critical
values N cr which can be read off Fig. 3.c

the corresponding legends. Here we only remark that
the shape of the dashed curves in Fig. 1 can be

Ž . Ž .understood from the gap equations 34 and 35
Ž .without solving them, because xZ x is maximal at

the minimum of N cr.c

Figs. 3 and 4 correspond to Appr. 2, in which the
full momentum dependence for the pion normaliza-
tion constant is taken into account, and in which the
pionic cutoff is L2 s4M 2, for which we get thep

Ž .2ratio L rL s4 x . The solid curve in Fig. 3p 0

gives the critical number of color in this particular
case. Although the conclusion is not as strong as in
Appr. 1, our result concerning the lack of breaking
of chiral symmetry is robust, since the crossing with
the line N s3 takes place at a cutoff L2rM 2 R11,c p

Ž .which lies outside of the admissible range 3.3,7.3
implied by the physical value of the pion decay
constant f s93 MeV, as discussed at the end of thep

previous section.
Finally, we give in Fig. 5 the stiffness as a

function of the number of color for Appr. 1. The
three curves depend so weakly on r that they seem0

to coincide. To make the r -dependence visible, we0

have plotted an extra dotted curve for a very small
Ž .value r s0.224L dotted .0

Let us emphasize that these conclusions cannot be
reached in the dimensional regularization scheme
since, as explained at the end of Section 3, the

Ž .integral in 28 determining the critical stiffness van-
ishes. Here the unphysical nature of dimensional
regularization makes its application impossible.
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Fig. 5. Approximation 1. Reduced stiffness as a function of
N rN cr. The three curves below N cr cannot be distinguished onc c c

this scale. The dotted curve corresponds to an extra low value of
r , just to show that below N cr the curves deviate from a straight0 c

line.

Before concluding, let us also remark that the
cutoff chosen in Appr. 2 is completely different from
that in Appr. 1, where the ratio of cutoffs is a
constant. In Appr. 2, the ratio of cutoffs is a function
of x : L2rL2 s4 x . If we had taken the cutoff in0 p 0

Ž 2 2 .the same way as in Appr. 1 L rL s1 , the curvep

giving the critical number of colors would also have
had the same shape as in Appr. 1, although the
integration would have been much more involved:
the minimum number of color would then be 5.2,
whatever the value of L2rr 2, a value which is even0

higher than in Appr. 1. We see that Appr. 2 as
presented above, with the physically motivated cut-
off L2 s4M 2, gives then the lowest critical numberp

of colors.
Our conclusions were derived from a study of

only the s , p fields. The inclusion of other flavors
does not help preventing the restoration since the
associated pseudoscalar mesons are quite massive,
making their fluctuations irrelevant to the described
phenomenon.

6. Conclusion

We have shown that within a certain nonperturba-
tive approximation, the Nambu–Jona-Lasinio model

does not really display the spontaneous symmetry
breakdown for whose illustration it was constructed.
The fluctuations of s- and p -fields restore chirala

symmetry and make s and p equally massive. If
our conclusion survives more refined approxima-
tions, this would invalidate a large number of publi-
cations, especially in nuclear physics, which have
been based on the existence of a symmetry-broken
ground state of the model. In particular, all studies of
the temperature dependence of the symmetry-broken

w xstate 3 would deal with nonexisting objects, thus
calling for further investigations. Finally, we note
that our no-go result for the Nambu–Jona-Lasinio
model does not imply problems with the effective-
action approach to chiral dynamics. Certainly, there
exists an effective chiral action for the meson sector
of quantum chromodynamics which does contain
almost massless pions for N s3. It is only thec

Nambu–Jona-Lasinio model as it stands which is
incapable of describing these for such a low number

w xof colors. In fact, a recent paper 16 prompted by a
first version of our preprint points out that an exten-
sion of the Nambu–Jona-Lasinio model by interac-
tions involving higher-dimensional operators is not
subject to our no-go theorem. Another escape is
possible by adding gradient and quartic interaction
terms for s- and p-fields to the initial action, thus
extending the Nambu–Jona-Lasinio model to a linear

w xsigma model 17 .
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