PHYSICAL REVIEW D, VOLUME 61, 085017

Recursive graphical construction of Feynman diagrams in quantum electrodynamics
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We present a method for a recursive graphical construction of Feynman diagrams with their correct multi-
plicities in quantum electrodynamics. The method is first applied to find all diagrams contributing to the
vacuum energy from which al-point functions are derived by functional differentiation with respect to
electron and photon propagators, and to the interaction. The basis for our construction is a functional differ-
ential equation obeyed by the vacuum energy when considered as a functional of the free propagators and the
interaction. Our method does not employ external sources in contrast with traditional approaches.

PACS numbdis): 12.20—m

[. INTRODUCTION VI our method for scattering processes in the presence of an
external electromagnetic field.
In quantum field theory, it is well knowhl,2] that the

complete knowledgg of all Yacuum diagr.ams implies the Il GENERATING EUNCTIONAL
knowledge_ of the gnnre theql(ythe vacuum is the wqud'}. WITHOUT PARTICLE SOURCES
Indeed, it is possible to derive all correlation functions and
scattering amplitudes from the vacuum diagrams. This has We begin by setting up a generating functional for all
been elaborated explicitly fop* theory in the disordered Feynman diagrams of quantum electrodynamics which does
phase in Refd.3], [4] and for the ordered phase in RE5], not employ external particle sources coupled linearly to the
following a general theoretical framework laid out some timefields.
ago[6,7]. However, this knowledge has not yet been applied
for constructing an efficient algebraic method along these A. Partition function of QED
lines for field theone; of fundamental particles. The purpose Our notation for the action of QED in Euclidean space-
of the present paper is to do this for quantum electrodynam,[-ime with a gauge fixing of Feynman type is
ics (QED). We show how to derive systematically all Feyn-
man diagrams of the theory together with their correct mul- _
tiplicities in a two step process: First we find the vacuum  Aqeol ¢, w,A]ZJ d*x
energy from a sum over all vacuum diagrams by a recursive
graphical procedure. This is developed by solving a func- NV
tional differential equation which involves functional deriva- + EAu(_a AL =g VapPudp|s
tives with respect to the free electron and photon propaga-

Ja(i '}’Z,Bﬁ;f" m) lr//B

tors. In a second step, we find all correlation functions by a (2.9)
diagrammatic application of functional derivatives upon the

vacuum energy. In contrast with conventional proceduresvith Dirac spinor fieldsy,, , JBZII/ZVS(;; (a,=1,...,4)
[8—13|, no external currents coupled to single fields are usedgnd Maxwell’s vector field, (1=0,...,3). Theproper-

such that there is no need for Grassmann sources for thfes of the vacuum are completely described by the partition
electron fields. An additional advantage of our procedure iSunction
that the number of derivatives to be performed for a certain
correlation function is half as big as with external sources. o

In Sec. Il we establish the partition function of Euclidean Zoep= fﬁ DZD¢DAQ_AQEd¢/r¢xA], (2.2
QED as a functional with respect to the inverse electron and
photon progators as well as a generalized interaction. By
setting up graphical representations for functional derivativegyhere the electron fieldg and ¢ are Grassmannian. Let us
with respect to these bilocal and trilocal functions, we showspyit the action into the three terms
in Sec. lll that the partition function constitutes a generating
functional for all correlation functions. This forms the basis — — _
for a perturbative expansion of the vacuum energy in terms  Aqed ¥, ¥, Al= Ayl ¢y, b1+ A Al + Ain 4,91, Al,
of connected vacuum diagrams. In Sec. IV we then derive a 23
recursion relation which allows to graphically construct the
connected vacuum diagrams order by order. From these weprresponding to the Dirac, Maxwell, and interaction terms
obtain in Sec. V all diagrams for self-interactions and scatin Eq. (2.1). For the upcoming development it will be useful
tering processes by cutting electron as well as photon lines do consider the free parts of the action as bilocal functionals.
by removing vertices. Along similar lines we apply in Sec. The free action of the Dirac fields is
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Ayl )= f J A% A% (%) Srap(6.X ) Yip(X'),

(2.9
with a kernel
Srap(X.X)=(i¥450,+ M) S(x—X'), (2.5
while the free action for the Maxwell field reads
1 _
AA]=5 ff d*xd*x’ A*(X)Dg b, (X,X")A(X")
(2.6)
with a kernel
Dr (X, X')=—328(X—X')8,,,. 2.7
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AL AS 1D VI = Ayl g 1 Al 4D
(2.13

then represents a functional of the bilocal quantities
S Y(x1,%), D (x1,%,), and of the trilocal function
V(X1,X2;X3). All n-point correlation functions of the theory
are obtained from expectation values defined by

+ Al 4,9, AV

<©1(X1)©2(x2). . '>=Z_1 f# DZD(pDAOl(Xl)
X Oz(xz)- . 'e_A[Z‘wvA;Sil,Dfl’V]’
(2.14

where the local operatof®;(x) are products of field opera-
tors #/(x), #(x), andA(x) at the same spacetime point. Im-

In the following, we shall omit all vector and spinor indices, Portant examples for expectation values of this kind are the

for brevity.

B. Generalized action

Our generating functional will arise from a generalization

of the free action

A0y, g, Al= A [, ]+ AN A]

to bilocal functionals of arbitrary kernelS™(x;,x,) and
D~ (xy,%,) =D 1(x,,x,) according to

(2.9

AL = AL S = J J d*: 0%z (xa)

X STH(Xq,X2) th(X2), (2.9
1
AA[A]HAA[A,D_]']:EJJ d4de4X2
X A(X1)D (X1, X2) A(Xy). (2.10

The kernelsS™%(x;,x,) andD (x;,x,) are only required
to possess a functional invers&(x,;,x,) and D(Xxq,X,).
Similarly, we shall generalize the interaction to

A 1,90, A1= Aind 0,0, A V]
=—efff d*xd*x,d*%3V(X1, X5 X3)

X P(x1) P(Xo)AlXa), (211
where V(X,X,;X3) IS an arbitrary trilocal function. At the
end we shall return to QED by substitutifg— Sz, D

—Dg andeV(xy,Xp;X3) =€y, 8(X;—Xz) 8(X1 — X3).
The generalized partition function

z= §DZD;,//DAe‘A[Z"ﬂ'A;S_l'D_l’V] (2.12

with the action

photon and the electron propagators of the interacting theory

YG2(Xq %) ={A(X1)A(Xz))

=z fﬁ DYDYDA A(Xy)A(Xo)

v ewa,A;s—l,D—l,w, (2.15
CG2(X1,X) ={P(X1) (X))
=71 35 DyYDYDAP(X) (X,)
w e~ Al ASTEDLV] (2.1

For a perturbative calculation of the partition functidrwe
define the free vacuum functional

Z(O)E é DED‘#DAefA(O)[Z’.//,A;Sfl’Dfl], (217)

whose action is quadratic in the fields. The path integral is
Gaussian and yields

. (218

1
ZO=exg Trin Sl]ex;{ —5Trin D!

The free correlation functions of arbitrary local electron and

photon operator©(x) are defined by the free part of the
expectation value§.14)

<61(X1)©2(X2)' ’ '>(0) =[z91* é DJDlﬁDAOl(Xﬂ
X Oy(Xp)"* ~e‘A(O)[%¢,A;S’1,D*1]’

(2.19

and the free-field propagators are the expectation values

VGZ(O)(Xl X2) =D (Xq,X5) E<A(X1)A(X2)>(O)E D(X2,X1),
(2.20
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°G2” Xy, X2) = S(X1,X2) = ((X1) (X))
(2.21)

To avoid a pile up of infinite volume factors in a perturbation

expansion, it is favorable to go over fraf® to the negative
vacuum energyV(®) defined by

WO=InZ@=wp + W, (2.22
where the free electron and photon parts are
WP =Trins™* (2.23
and
W(Ao):—%Trln DL (2.24
The negative total vacuum energy
W=InZ (2.25

PHYSICAL REVIEW b1 085017

w© 2.3
P T Q ( D
and
wo _ 1 (2.32
A T 9 Q :

This leaves us with the important problem of finding all con-

nected vacuum diagrams. For this we shall exploit that the
partition function(2.12 is a functional of the bilocal func-

tions S™%(xy,X,), D™(X;,X,), and of the trilocal function
V(X1,X2;X3).

Ill. PERTURBATION THEORY

As a preparation for our generation procedure for vacuum
diagrams, we set up a graphical representation of functional
derivatives with respect to the kern&s?', D1, the propa-
gatorsS, D and the interaction functiol. After this we

is obtained perturbatively by expanding the functional inte-€XPress the vacuum functionsV in terms of a series of

gral (2.12 in powers of the coupling constast

©

W= 2 eZPW(p),
p=0

(2.26

where the quantitie8V(P) with p=1 are free-field expecta-
tion values of the typ€2.19:

WP = fl___Gqus; “Vep-26p-16p

X <E6pfl' sy 17’6p72A3A6' : 'A6p>(0)!

p=1. (2.27

functional derivatives of the free partition functi@® with

respect to the kernels.

A. Functional derivatives with respect to S™(x,x,),
D™H(x1,X2), and V(X1,X2;Xs)

Each Feynman diagram is composed of integrals over
products of the propagato&D and may thus be considered
as a functional of the kerne8 1,D 1. In the following we
set up the graphical rules for performing functional deriva-
tives with respect to these functional matrices. With these
rules we can generate alhzooint correlation functions with
n=1,2,... from vacuum diagrams. To produce alson(2
+1)-point correlation functions with=1,2, . . . such as the
fundamental three-point vertex function from vacuum dia-

Throughout this paper we shall use from now on the shortgrams, it is useful to introduce additionally a functional de-

hand notation £x;, 2=X,,... andf; = [d*x; -+ . The ex-
pectation values in Eq2.27) are evaluated with the help of

Wick’s rule as a sum of Feynman integrals, which are pic-

rivative with respect to the interaction functidh.

1. Functional derivative with respect to the photon kernel

tured as connected vacuum diagrams constructed from lines The kernelD 1, of the photon is symmetri® ;' =D,
and vertices. A straight line with an arrow represents an elecso that the basic functional derivatives are also symmetric

tron propagator

(2.28

1 —— 2 = S,

whereas a wiggly line stands for a photon propagator

(2.29

1

2 = D12 .

The vertex represents an integral over the interaction pote

tial:
/L e/ V123.
123

The vacuum energie@.23 and (2.24) will be represented
by single-loop diagrams

(2.30

[3.4]

1
= 5{513542"’ 81403}

(3.9

as is discussed in detail in Rd]. By the chain rule of
differentiation, this defines the functional derivative with re-
spect toD ! for all functionals ofD 1. As an example, we
calculate the free photon propagat@20 by applying the

ererator&/&Dl’zl to Eg. (2.17. Taking into account Eq.

(2.22 and Eq.(3.1), we find

SWY

Dyp=—2——. 2
2= ~255 (32

Inserting the explicit form(2.24), we obtain
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1) -1
D12=FTrln Dil. (33) fJ:)lIDIZ :512 (35)
12 1

With the notation(2.29 and (2.32, we can write relation .
. we find
(3.2 graphically as

) 6Dy, 1
1~ 2 = _6D1_21 {i} . (34) — E: E{D13D42+ D14D32}. (36)
This diagrammatic equation may be viewed as a special case
of a general graphical rule derived as follows: Let us applyDiagrammatically, this equation implies that the operation

the functional derivative3.1) to a photon propagatdD,. — 616D, applied to a photon lin€2.29 amounts to cutting
Because of the identity the line:
6 1
- — 1 2 = = 1 ~~ 3 4 ~ran 2 1 e 4 3~ 2 . 3.

Note that the indices of the kerr‘l@l\,}l1 are symmetrically attached to the newly created line ends in the two possible ways due
to the differentiation rulg€3.1). This rule implies directly the diagrammatic equati@y).

Consider now higher-order correlation functions which follow from higher functional derivativéﬁ/ﬁ@f. From the
definition (2.19 and Eq.(2.10, we obtain the free four-point function as the second functional derivative

0)

(0) AA A A _w
"Gloa= (AAAGA,) O =deMh ———r =g e
12 34

(3.8

Because of the symmetry & ,,, the order in which the spacetime arguments appear in the inverse propagators is of no
importance. Inserting fow!® the explicit form(2.24), the first derivative yields via Eq3.3) just — D3,expW}, the second
derivative applied to this gives with the ru(8.6) and, once more Eq3.3),

©)
G4~ D 13D 24+ DD 14+ D 1D 3. (3.9
The right-hand side has the graphical representation

2 3 2 3 2 3

(0) Rttt
TGla= M+ 4+ (3.10
1 4 1 4 1 4
|
The same diagrams are obtained by applying the cutting rule 6D, 1
(3.7) twice to the single-loop diagraif2.32. D 51013042+ 1493 (3.13

While derivatives with respect to the kerr2l'* amount
to cutting photon lines, we show now that derivatives with
respect to the photon propaga@ramount to line amputa- We shall represent the right-hand side graphically by extend-
tions. The transformation rule between the two operationsng the Feynman diagrams by the symbol:
follows from relation(3.6):

o = 4o, .
s 1 2 12 (3.149

o
——1=— | DDy, 3.1
oD L4 182455 (3.11)

which is equivalent to If we write the functional derivative with respect to the

propagatomD ,, graphically as

o _ f DDt i (3.12
6Dy, o 1302 5D§41' : é _ )
D1, 12’ (3.15
The functional derivative with respect 104, satisfies of
course the fundamental relati@8.2): we may express Eq3.13 as

085017-4
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6 1
T 3 4 _5{ 1~~3 4~~2 4 1~q 3~o2 } (3.1
|
Thus, differentiating a photon line with respect to the corre- 20 e o WO 52 e
sponding propagator amputates this line, leaving only the  °Giasi= (U hathaihs) ¥ =e""o We v
symmetrized indices at the end points. 27l (3.23

2. Functional derivative with respect to the electron kernel Here, the electron fields must be properly rearranged to

Setting up graphical representations for functional deriva, g, i, for applying the functional derivatives with re-
tives for electrons is different from that in the photon casespect toS™*. Using Egs.(3.18 and(3.22) we obtain, from
since the kerne$™ ! is no longer symmetric. The functional Eg. (3.23,
derivative is therefore the usual one

()
®Gla3= S23S14— S24Sia, (3.29
S .
E = 513042, (3.17  or graphically
2 3 2 3
from which all others are derived via the chain rule of dif- erlz‘z‘)§4 - - _ >< . (3.29
ferentiation. The free electron propagat®y, is found in LT, . 4

analogy to Eq.(3.2 by differentiating the free electron
vacuum functlona(2 23 with respect to the inverse electron Derivatives with respect to the propagat@satisfy the re-

propagatorS~: ation
8S
5W<°> =56 (3.26
= S 13942, .
812 582 (31& 834
which in analogy to Eq(3.13 is represented graphically as
This implies an amputation of an electron line
_ 6 (3.27)
Sio= 5821Trln8 (3.19 S3—21 2 = 1=o=3 4= 2.

Here we have introduced the additional diagrammatic sym-
which follows also from Eq.3.17 and the chain rule of pols

differentiation. The graphical interpretation of the functional

derivative 5/58;11 is quite analogous to the photon case. In 1=o=2 = {9, (3.28
analogy to Eq.(3.4), we write expression3.19 diagram-
matically as 6 4 (3.29
6512 - §1——2"
1 —— 2 =— 6_1 Q . (3.20  Differentiating an electron line with respect to the corre-
0531 sponding propagator removes this line, leaving only the in-

o _ dices at the end points of the remaining lines.
This, in turn, can be understood as being a consequence of The analytic relations between cutting and amputating

the general cutting rule for electron lines: lines are now, just as in Eq&3.11) and(3.12:
5 1 2 ) f S
- _ —g= = 3.3
5S4_31 1 2 = . >< , (3.2 55121 34531524 5S4 (3.30
4
: : o : o o1 O
which graphically expresses the derivative relation e f S Sy @ (3.3)
12 34 4
@: -s (3.22 With the above graphical representations of the functional
—1 14832- . . . . . . . .
65,3 derivatives, it will be possible to derive systematically all

vacuum diagrams of the interacting theory order by order in
The free electron 4-point function is obtained from two func-the coupling strengtle, and from these all diagrams with an
tional derivatives according to even number of legs.

085017-5
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3. Functional derivative with respect to the interaction First, it contains only half as many functional derivatives.
If we want to find amplitudes involving an odd number of Second, it does not contain derivatives with respect to Grass-

photons such as the three-point function from vacuum diaMann variables.

grams, the derivatives with respect to the kerrgld, D1 Inserting fOT_Z(O) the free v(allgzuum functiongR.22, we
are not enough. Here the general trilocal interaction functiorPPtain for the first-order terra
V of Eqg. (2.11) is needed. Thus, we define an associated

functional derivative with respect to this interaction to satisfy (1) = — j VioVped —2) ———r - 7(0)
21 6 123 456( ) SD ?:61 58121 58;51 :
A% 3.3
= 814052636 (3.32 339
5\/456

Since

By introducing the graphical rule 7=701 62704 ... = exg{ WO + WD 4 -}

5 5 (3.3
5 3 = Wi (3.33  this corresponds to a first-order correctia(® to the
1'L2 vacuum energyV(®:
the definition of the functional derivativeé8.32 can be ex- 1 SWO
pressed as 1~ _ A
W o1 1'”6V123V456( 2) 3D,
3
5 3 { WP WD swi
= 6 3.3 X + . .
5 i 1A2 PN (3.39 8S170S,s Sy 6Sis (339
1 2

Expressing the derivatives with respect to the kernels by the
where the right-hand side represents a produdfoinctions  corresponding propagators via E¢3.2), (3.18), and taking

as defined in Eqg3.14 and(3.29. into account Eq(3.22), W) becomes
B. Vacuum energy as generating functional W(l):%J VioVasDae( So1Ssa— SpaSs1).  (3.40
16

With the above-introduced diagrammatic operations, the
vacuum energyW[S™1,D~1,V] constitutes a generating : . ]
functional for all correlation functions. Its evaluation pro- Qgﬁferg'gg :ﬁ;hd?aF?;/r?]n;an ruleg.28-(2.30, this is repre
ceeds by expanding the exponential in the partition function y 9
(2.12 in powers of the coupling constaef leading to the

. 1 1
Taylor series - - _Z (3.41
y w 2 O\'WO 2 :

7 2 e | % DZD(//D A Note that each closed electron loop causes a faefior
p=o0 (2p)!
. . p IV. GRAPHICAL RECURSION RELATION
X f 1---6V123V456¢1w2A3w4¢5A6 FOR CONNECTED VACUUM DIAGRAMS

o — - In this section, we derive a functional differential equa-
x e~ AClwpAsTID T (3.35 tion for the vacuum functionaM[S™%,D~1,V] whose solu-
tion leads to a graphical recursion relation for all connected
The products of pairs of fieldg,, andAs;Ag can be sub- vacuum diagrams.
stituted by a functional derivative with respect $6! and

D1, leading to the perturbation expansion A. Functional differential equation for W=In Z
o The functional differential equation for the vacuum func-
7= e2pz® tional W[S™1,D~1,V] is derived from the following func-

p=0 tional integral identity:
- (_zez)p J 3 P — 6 — " -1 -1

=2 o ViodVasssa—Tsa-155-1) 27 45 DyYDYDA—{ e ALWFAS DV =0 (4.2
p§=:0 (2p)! e o 1088 6S, 0D 56 Wby 5?1{’#2 J @b

(3.36

with the action(2.13). This identity is the functional gener-
Note the two advantages of this expansion over the converalization of the trivial integral identity *:dx f'(x)=0 for
tional one in terms of currents coupled linearly to the fields.functions f(x) which vanish at infinity. Nontrivial conse-
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quences of Eq(4.1) are obtained by performing the func- .
Joou s

oW
tional derivative in the integrand which yields 551 =92L 6V123V456D36
12

5°W . SW SW
8S1; 0S5 8S1; 0S5
4.9

% DYDYDA| 815+ f 3EZSI31¢3_9 J' 34V134E2¢3A4] X

xe—AlwAS LD VI o (4.2)

. which will form the basis for deriving the desired recursion
Substituting the field products,y; by functional deriva- relation_ for the vacuum _di:_;lg_rams. The first term on the left-
tives with respect to the electron kerr8J3', this equation ~hand side of Eq(4.8) is infinite, but in the next section we

can be expressed in terms of the partition funciipri2): will show that this cancels against an infinity in the second
term.
_, oZ 5 .
Z61p— 3513 @er 34V134@[<A4>Z]:0- B. Recursion relation
(4.3 Equation (4.8) contains functional derivatives with re-

spect to the electron kern8I'! which are equivalent to cut-
To bring this functional differential equation into a more ting linés in the vacuum diagrams. For practical purposes it
convenient form, we calculate explicitly the term containingill P& more convenient to work with derivatives with re-

the expectation of the field. This is done starting from the SP€ct {0 the propagatofwhich remove electron lines. The
integral identity second term on the left-hand side of E4.8) contains the

operation— [ 1,5, 6/ 8S;,', which we convert into the dif-
ferential operator

_ S i
#;DlprATAle—AW%A?S "pTVI=o, (4.4

N S

Ng= flzslz 55, (4.9
Note this identity is not endangered by the gauge freedom in
the electromagnetic vector potentia), due to the presence with the help of Eq.(3.30. This operator has a simple
of a gauge fixing term in the actiof2.1). This ensures that graphical interpretation. The derivativ@ §S;, removes an
the exponential vanishes at the boundary ofdfield direc-  electron line from a Feynman diagram, and the faGer

tions[14]. restores it. This operation is familiar from the number opera-
After differentiating the action in the exponential of EQ. oy in second quantization. The operalg¢ counts the num-
(4.4), we find the expectation of the photon field ber of electron lines in a Feynman diagran
A\~ — NeG=NgG. 4.1
J'1<A1)D121= - ef34V342< Yas). (4.5 F F 4.10

When applied to the vacuum diagraméP) of orderp=1,
Multiplying this with [,D,s, we yield this operator gives

) SW NeWP =2pWP),  p=1, (4.1
(As)= —ef V342D255_—' (4.6) ) . _ . .
234 Ss4 since the number of electron lines in a vacuum diagram with-
out external sources in quantum electrodynamics is equal to
where we have usedi=e". Inserting this into Eq(4.3), we  the number of vertices. The restriction in E¢.11) to p
obtain =1 is necessary due to a special role of the vacuum diagram.
Take, for example, the electron vacuum diagram of the free

LW theory (2.23. By applying the operataK, we obtain with
015~ | Si3c—1=€ V134Vs6D 47 Eqg. (3.18
3 7705y 37
2 N
X 51W 1t 5W1 5\/\/1 . NFVVE/?):_I SIZISZl:_f 611, (4.12
09,3 0Ss6 0S5 556 2 '

(4.7 which is a divergent trace integral precisely canceling the
infinite first term in Eq.(4.8).

Settingx; =X, and performing the integration ovey, this Separating ouiV(?) in the expansiori2.26) of the vacuum
leads to the nonlinear functional differential equation for thefunctional, the left-hand side of the functional differential
vacuum functionaW equation(4.8) has the expansion

085017-7



MICHAEL BACHMANN, HAGEN KLEINERT, AND AXEL PELSTER PHYSICAL REVIEW D61 085017

f611+NFW=E 2pePPWP) = > 2(p+1)e2PT P+, (4.13
1 p=1 p=0

On the right hand side of E¢4.8), we express the first and second functional derivatives with respect to the Berhai
terms of functional derivatives with respect to the propag8&tby using Eq.(3.30 and

52
55[21555412 5678851526873848585 5S;g f [ Ss53S41S26 S23S46551] s 55 (4.14

Inserting here the expansidi2.26) and comparing equal powers mwith those in Eq.(4.13, we obtain the following
recursion formula for the expansion coefficients of the vacuum functional

1 S2\WP) (p)
WD = 2(p+ 1) [ f 123V456Dsﬁs71528594551os7—510 f . V123V 45D 36( S51526574— S71S26550) ——c— 5Sg

SWD swWP~—a
1 (4.15

p—1
Y2 ], VaaVasDssSriSasSuuSsio g — 55—

and the initial valug3.40. This equation enables us to derive the connected vacuum diagrams systematically to any desired
order from the diagrams of the previous orders, as will now be shown.

C. Graphical solution

With the help of the Feynman rulé2.28—(2.30), the functional recursion relatio@.15 can be written diagrammatically

as follows:
1
1 2w sW @)
(p+1) = 2 __ -7 (} <
W —Z(p-i-l){ gz 01——233——4 {:{:: §1-—=-2

p—1
swie—a) 1 3 swi@
>
+Z 12 2>N%<4 Ga—s (0 P=! (4.19

and the first-order result is given by H8.41). The right-hand side contains four graphical operations. The first three are linear
and involve one or two electron line amputations of the previous perturbative order. The fourth operation is nonlinear and
mixes two different electron line amputations of lower orders. To demonstrate the working of this formula, we calculate the
connected vacuum diagrams in second and third order. We start with the amputation of one or two electron lines in first order

(3.41):
1
SRR =
2

Inserting Eq.(4.17) into Eq. (4.16, where we have to take care of connecting only legs with the same label, we find the
second-order correction of the vacuum functiowal

=i QO - @O -3000-1® 1 @ e

085017-8
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The calculation of the third-order correctiak® leads to the following 20 diagrams:
1 1 1 1 1
3 = = il - = -
wO= g 30 +5 QLD +5 GO+ Q0 -5 Q0 +53 GO
1

e TR O R P RS (o8 R SR = BT R

_%@_%@ | (4.19

From the vacuum diagram.41), (4.18, and (4.19, we 4 n oA oA A eend N N S

observe a simple mnemonic rule for the weights of the con- "Glagi= (ArhoAshe), “Clagi= (Yniairatha),

nected vacuum diagrams in QED. At least up to four loops, .

each weight is equal to the reciprocal number of electron VG 0= (1 AAS ), (5.2
lines, which, by cutting, generate the same two-point dia-

grams. The sign is given by-(1)", whereL denotes the which represent the simplest scattering processes of the
number of electron loops. Note that the total weight, which istheory. In addition, we give the perturbative expansion of the
the sum over all weights of the vacuum diagrams in the ordethree-point vertex function

to be considered, vanishes in QED. The simplicity of the

weights is a consequence of the Fermi statistics and the G3,= (I Tl;A) (5.3
three-point form of interactiori2.11). The weights of the 123 A VLT2s/ '
vacuum diagrams in other theories, liki#-theory[3,4,6],

follow more complicated rules. The following examples illustrate the simple weights

(—1)" of diagrams contributing to an-point function with

n=2, with L being the number of electron loops.
V. SCATTERING BETWEEN ELECTRONS AND

PHOTONS

A. Self-interactions
Substituting the product of the photon fieldsA, in the
éunctlonal |ntegral(2 195 by the photonic functional deriva-
tive —26/6D,,, the photonic two-point function of the in-
teracting theory is given by

From the above vacuum diagrams, we obtain all even-
point correlation functions by cutting electron or photon
lines. For the generation of the odd-point functions we us
the functional derivativé3.34) with respect to the interaction
functionVV which removes a vertex from a diagram.

As an illustration, we generate the diagrams for the self

interactions described by the propagat®<5 and(2.16 "G2,=-2 o —W[S LD LV]. (5.9
v

1G2,=(AA),  °GZ,=(J i (5.1)
2= (Aahe) 2=Vl Applying the associated cutting ru(®.7) to the vacuum dia-
and the four-point functions grams(3.41) and(4.18 leads to the connected diagrams

+3+g+w

085017-9
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For brevity, we have omitted the labels 1 and 2 at the ends of the higher-order diagrams. The full and the connected
propagators’G3, and YG25 satisfy the cumulant relation

G5 ="G%,— (A1)(Ay). (5.6)

Note that although the expectation value of the eIectromagnetic(ﬁqj@(» is zero in quantum electrodynamics, it does not
vanish in our generalized theory with arbitrary propaga®endD [see Eq.(4.6)].
The derivative of vacuum diagrams with respect to the electron k&gl

er~?2 g -1 -1
612:EW[S ,D ,V], (57)

leads to the electronic two-point function, whose diagrams are

“Gly= 1 —— 2 +e2[—~—&«-—8}+e4
+*®*_ﬁ%—_ m@ - Qm

90 - 8 g Qe

B. Scattering processes

ST P e W
7

The generation of diagrams for scattering processes between electrons and gh&iarsd higher even-point functions is
now straightforward.

1. Photon-photon scattering

The four-point function of photons is obtained by cutting two photon lines in the vacuum diagrams or one photon line in
the photonic two-point function:

+7G3, 7G5, (5.9

et 4 FW oW oW 25?652
1% 7Dy, 8Dy 0Dy, Dgy) T Dy

After applying one of the two possible operations in E§9), the resulting connected diagrams to ordérare

2 3
MG, = —e { j:ﬁ:: + 5 perm. | + O(e%), (5.10
1 4

each permutation of two external spacetime coordinates leading to a different diagram.

2. Médller and Bhabba scattering
The scattering of two electroriddller scattering is described by the electronic four-point function
W SW SW  6°G,

=1 1+ ——1 1= ——1 +°G%,°G3; 5.1
234 5841155321 55411 58321 55411 14 23 ( 1)

eeGle

085017-10
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To ordere?, the connected diagrams contributing to the fermionic four-point function are
2 3
Qi = €2 [ :}/\/ —(3+4)

S, e T D
BB ED RS 1
TR - -XE-E

where the spacetime indices in all diagrams are arranged as in the first. Each diagram on the right-hand side has a partner with
opposite sign, where the spacetime indices either of the incoming or of the outgoing electrons are interchanged. The tadpole
diagrams vanish for physical propagat®s S, D=Dg, and the corresponding corrections attached to external legs do not
contribute when calculating th&matrix elements. In our general vacuum functional, however, we must not discard them,
since they contribute to higher functional derivatives, which would be needed for the calculation of, e.g., the six-point function.

By interchanging spacetime arguments in the kernels of EG2 apparently, the Feynman diagraf®s12 describe also
scattering of electron and positrgBhabba scatteringand scattering of two positrons.

+

+ O(e%), (5.12

— (34

3. Compton scattering

The amplitude of Compton scattering is given by the mixed four-point funci@t,;, To obtain the relevant Feynman
diagrams, we have to perform one of the possible operations

ot W SW W
7G123~ ~2) 5 -Tac I T 551 5ol
0D53 05, 6Dy 6544
8 "G 5 °Gl,
=551 ——— 1 +°G3,7G%,=-2 ol +©G2, 7G5, (5.13

The resulting connected Feynman diagrams to oedere

2 3

TG = e { - e

1 4

B O A R o
0T ey

+ + +

PE G
}.{ }_< + O, (5.14

where the diagrams with interchanged photon coordinate8 2ossess the same sign as the original one.

C. Three-point vertex function
The three-point vertex function is obtained from the vacuum enivdyy performing the derivative with respect to the
interaction functionV,,3, which we have defined in E¢3.32):

1 W
1237 7 8 Vs

(5.15

The easiest way to find the associated Feynman diagrams is to apply the graphical og8r@8pmhich removes a vertex
from the vacuum diagrams in all possible ways and lets the remaining legs open. Dropping disconnected diagrams by
considering the cumulant

085017-11
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G355=Gloa— (Y11/2)(As) (5.16
we obtain
3
Gt = ¢ /L re K§>\+)‘\+Pj\_/ig_%ﬁﬁ +Oe)
1 2
(5.1
|
VI. SCATTERING OF ELECTRONS AND PHOTONS extremely simple. Hence, this recursion relation is the ideal
IN THE PRESENCE OF AN EXTERNAL extension of the former Eq4.16) which generates only the

ELECTROMAGNETIC FIELD source-free diagrams.

To describe the scattering of electrons and photons on 1. complete recursion relation for all vacuum diagrams

external electromagnetic fields, the actld{@, ¢,A] in Eq.

S The recursion relation for all vacuum diagrams with and
(2.13 must be extended by an additional external curdgnt 9

without external source is derived in a similar manner as that

which is coupled linearly to the electromagnetic fiéld for all source-free vacuum diagranié.16. There will be,
however, a few significant differences in comparison with

A0, A=Al o, 4, A]— ef JiA;. (6.1)  the procedure in Sec. IV. Since the currdntouples to the
electromagnetic field, vacuum diagrams with external cur-

rent always contain photon lines. For this reason, we start
Then the partition function2.12 becomes a functional in jth the identity

the physical currend and is given by

_ ) 3=
_ DyDyDA——{Ae” ATV#AIL=0 6.3
7[3]= é DyDyDAe ATH A (6.2) fﬁ VPYDA G, e : ©9
instead of Eq.(4.1). Performing the functional derivative
with Z=Z[0]. The external current is usually supplied by leads to
some atomic nucleus of chardée with integer numbeiN. [J]
For this reason, the factais removed from the current in J
Eqg. (6.1) to be able to collect systematically all Feynman Z[J]512+2f D13 5D2 f V341533 1[<A2> 21
diagrams of the same order & This organization may not -
always be the most useful one. If we consider, for instance, +eJ(Ay)'Z[J]=0 (6.4
an external heavy nucleus with a high chalde we may
have to include many more orders in the external chatge
than in the internal charge Such subleties will be ignored
here, for simplicity.

in analogy to Eq(4.3). The expectation value of the electro-
magnetic fieldA in the presence of an external souttés
found by exploiting the identity

A. Recursion relation for the vacuum energy
with external source

_ ) —
ff; DYDYDA— e~ AloAI= (6.5
oA,

which is used to derive, as in Eq¥.4)—(4.6),
Along similar lines as before, we derive the recursion 4e.9-(4.9

relation for the vacuum energy in the presence of an external A\ SW[J]

current, W[J]=In Z[J] which is now also a functional o (A1) ——ej VosDisr 1 55,2 +ef Di2J2, (6.6
(suppressing the other argumers *,S1,V). After that,
we derive a recursion relation only producing those vacuunwhere we have set/[J]=InZJ]. Inserting the expectation
diagrams which contain a coupling to the source. It turns outalue(6.6) into Eq.(6.4), the resulting functional differential
that the resulting recursion relation for current diagrams isquation reads

5 +2JD W] Zf Vo S°W[J] +5W[J] SW[J]
12 13 5D Ton-1 T € 3.7 341 567D27 55;415%61 55;41 5Sg61

—|-2e2f3 V45D 25J1 56\/\8/3[4] e2f3J1D23J3. (6.7)
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Using relationg3.11) and(3.30, and taking the trace, this becomes

I W]
61172 | Dy =2e V123V 456D 36571524558 +e V123V 456D 365715285045510
1 12 6D, 1.8 6S7g 110

§2W[~]] SW[J] oW[J] SW[J]
St 5o S| 72, ePSSTs [ 0, (09

which generalizes Eq4.8). ExpandingW[J] as in Eq.(2.26),
W[I]=WO 4 > e2PWP[J], (6.9
p=1

and using the fact that the free vacuum enatd{’[ J]=W©[0]=W© is independent of the external current, the first term
on the left-hand side in Ed6.8) is canceled by an identity following from E¢B.2)

(0)
2| Pici, o ©49
Introducing a Feynman diagram for the coupling to the curdent
>V" 1 = Jl, (61])
we obtain the graphical recursion relation
1 §W(P+1)[J] 52w P [J] 1 1 5w(p)[J]
2{2 Sl 61—=—203——4 +2 ﬂ:g - QM<2 61——2

p—1 -
sWwr=a[g] 1 3 W] 1 W@
MM _ >
* Z §1——2 2>\W<4 §3—=-1 2 >M<2 d1——2" p=1,

g=1

W

(6.12

and the first-order diagrams

wmg] = wO[] + % >< _ >@ ’ (6.13

where W[0]=W®) contains the source-free first-order vacuum diagr&&dl). An important difference between the
recursion relatior(6.12 and the previou$4.16 is that the vacuum diagrams in a series of the coupling constaahtain

different numbers of photofor electron lines, thus not satisfying a simple eigenvalue equation (ké&1). In fact, each

vacuum diagram, generated by using the right-hand side of the recursion r¢afidn must be divided by twice the number

of photon lines in the diagram to obtain the correct weight factor. This procedure is a consequence of the left-hand side of Eq.
(6.12, which counts the number of photon lines in each diagram separately. By taking this into consideration, the second-order
vacuum diagrams are given by

WL =W — 3 = > “% > 6.14

085017-13
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with the source-free diagrams given in E4.18). In third order, there are 15 diagrams which couple to the physical source:

WO =wOW - 3B - >4 - >+ 00 + >EO

(6.15

—%>@<>“®“<->C§;+%>GO<~%

In the following we derive a recursion relation which allows To lowest order, the right-hand side yields the source dia-
us to generate only those vacuum diagrams which contain grams
coupling to the source.

« 1
2. Recursion relation for vacuum diagrams coupled W(l)[J] =3 >< - >@ , (6.19

to the external source

Since we have the possibility to generate all source-freghere we have used the wiggle to indicate the restriction to

vacuum diagrams with the help of the recursion relationne source diagrams %[ J] in Eq. (6.13. The full func-
(4.16, we are able to set up a recursion relation to generatg,ng| solving Eq.(6.18 consists of the terms

only the diagrams with source coupling. Inserting on the left-
hand side of Eq(6.6) the equation

1 6W[J]

Nt

WM[I]=WM[0]+WM[J], (6.20

(6.16

where the source-free contributiong™[0]=W™ of Sec.
IV represent integration constants undetermined by Eq.

multiplying both sides withJ;, and performing the integral (g 18 |ntroducing a diagram for the functional derivative

1 yields with respect to the currerd
SW[J] SW[J]
RN =82f1 6V234D14J1$52836—5556 J = i (6.22)
§>1 4y’ '
2
+te flleDlﬂz- (6.17 the recursion relation for the vacuum diagrams with source-

coupling Eq.(6.18 is graphically written fom=1 as
On the right-hand side we have changed the functional de-

rivatives with respect to the kern& ! into functional de- SW D[] 1 sW™]
rivatives with respect to the propagat8rusing Eq.(3.30. 1 —5>jr— = >W“<2 12
Inserting the decompositiof6.9) and utilizing the fact that
WO from Eq.(2.22 is source-freegW(®/53,=0, we find (6.22
WY &, SW(n D[] The graphical operation on the right-hand side means that an
L 1T1+r121 e flJlTl external current is attached through a photon line to a fer-

mion line in all possible ways. The iteration of this recursion

relation is very simple since the right-hand side is linear.

:_L_._4V234D14‘]1532+ Lz‘]lDlZJZ Each diagram calculated with the right-hand side of this
equation must be divided by the number of source-coupling

* , SW[J] within the diagram since the operation on the left-hand side
+nZl e nL'”6V234Dl4~]15525365—556- counts the number of source-couplings in the diagram. By

considering Eq.(6.20, one easily reproduces the higher-
(6.19  order vacuum diagrams given in the E¢8.14 and(6.15.
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B. Scattering of electrons and photons 1. Vacuum polarization induced by external field

in the presence of an external source The photon propagator in the presence of an external

Typically, an external electromagnetic field is producedsource
by a heavy particle such as a nucleus or an ion. Quantum
electrodynamical effects like pair creation, Bremsstrahlung,
and Lamb shift are caused by such electromagnetic fields.

The Feynman diagrams for threpoint functions associated
with these processes are again obtained by cutting electron & found by cutting a photon line in the vacuum diagrams
photon lines from the just-derived vacuum diagrams. (6.13—(6.15:

SW[J]
oD,

"GifI]=-2 (6.23

1

- G -Gy

2

"G = "Gi0) + €t +O(e),

(6.29
showing polarization caused by the external field.

2. Lamb-shift and anomalous magnetic moment

The important phenomena of Lamb shift and anomalous magnetic moments are obtained from the perturbative corrections
in the electron propagator:

J
°G7{J]= % (6.29

whose diagrams come from cutting an electron line in the vacuum diag@a8—(6.15. To ordere*, we have

¢G2,[J] = °G%,[0] + € >m<l+e4{>w¢ + >/§\ + N - >gi - >§ - >%}<
31

As already mentioned before, diagrams with corrections on external legs and tadpole graphs do not contBiuggrito
elements. In some problems, diagrams with more than one source-coupling are irrelevant.

+ O(eb).

(6.26

3. Pair creation, pair annihilation and Bremsstrahlung

By differentiating the vacuum energy diagrafés13—(6.15 with respect to the interaction functiofy,;, we obtain the
vertex function in the presence of an external field:

s 16w
GhdIl=— 5 5y (6.27

The connected Feynman diagrams are to oeder

GislJ) = G35l0] + €° +0(e)

3 3
D+ A
1 2 1 2

(6.28

with Gi'zc:{O]:Gfgg of Eq. (5.17). These diagrams appear in pair creation, pair annihilation, or Bremsstrahlung processes.
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VIl. SUMMARY their multiplicities. The method also generates all diagrams

. . . . f processes involving external sources.
We have introduced a graphical recursion relation obeyeg P 9

by the vacuum diagrams in quantum electrodynamics based

on _funct!onal anglytlc methods developed in R¢&, [7]. _ ACKNOWLEDGMENTS

Its iterative solution allows us to generate all vacuum dia-

grams with their correct weights order by order in perturba- We thank B. Kastening for useful discussions, for a care-
tion theory by removing and joining lines. By removing pho- ful reading of the manuscript, and for numerous suggestions
ton and electron lines as well as vertices from the vacuunfor improvements. One of Ud.B.) is supported by the Stu-
graphs, we obtain all diagrams of scattering processes wittlienstiftung des deutschen Volkes.

[1] R. F. Streater and A. S. WightmaRCT, Spin and Statistics, [9] D. J. Amit, Field Theory, the Renormalization Group and

and All That(Benjamin, New York, 1964 Critical PhenomendMcGraw-Hill, New York, 1978.

[2] J. SchwingerParticles, Sources, and Fielddddison-Wesley, [10] C. Itzykson and J.-B. ZubeQuantum Field TheoryMcGraw-
Redwood City, CA, 1978 Vols. | and II. Hill, New York, 1985.

[3] H. Kleinert, A. Pelster, B. Kastening, and M. Bachmann, [11] M. Le Bellac, Quantum and Statistical Field Theot@xford
hep-th/99071681999. Science Publications, New York, 1991

[4] H. Kleinert and V. Schulte-FrohlindeCritical Properties of 12 3. zinn-Justin,Quantum Field Theory and Critical Phenom-
¢*-Theories(World Scientific, Singapore, 2090 eng 3rd ed.(Oxford Science Publications, New York, 1996

(5] B. Kagtening, Phys. Rev. &o be publishel hep-th/9908172. [13] M. E. Peskin and D. V. Schroeddntroduction to Quantum
[S] E E:e!nert, EortscEr. iﬂyzg égz(iggz Field Theory(Addison-Wesley, Redwood City, CA, 1995
L7] H. Kleinert, Fortschr. Phys30, (1982. [14] For compactA fields, periodic boundary conditions would

(8] ?MSG?;(J\SKS?H a’ggws Qg}kDngg I?}ZIS:.ICR%:J;?\;;?C “gi;i?ﬂ:ﬁs have the same effect. Twisted boundary conditions would need
' ’ L a separate study.

Fields (McGraw-Hill, New York, 1963, Vol. Il.

085017-16



