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Recursive graphical construction of Feynman diagrams in quantum electrodynamics

Michael Bachmann, Hagen Kleinert, and Axel Pelster
Institut für Theoretische Physik, Freie Universita¨t Berlin, Arnimallee 14, 14195 Berlin, Germany

~Received 7 July 1999; published 24 March 2000!

We present a method for a recursive graphical construction of Feynman diagrams with their correct multi-
plicities in quantum electrodynamics. The method is first applied to find all diagrams contributing to the
vacuum energy from which alln-point functions are derived by functional differentiation with respect to
electron and photon propagators, and to the interaction. The basis for our construction is a functional differ-
ential equation obeyed by the vacuum energy when considered as a functional of the free propagators and the
interaction. Our method does not employ external sources in contrast with traditional approaches.

PACS number~s!: 12.20.2m
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I. INTRODUCTION

In quantum field theory, it is well known@1,2# that the
complete knowledge of all vacuum diagrams implies
knowledge of the entire theory~‘‘the vacuum is the world’’!.
Indeed, it is possible to derive all correlation functions a
scattering amplitudes from the vacuum diagrams. This
been elaborated explicitly forf4 theory in the disordered
phase in Refs.@3#, @4# and for the ordered phase in Ref.@5#,
following a general theoretical framework laid out some tim
ago@6,7#. However, this knowledge has not yet been appl
for constructing an efficient algebraic method along th
lines for field theories of fundamental particles. The purpo
of the present paper is to do this for quantum electrodyn
ics ~QED!. We show how to derive systematically all Fey
man diagrams of the theory together with their correct m
tiplicities in a two step process: First we find the vacuu
energy from a sum over all vacuum diagrams by a recurs
graphical procedure. This is developed by solving a fu
tional differential equation which involves functional deriv
tives with respect to the free electron and photon propa
tors. In a second step, we find all correlation functions b
diagrammatic application of functional derivatives upon t
vacuum energy. In contrast with conventional procedu
@8–13#, no external currents coupled to single fields are us
such that there is no need for Grassmann sources for
electron fields. An additional advantage of our procedure
that the number of derivatives to be performed for a cert
correlation function is half as big as with external source

In Sec. II we establish the partition function of Euclide
QED as a functional with respect to the inverse electron
photon progators as well as a generalized interaction.
setting up graphical representations for functional derivati
with respect to these bilocal and trilocal functions, we sh
in Sec. III that the partition function constitutes a generat
functional for all correlation functions. This forms the bas
for a perturbative expansion of the vacuum energy in te
of connected vacuum diagrams. In Sec. IV we then deriv
recursion relation which allows to graphically construct t
connected vacuum diagrams order by order. From these
obtain in Sec. V all diagrams for self-interactions and sc
tering processes by cutting electron as well as photon line
by removing vertices. Along similar lines we apply in Se
0556-2821/2000/61~8!/085017~16!/$15.00 61 0850
e

d
s

d
e
e
-

l-

e
-

a-
a

s
d,
he
is
n

d
y
s

g

s
a

e
t-
or
.

VI our method for scattering processes in the presence o
external electromagnetic field.

II. GENERATING FUNCTIONAL
WITHOUT PARTICLE SOURCES

We begin by setting up a generating functional for
Feynman diagrams of quantum electrodynamics which d
not employ external particle sources coupled linearly to
fields.

A. Partition function of QED

Our notation for the action of QED in Euclidean spac
time with a gauge fixing of Feynman type is

AQED@c̄,c,A#5E d4xF c̄a~ igab
m ]m1m!cb

1
1

2
Am~2]2!Am2ec̄agab

m AmcbG ,
~2.1!

with Dirac spinor fieldsca , c̄b5ca
†gab

0 (a,b51, . . . ,4)
and Maxwell’s vector fieldAm (m50, . . .,3). Theproper-
ties of the vacuum are completely described by the partit
function

ZQED5 R Dc̄DcDAe2AQED@c̄,c,A#, ~2.2!

where the electron fieldsc̄ andc are Grassmannian. Let u
split the action into the three terms

AQED@c̄,c,A#5Ac@c̄,c#1AA@A#1Aint@c̄,c,A#,
~2.3!

corresponding to the Dirac, Maxwell, and interaction ter
in Eq. ~2.1!. For the upcoming development it will be usef
to consider the free parts of the action as bilocal function
The free action of the Dirac fields is
©2000 The American Physical Society17-1



s,

on

ies

y

-
-
the
ory

l is

nd
e

MICHAEL BACHMANN, HAGEN KLEINERT, AND AXEL PELSTER PHYSICAL REVIEW D 61 085017
Ac@c̄,c#5EE d4xd4x8c̄a~x!SFab
21 ~x,x8!cb~x8!,

~2.4!

with a kernel

SFab
21 ~x,x8!5~ igab

m ]m1mdab!d~x2x8!, ~2.5!

while the free action for the Maxwell field reads

AA@A#5
1

2
EE d4xd4x8Am~x!DFmn

21 ~x,x8!An~x8!

~2.6!

with a kernel

DFmn
21 ~x,x8!52]2d~x2x8!dmn . ~2.7!

In the following, we shall omit all vector and spinor indice
for brevity.

B. Generalized action

Our generating functional will arise from a generalizati
of the free action

A~0!@ c̄,c,A#5Ac@c̄,c#1AA@A# ~2.8!

to bilocal functionals of arbitrary kernelsS21(x1 ,x2) and
D21(x1 ,x2)5D21(x2 ,x1) according to

Ac@c̄,c#→Ac@c̄,c;S21#5EE d4x1d4x2c̄~x1!

3S21~x1 ,x2!c~x2!, ~2.9!

AA@A#→AA@A;D21#5
1

2
EE d4x1d4x2

3A~x1!D21~x1 ,x2!A~x2!. ~2.10!

The kernelsS21(x1 ,x2) and D21(x1 ,x2) are only required
to possess a functional inverseS(x1 ,x2) and D(x1 ,x2).
Similarly, we shall generalize the interaction to

Aint@c̄,c,A#→Aint@c̄,c,A;V#

52e EEE d4x1d4x2d4x3V~x1 ,x2 ;x3!

3c̄~x1!c~x2!A~x3!, ~2.11!

whereV(x1 ,x2 ;x3) is an arbitrary trilocal function. At the
end we shall return to QED by substitutingS→SF , D
→DF andeV(x1 ,x2 ;x3)→egmd(x12x2)d(x12x3).

The generalized partition function

Z5 R Dc̄DcDAe2A@c̄,c,A;S21,D21,V# ~2.12!

with the action
08501
A@c̄,c,A;S21,D21,V#5Ac@c̄,c;S21#1AA@c̄,c;D21#

1Aint@c̄,c,A;V# ~2.13!

then represents a functional of the bilocal quantit
S21(x1 ,x2), D21(x1 ,x2), and of the trilocal function
V(x1 ,x2 ;x3). All n-point correlation functions of the theor
are obtained from expectation values defined by

^Ô1~x1!Ô2~x2!¯&5Z21 R Dc̄DcDAO1~x1!

3O2~x2!¯e2A@c̄,c,A;S21,D21,V#,

~2.14!

where the local operatorsÔi(x) are products of field opera
tors ĉ(x), cC (x), andÂ(x) at the same spacetime point. Im
portant examples for expectation values of this kind are
photon and the electron propagators of the interacting the

gG2~x1 ,x2![^Â~x1!Â~x2!&

5Z21 R Dc̄DcDA A~x1!A~x2!

3e2A@c̄,c,A;S21,D21,V#, ~2.15!

eG2~x1 ,x2![^ĉ~x1!cC ~x2!&

5Z21 R Dc̄DcDAc~x1!c̄~x2!

3e2A@c̄,c,A;S21,D21,V#. ~2.16!

For a perturbative calculation of the partition functionZ we
define the free vacuum functional

Z~0![ R Dc̄DcDAe2A~0!@ c̄,c,A;S21,D21#, ~2.17!

whose action is quadratic in the fields. The path integra
Gaussian and yields

Z~0!5exp@Tr ln S21#expF2
1

2
Tr ln D21G . ~2.18!

The free correlation functions of arbitrary local electron a
photon operatorsÔ(x) are defined by the free part of th
expectation values~2.14!

^Ô1~x1!Ô2~x2!¯&~0!5@Z~0!#21 R Dc̄DcDAO1~x1!

3O2~x2!¯e2A~0!@ c̄,c,A;S21,D21#,

~2.19!

and the free-field propagators are the expectation values

gG2~0!
~x1 ,x2!5D~x1 ,x2![^Â~x1!Â~x2!&~0![D~x2 ,x1!,

~2.20!
7-2
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eG2~0!
~x1 ,x2!5S~x1 ,x2![^ĉ~x1!cC ~x2!&~0!.

~2.21!

To avoid a pile up of infinite volume factors in a perturbati
expansion, it is favorable to go over fromZ(0) to the negative
vacuum energyW(0) defined by

W~0![ ln Z~0!5Wc
~0!1WA

~0! , ~2.22!

where the free electron and photon parts are

Wc
~0!5Tr ln S21 ~2.23!

and

WA
~0!52

1

2
Tr ln D21. ~2.24!

The negative total vacuum energy

W5 ln Z ~2.25!

is obtained perturbatively by expanding the functional in
gral ~2.12! in powers of the coupling constante:

W5 (
p50

`

e2pW~p!, ~2.26!

where the quantitiesW(p) with p>1 are free-field expecta
tion values of the type~2.19!:

W~p!5E
1¯6p

V123¯V6p22 6p21 6p

3^c̄6p21¯ĉ5ĉ2cC 1cC 4¯cC 6p22Â3Â6¯Â6p&
~0!,

p>1. ~2.27!

Throughout this paper we shall use from now on the sh
hand notation 15x1 , 25x2 ,... and*1•5*d4x1¯ . The ex-
pectation values in Eq.~2.27! are evaluated with the help o
Wick’s rule as a sum of Feynman integrals, which are p
tured as connected vacuum diagrams constructed from
and vertices. A straight line with an arrow represents an e
tron propagator

~2.28!

whereas a wiggly line stands for a photon propagator

. ~2.29!

The vertex represents an integral over the interaction po
tial:

~2.30!

The vacuum energies~2.23! and ~2.24! will be represented
by single-loop diagrams
08501
-

t-

-
es
c-

n-

~2.31!

and

~2.32!

This leaves us with the important problem of finding all co
nected vacuum diagrams. For this we shall exploit that
partition function~2.12! is a functional of the bilocal func-
tions S21(x1 ,x2), D21(x1 ,x2), and of the trilocal function
V(x1 ,x2 ;x3).

III. PERTURBATION THEORY

As a preparation for our generation procedure for vacu
diagrams, we set up a graphical representation of functio
derivatives with respect to the kernelsS21, D21, the propa-
gatorsS, D, and the interaction functionV. After this we
express the vacuum functionalW in terms of a series of
functional derivatives of the free partition functionZ(0) with
respect to the kernels.

A. Functional derivatives with respect toSÀ1
„x1 ,x2…,

DÀ1
„x1 ,x2…, and V„x1 ,x2 ;x3…

Each Feynman diagram is composed of integrals o
products of the propagatorsS,Dand may thus be considere
as a functional of the kernelsS21,D21. In the following we
set up the graphical rules for performing functional deriv
tives with respect to these functional matrices. With the
rules we can generate all 2n-point correlation functions with
n51,2, . . . from vacuum diagrams. To produce also (2n
11)-point correlation functions withn51,2, . . . such as the
fundamental three-point vertex function from vacuum d
grams, it is useful to introduce additionally a functional d
rivative with respect to the interaction functionV .

1. Functional derivative with respect to the photon kernel

The kernelD12
21 of the photon is symmetricD12

215D21
21,

so that the basic functional derivatives are also symme
@3,4#

dD12
21

dD34
21 [

1

2
$d13d421d14d32%, ~3.1!

as is discussed in detail in Ref.@5#. By the chain rule of
differentiation, this defines the functional derivative with r
spect toD21 for all functionals ofD21. As an example, we
calculate the free photon propagator~2.20! by applying the
operatord/dD12

21 to Eq. ~2.17!. Taking into account Eq.
~2.22! and Eq.~3.1!, we find

D12522
dWA

~0!

dD12
21 . ~3.2!

Inserting the explicit form~2.24!, we obtain
7-3
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D125
d

dD12
21 Tr ln D21. ~3.3!

With the notation~2.29! and ~2.32!, we can write relation
~3.2! graphically as

~3.4!

This diagrammatic equation may be viewed as a special
of a general graphical rule derived as follows: Let us ap
the functional derivative~3.1! to a photon propagatorD12.
Because of the identity
ru

ith
-
on

08501
se
y

E
1̄
D11̄D 1̄2

21
5d12 ~3.5!

we find

2
dD12

dD34
21 5

1

2
$D13D421D14D32%. ~3.6!

Diagrammatically, this equation implies that the operati
2d/dD34

21 applied to a photon line~2.29! amounts to cutting
the line:
s due

of no
~3.7!

Note that the indices of the kernelD34
21 are symmetrically attached to the newly created line ends in the two possible way

to the differentiation rule~3.1!. This rule implies directly the diagrammatic equation~3.4!.
Consider now higher-order correlation functions which follow from higher functional derivatives ofWA

(0) . From the
definition ~2.19! and Eq.~2.10!, we obtain the free four-point function as the second functional derivative

gG1234
4~0!

[^Â1Â2Â3Â4&
~0!54e2WA

~0! d2

dD12
21dD34

21 eWA
~0!

. ~3.8!

Because of the symmetry ofD12, the order in which the spacetime arguments appear in the inverse propagators is
importance. Inserting forWA

(0) the explicit form~2.24!, the first derivative yields via Eq.~3.3! just 2D34exp$WA
(0)%, the second

derivative applied to this gives with the rule~3.6! and, once more Eq.~3.3!,

gG1234
4~0!

5D13D241D32D141D12D34. ~3.9!

The right-hand side has the graphical representation

~3.10!
nd-

e

The same diagrams are obtained by applying the cutting
~3.7! twice to the single-loop diagram~2.32!.

While derivatives with respect to the kernelD21 amount
to cutting photon lines, we show now that derivatives w
respect to the photon propagatorD amount to line amputa
tions. The transformation rule between the two operati
follows from relation~3.6!:

d

dD12
21 52E

34
D13D24

d

dD34
, ~3.11!

which is equivalent to

d

dD12
52E

34
D13

21D24
21 d

dD34
21 . ~3.12!

The functional derivative with respect toD12 satisfies of
course the fundamental relation~3.1!:
le

s

dD12

dD34
5

1

2
$d13d421d14d32%. ~3.13!

We shall represent the right-hand side graphically by exte
ing the Feynman diagrams by the symbol:

~3.14!

If we write the functional derivative with respect to th
propagatorD12 graphically as

~3.15!

we may express Eq.~3.13! as
7-4
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Thus, differentiating a photon line with respect to the cor
sponding propagator amputates this line, leaving only
symmetrized indices at the end points.

2. Functional derivative with respect to the electron kernel

Setting up graphical representations for functional deri
tives for electrons is different from that in the photon ca
since the kernelS21 is no longer symmetric. The functiona
derivative is therefore the usual one

dS12
21

dS34
21 5d13d42, ~3.17!

from which all others are derived via the chain rule of d
ferentiation. The free electron propagatorS12 is found in
analogy to Eq.~3.2! by differentiating the free electron
vacuum functional~2.23! with respect to the inverse electro
propagatorS21:

S125
dWc

~0!

dS21
21 . ~3.18!

This implies

S125
d

dS21
21 Tr ln S21, ~3.19!

which follows also from Eq.~3.17! and the chain rule of
differentiation. The graphical interpretation of the function
derivatived/dS21

21 is quite analogous to the photon case.
analogy to Eq.~3.4!, we write expression~3.19! diagram-
matically as

~3.20!

This, in turn, can be understood as being a consequenc
the general cutting rule for electron lines:

~3.21!

which graphically expresses the derivative relation

dS12

dS43
21 52S14S32. ~3.22!

The free electron 4-point function is obtained from two fun
tional derivatives according to
08501
-
e

-
e

l

of

-

eG1234
4~0!

[^ĉ1ĉ2ĉ̄3ĉ̄4&
~0!5e2Wc

~0! d2

dS32
21dS41

21 eWc
~0!

.

~3.23!

Here, the electron fields must be properly rearranged

ĉ2ĉ̄3ĉ1ĉ̄4 for applying the functional derivatives with re
spect toS21. Using Eqs.~3.18! and ~3.22! we obtain, from
Eq. ~3.23!,

eG1234
4~0!

5S23S142S24S13, ~3.24!

or graphically

~3.25!

Derivatives with respect to the propagatorsS satisfy the re-
lation

dS12

dS34
5d13d42, ~3.26!

which in analogy to Eq.~3.13! is represented graphically a
an amputation of an electron line

~3.27!

Here we have introduced the additional diagrammatic sy
bols

~3.28!

~3.29!

Differentiating an electron line with respect to the corr
sponding propagator removes this line, leaving only the
dices at the end points of the remaining lines.

The analytic relations between cutting and amputat
lines are now, just as in Eqs.~3.11! and ~3.12!:

d

dS12
2152E

34
S31S24

d

dS34
, ~3.30!

d

dS12
52E

34
S31

21S24
21 d

dS34
21 . ~3.31!

With the above graphical representations of the functio
derivatives, it will be possible to derive systematically a
vacuum diagrams of the interacting theory order by orde
the coupling strengthe, and from these all diagrams with a
even number of legs.
7-5
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3. Functional derivative with respect to the interaction

If we want to find amplitudes involving an odd number
photons such as the three-point function from vacuum d
grams, the derivatives with respect to the kernelsS21, D21

are not enough. Here the general trilocal interaction funct
V of Eq. ~2.11! is needed. Thus, we define an associa
functional derivative with respect to this interaction to satis

dV123

dV456
5d14d52d36. ~3.32!

By introducing the graphical rule

~3.33!

the definition of the functional derivative~3.32! can be ex-
pressed as

~3.34!

where the right-hand side represents a product ofd-functions
as defined in Eqs.~3.14! and ~3.28!.

B. Vacuum energy as generating functional

With the above-introduced diagrammatic operations,
vacuum energyW@S21,D21,V# constitutes a generatin
functional for all correlation functions. Its evaluation pr
ceeds by expanding the exponential in the partition funct
~2.12! in powers of the coupling constante, leading to the
Taylor series

Z5 (
p50

`
e2p

~2p!! R Dc̄DcDA

3S E
1¯6

V123V456c̄1c2A3c̄4c5A6D p

3e2A~0!@ c̄,c;A;S21,D21#. ~3.35!

The products of pairs of fieldsc̄1c2 andA3A6 can be sub-
stituted by a functional derivative with respect toS21 and
D21, leading to the perturbation expansion

Z[ (
p50

`

e2pZ~p!

5 (
p50

`
~22e2!p

~2p!! S E
1¯6

V123V456

d3

dS12
21dS45

21dD36
21D p

Z~0!.

~3.36!

Note the two advantages of this expansion over the conv
tional one in terms of currents coupled linearly to the fiel
08501
-

n
d

e

n

n-
.

First, it contains only half as many functional derivative
Second, it does not contain derivatives with respect to Gra
mann variables.

Inserting forZ(0) the free vacuum functional~2.22!, we
obtain for the first-order termZ(1)

Z~1!5
1

2! E1¯6
V123V456~22!

d3

dD36
21dS12

21dS45
21 Z~0!.

~3.37!

Since

Z5Z~0!1e2Z~1!1¯5exp$W~0!1e2W~1!1¯%,
~3.38!

this corresponds to a first-order correctionW(1) to the
vacuum energyW(0):

W~1!5
1

2! E1¯6
V123V456~22!

dWA
~0!

dD36
21

3S d2Wc
~0!

dS12
21dS45

21 1
dWc

~0!

dS12
21

dWc
~0!

dS45
21 D . ~3.39!

Expressing the derivatives with respect to the kernels by
corresponding propagators via Eqs.~3.2!, ~3.18!, and taking
into account Eq.~3.22!, W(1) becomes

W~1!5
1

2 E1¯6
V123V456D36~S21S542S24S51!. ~3.40!

According to the Feynman rules~2.28!–~2.30!, this is repre-
sented by the diagrams

~3.41!

Note that each closed electron loop causes a factor21.

IV. GRAPHICAL RECURSION RELATION
FOR CONNECTED VACUUM DIAGRAMS

In this section, we derive a functional differential equ
tion for the vacuum functionalW@S21,D21,V# whose solu-
tion leads to a graphical recursion relation for all connec
vacuum diagrams.

A. Functional differential equation for WÄ ln Z

The functional differential equation for the vacuum fun
tional W@S21,D21,V# is derived from the following func-
tional integral identity:

R Dc̄DcDA
d

dc̄1

$c̄2e2A@c̄,c,A;S21,D21,V#%50 ~4.1!

with the action~2.13!. This identity is the functional gener
alization of the trivial integral identity*2`

1`dx f8(x)50 for
functions f (x) which vanish at infinity. Nontrivial conse
7-6
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quences of Eq.~4.1! are obtained by performing the func
tional derivative in the integrand which yields

R Dc̄DcDAH d121E
3
c̄2S13

21c32eE
34

V134c̄2c3A4J
3e2A@c̄,c,A;S21,D21,V#50. ~4.2!

Substituting the field productsc̄2c3 by functional deriva-
tives with respect to the electron kernelS23

21, this equation
can be expressed in terms of the partition function~2.12!:

Zd122E
3
S13

21 dZ

dS23
21 1eE

34
V134

d

dS23
21 @^Â4&Z#50.

~4.3!

To bring this functional differential equation into a mo
convenient form, we calculate explicitly the term containi
the expectation of the fieldA. This is done starting from the
integral identity

R Dc̄DcDA
d

dA1
e2A@c̄,c,A;S21,D21,V#50. ~4.4!

Note this identity is not endangered by the gauge freedom
the electromagnetic vector potentialAm due to the presenc
of a gauge fixing term in the action~2.1!. This ensures tha
the exponential vanishes at the boundary of allA field direc-
tions @14#.

After differentiating the action in the exponential of E
~4.4!, we find the expectation of the photon field

E
1
^Â1&D12

2152eE
34

V342̂ c4c̄3&. ~4.5!

Multiplying this with *2D25, we yield

^Â5&52eE
234

V342D25

dW

dS34
21 , ~4.6!

where we have usedZ5eW. Inserting this into Eq.~4.3!, we
obtain

d122E
3
S13

21 dW

dS23
21 5e2E

3¯7
V134V567D47

3H d2W

dS23
21dS56

21 1
dW

dS23
21

dW

dS56
21J .

~4.7!

Settingx15x2 and performing the integration overx1 , this
leads to the nonlinear functional differential equation for t
vacuum functionalW
08501
in

E
1
d112E

12
S12

21 dW

dS12
21 5e2E

1¯6
V123V456D36

3H d2W

dS12
21dS45

21 1
dW

dS12
21

dW

dS45
21J ,

~4.8!

which will form the basis for deriving the desired recursio
relation for the vacuum diagrams. The first term on the le
hand side of Eq.~4.8! is infinite, but in the next section we
will show that this cancels against an infinity in the seco
term.

B. Recursion relation

Equation ~4.8! contains functional derivatives with re
spect to the electron kernelS21 which are equivalent to cut
ting lines in the vacuum diagrams. For practical purpose
will be more convenient to work with derivatives with re
spect to the propagatorsS which remove electron lines. Th
second term on the left-hand side of Eq.~4.8! contains the
operation2*12S12

21d/dS12
21, which we convert into the dif-

ferential operator

N̂F5E
12

S12

d

dS12
~4.9!

with the help of Eq.~3.30!. This operator has a simpl
graphical interpretation. The derivatived/dS12 removes an
electron line from a Feynman diagram, and the factorS12
restores it. This operation is familiar from the number ope
tor in second quantization. The operatorN̂F counts the num-
ber of electron lines in a Feynman diagramG:

N̂FG5NFG. ~4.10!

When applied to the vacuum diagramsW(p) of order p>1,
this operator gives

N̂FW~p!52pW~p!, p>1, ~4.11!

since the number of electron lines in a vacuum diagram w
out external sources in quantum electrodynamics is equa
the number of vertices. The restriction in Eq.~4.11! to p
>1 is necessary due to a special role of the vacuum diagr
Take, for example, the electron vacuum diagram of the f
theory ~2.23!. By applying the operatorN̂F , we obtain with
Eq. ~3.18!

N̂FWc
~0!52E

12
S12

21S2152E
1
d11, ~4.12!

which is a divergent trace integral precisely canceling
infinite first term in Eq.~4.8!.

Separating outW(0) in the expansion~2.26! of the vacuum
functional, the left-hand side of the functional differenti
equation~4.8! has the expansion
7-7
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E
1
d111N̂FW5 (

p51

`

2pe2pW~p!5 (
p50

`

2~p11!e2~p11!W~p11!. ~4.13!

On the right hand side of Eq.~4.8!, we express the first and second functional derivatives with respect to the kernelS21 in
terms of functional derivatives with respect to the propagatorS by using Eq.~3.30! and

d2

dS12
21dS34

21 5E
5678

S51S26S73S48

d2

dS56dS78
1E

56
@S53S41S261S23S46S51#

d

dS56
. ~4.14!

Inserting here the expansion~2.26! and comparing equal powers ine with those in Eq.~4.13!, we obtain the following
recursion formula for the expansion coefficients of the vacuum functional

W~p11!5
1

2~p11! H E1...10
V123V456D36S71S28S94S510

d2W~p!

dS78dS910
12E

1...8
V123V456D36~S51S28S742S71S28S54!

dW~p!

dS78

1 (
q51

p21 E
1...10

V123V456D36S71S28S94S510

dW~q!

dS78

dW~p2q!

dS910
J , p>1 ~4.15!

and the initial value~3.40!. This equation enables us to derive the connected vacuum diagrams systematically to any
order from the diagrams of the previous orders, as will now be shown.

C. Graphical solution

With the help of the Feynman rules~2.28!–~2.30!, the functional recursion relation~4.15! can be written diagrammatically
as follows:

~4.16!

and the first-order result is given by Eq.~3.41!. The right-hand side contains four graphical operations. The first three are l
and involve one or two electron line amputations of the previous perturbative order. The fourth operation is nonlin
mixes two different electron line amputations of lower orders. To demonstrate the working of this formula, we calcul
connected vacuum diagrams in second and third order. We start with the amputation of one or two electron lines in fi
~3.41!:

. ~4.17!

Inserting Eq.~4.17! into Eq. ~4.16!, where we have to take care of connecting only legs with the same label, we fin
second-order correction of the vacuum functionalW:

. ~4.18!
085017-8
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The calculation of the third-order correctionW(3) leads to the following 20 diagrams:

~4.19!
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From the vacuum diagrams~3.41!, ~4.18!, and ~4.19!, we
observe a simple mnemonic rule for the weights of the c
nected vacuum diagrams in QED. At least up to four loo
each weight is equal to the reciprocal number of elect
lines, which, by cutting, generate the same two-point d
grams. The sign is given by (21)L, whereL denotes the
number of electron loops. Note that the total weight, which
the sum over all weights of the vacuum diagrams in the or
to be considered, vanishes in QED. The simplicity of t
weights is a consequence of the Fermi statistics and
three-point form of interaction~2.11!. The weights of the
vacuum diagrams in other theories, likef4-theory @3,4,6#,
follow more complicated rules.

V. SCATTERING BETWEEN ELECTRONS AND
PHOTONS

From the above vacuum diagrams, we obtain all ev
point correlation functions by cutting electron or phot
lines. For the generation of the odd-point functions we u
the functional derivative~3.34! with respect to the interaction
function V which removes a vertex from a diagram.

As an illustration, we generate the diagrams for the s
interactions described by the propagators~2.15! and ~2.16!

gG12
2 5^Â1Â2&,

eG12
2 5^ĉ1ĉ̄2& ~5.1!

and the four-point functions
08501
-
,
n
-

s
r

e

-

e

lf

ggG1234
4 5^Â1Â2Â3Â4&,

eeG1234
4 5^ĉ1ĉ2ĉ̄3ĉ̄4&,

egG1234
5 5^ĉ1Â2Â3ĉ̄4&, ~5.2!

which represent the simplest scattering processes of
theory. In addition, we give the perturbative expansion of
three-point vertex function

G123
3 5^ĉ1ĉ̄2Â3&. ~5.3!

The following examples illustrate the simple weights
(21)L of diagrams contributing to ann-point function with
n>2, with L being the number of electron loops.

A. Self-interactions

Substituting the product of the photon fieldsA1A2 in the
functional integral~2.15! by the photonic functional deriva
tive 22d/dD12

21, the photonic two-point function of the in
teracting theory is given by

gG12
2 522

d

dD12
21 W@S21,D21,V#. ~5.4!

Applying the associated cutting rule~3.7! to the vacuum dia-
grams~3.41! and ~4.18! leads to the connected diagrams
~5.5!
7-9
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For brevity, we have omitted the labels 1 and 2 at the ends of the higher-order diagrams. The full and the co
propagatorsgG12

2 and gG12
2,c satisfy the cumulant relation

gG12
2,c5gG12

2 2^Â1&^Â2&. ~5.6!

Note that although the expectation value of the electromagnetic field^Âm(x)& is zero in quantum electrodynamics, it does n
vanish in our generalized theory with arbitrary propagatorsS andD @see Eq.~4.6!#.

The derivative of vacuum diagrams with respect to the electron kernelS21,

eG12
2 5

d

dS21
21 W@S21,D21,V#, ~5.7!

leads to the electronic two-point function, whose diagrams are

~5.8!

B. Scattering processes

The generation of diagrams for scattering processes between electrons and photons~5.2! and higher even-point functions i
now straightforward.

1. Photon-photon scattering

The four-point function of photons is obtained by cutting two photon lines in the vacuum diagrams or one photon
the photonic two-point function:

ggG1234
4 54H d2W

dD12
21dD34

21 1
dW

dD12
21

dW

dD34
21J 522

d gG12
2

dD34
21 1gG12

2 gG34
2 . ~5.9!

After applying one of the two possible operations in Eq.~5.9!, the resulting connected diagrams to ordere4 are

~5.10!

each permutation of two external spacetime coordinates leading to a different diagram.

2. Mo” ller and Bhabba scattering

The scattering of two electrons~Mo” ller scattering! is described by the electronic four-point function

eeG1234
4 5

d2W

dS41
21dS32

21 1
dW

dS41
21

dW

dS32
21 5

d eG23
2

dS41
21 1eG14

2 eG23
2 . ~5.11!
085017-10
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To ordere4, the connected diagrams contributing to the fermionic four-point function are

~5.12!

where the spacetime indices in all diagrams are arranged as in the first. Each diagram on the right-hand side has a pa
opposite sign, where the spacetime indices either of the incoming or of the outgoing electrons are interchanged. Th
diagrams vanish for physical propagatorsS5SF , D5DF , and the corresponding corrections attached to external legs d
contribute when calculating theS-matrix elements. In our general vacuum functional, however, we must not discard
since they contribute to higher functional derivatives, which would be needed for the calculation of, e.g., the six-point fu

By interchanging spacetime arguments in the kernels of Eq.~5.12! apparently, the Feynman diagrams~5.12! describe also
scattering of electron and positron~Bhabba scattering! and scattering of two positrons.

3. Compton scattering

The amplitude of Compton scattering is given by the mixed four-point functionegG1234
4 . To obtain the relevant Feynma

diagrams, we have to perform one of the possible operations

egG1234
4 522H d2W

dD23
21dS41

21 1
dW

dD23
21

dW

dS41
21J

5
d gG23

2

dS41
21 1eG14

2 gG23
2 522

d eG14
2

dD23
21 1 eG14

2 gG23
2 . ~5.13!

The resulting connected Feynman diagrams to ordere4 are

~5.14!

where the diagrams with interchanged photon coordinates 2↔3 possess the same sign as the original one.

C. Three-point vertex function

The three-point vertex function is obtained from the vacuum energyW by performing the derivative with respect to th
interaction functionV123, which we have defined in Eq.~3.32!:

G123
3 52

1

e

dW

dV213
. ~5.15!

The easiest way to find the associated Feynman diagrams is to apply the graphical operation~3.33!, which removes a vertex
from the vacuum diagrams in all possible ways and lets the remaining legs open. Dropping disconnected diag
considering the cumulant
085017-11
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G123
3,c 5G123

3 2^ĉ1ĉ̄2&^Â3& ~5.16!

we obtain

~5.17!
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VI. SCATTERING OF ELECTRONS AND PHOTONS
IN THE PRESENCE OF AN EXTERNAL

ELECTROMAGNETIC FIELD

To describe the scattering of electrons and photons
external electromagnetic fields, the actionA@c̄,c,A# in Eq.
~2.13! must be extended by an additional external currenJ,
which is coupled linearly to the electromagnetic fieldA:

AJ@c̄,c,A,J#5A@c̄,c,A#2eE
1
J1A1 . ~6.1!

Then the partition function~2.12! becomes a functional in
the physical currentJ and is given by

Z@J#5 R Dc̄DcDAe2AJ@c̄,c,A,J# ~6.2!

with Z5Z@0#. The external current is usually supplied b
some atomic nucleus of chargeNe with integer numberN.
For this reason, the factore is removed from the current in
Eq. ~6.1! to be able to collect systematically all Feynm
diagrams of the same order ine. This organization may no
always be the most useful one. If we consider, for instan
an external heavy nucleus with a high chargeNe, we may
have to include many more orders in the external chargeNe
than in the internal chargee. Such subleties will be ignored
here, for simplicity.

A. Recursion relation for the vacuum energy
with external source

Along similar lines as before, we derive the recursi
relation for the vacuum energy in the presence of an exte
current,W@J#5 ln Z@J# which is now also a functional ofJ
~suppressing the other argumentsD21,S21,V!. After that,
we derive a recursion relation only producing those vacu
diagrams which contain a coupling to the source. It turns
that the resulting recursion relation for current diagrams
08501
n

e,

al

t
s

extremely simple. Hence, this recursion relation is the id
extension of the former Eq.~4.16! which generates only the
source-free diagrams.

1. Complete recursion relation for all vacuum diagrams

The recursion relation for all vacuum diagrams with a
without external source is derived in a similar manner as t
for all source-free vacuum diagrams~4.16!. There will be,
however, a few significant differences in comparison w
the procedure in Sec. IV. Since the currentJ couples to the
electromagnetic fieldA, vacuum diagrams with external cu
rent always contain photon lines. For this reason, we s
with the identity

R Dc̄DcDA
d

dA1
$A2e2AJ@c̄,c,A,J#%50 ~6.3!

instead of Eq.~4.1!. Performing the functional derivative
leads to

Z@J#d1212E
3
D13

21 dZ@J#

dD23
21 2eE

34
V341

d

dS34
21 †^Â2&

JZ@J#‡

1eJ1^Â2&
JZ@J#50 ~6.4!

in analogy to Eq.~4.3!. The expectation value of the electro
magnetic fieldA in the presence of an external sourceJ is
found by exploiting the identity

R Dc̄DcDA
d

dA1
e2AJ@c̄,c,A,J#50 ~6.5!

which is used to derive, as in Eqs.~4.4!–~4.6!,

^Â1&
J52eE

234
V234D14

dW@J#

dS23
21 1eE

2
D12J2 , ~6.6!

where we have setW@J#5 ln Z@J#. Inserting the expectation
value~6.6! into Eq.~6.4!, the resulting functional differentia
equation reads
d1212E
3
D13

21 dW@J#

dD23
21 52e2E

3¯7
V341V567D27H d2W@J#

dS34
21dS56

21 1
dW@J#

dS34
21

dW@J#

dS56
21 J

12e2E
345

V345D25J1

dW@J#

dS34
21 2e2E

3
J1D23J3 . ~6.7!
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Using relations~3.11! and ~3.30!, and taking the trace, this becomes

E
1
d1112E

12
D12

dW@J#

dD12
52e2E

1¯8
V123V456D36S71S24S58

dW@J#

dS78
1e2E

1¯10
V123V456D36S71S28S94S510

3H d2W@J#

dS78dS910
1

dW@J#

dS78

dW@J#

dS910
J 12e2E

1¯6
V123D34J4S51S26

dW@J#

dS56
1e2E

12
J1D12J2 , ~6.8!

which generalizes Eq.~4.8!. ExpandingW@J# as in Eq.~2.26!,

W@J#5W~0!1 (
p51

`

e2pW~p!@J#, ~6.9!

and using the fact that the free vacuum energyW(0)@J#5W(0)@0#5W(0) is independent of the external current, the first te
on the left-hand side in Eq.~6.8! is canceled by an identity following from Eq.~3.2!

2E
12

D12

dW~0!

dD12
5E

1
d11. ~6.10!

Introducing a Feynman diagram for the coupling to the currentJ

~6.11!

we obtain the graphical recursion relation

~6.12!

and the first-order diagrams

~6.13!

where W(1)@0#5W(1) contains the source-free first-order vacuum diagrams~3.41!. An important difference between th
recursion relation~6.12! and the previous~4.16! is that the vacuum diagrams in a series of the coupling constante contain
different numbers of photon~or electron! lines, thus not satisfying a simple eigenvalue equation like~4.11!. In fact, each
vacuum diagram, generated by using the right-hand side of the recursion relation~6.12!, must be divided by twice the numbe
of photon lines in the diagram to obtain the correct weight factor. This procedure is a consequence of the left-hand sid
~6.12!, which counts the number of photon lines in each diagram separately. By taking this into consideration, the seco
vacuum diagrams are given by

~6.14!
085017-13
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with the source-free diagrams given in Eq.~4.18!. In third order, there are 15 diagrams which couple to the physical sou

.
~6.15!
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In the following we derive a recursion relation which allow
us to generate only those vacuum diagrams which conta
coupling to the source.

2. Recursion relation for vacuum diagrams coupled
to the external source

Since we have the possibility to generate all source-f
vacuum diagrams with the help of the recursion relat
~4.16!, we are able to set up a recursion relation to gene
only the diagrams with source coupling. Inserting on the le
hand side of Eq.~6.6! the equation

^Â1&
J5

1

e

dW@J#

dJ1
, ~6.16!

multiplying both sides withJ1 , and performing the integra
*1 yields

E
1
J1

dW@J#

dJ1
5e2E

1¯6
V234D14J1S52S36

dW@J#

dS56

1e2E
12

J1D12J2 . ~6.17!

On the right-hand side we have changed the functional
rivatives with respect to the kernelS21 into functional de-
rivatives with respect to the propagatorS using Eq.~3.30!.
Inserting the decomposition~6.9! and utilizing the fact that
W(0) from Eq. ~2.22! is source-free,dW(0)/dJ150, we find

E
1
J1

dW~1!@J#

dJ1
1 (

n51

`

e2nE
1
J1

dW~n11!@J#

dJ1

52E
1¯4

V234D14J1S321E
12

J1D12J2

1 (
n51

`

e2nE
1¯6

V234D14J1S52S36

dW~n!@J#

dS56
.

~6.18!
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To lowest order, the right-hand side yields the source d
grams

~6.19!

where we have used the wiggle to indicate the restriction
the source diagrams ofW(1)@J# in Eq. ~6.13!. The full func-
tional solving Eq.~6.18! consists of the terms

W~n!@J#5W~n!@0#1W̃~n!@J#, ~6.20!

where the source-free contributionsW(n)@0#5W(n) of Sec.
IV represent integration constants undetermined by
~6.18!. Introducing a diagram for the functional derivativ
with respect to the currentJ,

~6.21!

the recursion relation for the vacuum diagrams with sour
coupling Eq.~6.18! is graphically written forn>1 as

~6.22!

The graphical operation on the right-hand side means tha
external current is attached through a photon line to a
mion line in all possible ways. The iteration of this recursi
relation is very simple since the right-hand side is line
Each diagram calculated with the right-hand side of t
equation must be divided by the number of source-coup
within the diagram since the operation on the left-hand s
counts the number of source-couplings in the diagram.
considering Eq.~6.20!, one easily reproduces the highe
order vacuum diagrams given in the Eqs.~6.14! and ~6.15!.
7-14
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B. Scattering of electrons and photons
in the presence of an external source

Typically, an external electromagnetic field is produc
by a heavy particle such as a nucleus or an ion. Quan
electrodynamical effects like pair creation, Bremsstrahlu
and Lamb shift are caused by such electromagnetic fie
The Feynman diagrams for then-point functions associate
with these processes are again obtained by cutting electro
photon lines from the just-derived vacuum diagrams.
08501
m
,
s.

or

1. Vacuum polarization induced by external field

The photon propagator in the presence of an exte
source

gG12
2 @J#522

dW@J#

dD12
21 ~6.23!

is found by cutting a photon line in the vacuum diagram
~6.13!–~6.15!:
rrections

esses.
~6.24!

showing polarization caused by the external field.

2. Lamb-shift and anomalous magnetic moment

The important phenomena of Lamb shift and anomalous magnetic moments are obtained from the perturbative co
in the electron propagator:

eG12
2 @J#5

dW@J#

dS21
21 , ~6.25!

whose diagrams come from cutting an electron line in the vacuum diagrams~6.13!–~6.15!. To ordere4, we have

~6.26!

As already mentioned before, diagrams with corrections on external legs and tadpole graphs do not contribute toS-matrix
elements. In some problems, diagrams with more than one source-coupling are irrelevant.

3. Pair creation, pair annihilation and Bremsstrahlung

By differentiating the vacuum energy diagrams~6.13!–~6.15! with respect to the interaction functionV123, we obtain the
vertex function in the presence of an external field:

G123
3 @J#52

1

e

dW@J#

dV213
. ~6.27!

The connected Feynman diagrams are to ordere3:

~6.28!

with G123
3,c @0#5G123

3,c of Eq. ~5.17!. These diagrams appear in pair creation, pair annihilation, or Bremsstrahlung proc
7-15
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VII. SUMMARY

We have introduced a graphical recursion relation obe
by the vacuum diagrams in quantum electrodynamics ba
on functional analytic methods developed in Refs.@6#, @7#.
Its iterative solution allows us to generate all vacuum d
grams with their correct weights order by order in perturb
tion theory by removing and joining lines. By removing ph
ton and electron lines as well as vertices from the vacu
graphs, we obtain all diagrams of scattering processes
,

n

s

08501
d
ed

-
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their multiplicities. The method also generates all diagra
of processes involving external sources.
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