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Nonperturbative XY-model approach to strong coupling superconductivity
in two and three dimensions
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For an electron gas with-function attraction, we investigate the crossover from weak- to strong-coupling
superconductivity in two and three dimensions. From mean-field theory we extract the stiffness of phase
fluctuations and set up effective€Y models which serve to determine nonperturbatively the temperature of
phase decoherence where superconductivity breaks down. We find the transition temferatieemonoto-
nous function of the coupling strength both in two and three dimensions, and give analytic formulas for the
merging of temperature of phase decoherence with the temperature of pair formation in the weak-coupling
limit. [S0163-182609)07605-5

[. INTRODUCTION theory to describe it. In three dimensions, crossover from

BCS superconductivity to the Bose-Einstein condensation of
The crossover from BCS superconductors to a Bosetightly bound fermion pairs was first investigated in Ref. 2
Einstein condensate of tightly bound fermion pairs was firsf®y Summing particle-particle ladder diagrams which corre-

studied many years ago in Refs. 1-3 in a model withsPO”d to Gaussian fluctuations around the mean field. In the
o-function attraction. This crossover has recently raised retunctlonal integral formalism this was studied in Ref. 5. In

newed interest-2* especially after the publication of experi- both papers, fluctuation corrections were retained in the
wedi ' pecially publicat XPer- humber equation, which was solved together with the mean-

ment_al results on quprate supercom_juctors and their theoreiz|q gap equation. In this approximation, starting from a
ical interpretation in Ref. 33. In this paper we present afermionic system, the gas of electron pairs was mapped in
detailed study of the crossover based on a nonperturbatiiee strong-coupling limit to an ideal Bose gas, and the criti-
procedure in which mean-field properties are used to set upal temperature asymptotically becomes the temperature of
an effectiveXY model whose well-known nonperturbative the Bose-Einstein condensation of an ideal Bose gas of par-
properties render information on the entire crossover regimécles with mass th and densityn/2, wherem andn are the
of the above model. fermion mass and density. The critical temperafliydas an
Physically, the most important distinctions between con-artificial maximum at an intermediate coupling strength, thus

ventional weak-couplingBCS) and strong-couplingBose- ~ aPProaching a limiting value in the strong-coupling limit
Einstein) regime lies in the fact that in the former only a from above. This artifact was removed in the generalized

small fraction of the conduction electrons is paired with theself—consistent Green-function numerical approach in Ref. 9.
P In this paper we shall study the properties of collective

superfluid density_ involving _aII pairs, Wherea§ in the latter ,odes with help of the lowest gradient terms governing the
practically all carriers are paired below a certain temperaturgsayssian fluctuations around the mean-field solution. These
T*, although not condensed. The temperature has to be lowctuations are most violent in the phase of the order param-
ered further below some critical temperatufe<T* to  eter. Phase transitions in a system with these fluctuations are
make these pairs condense and establish phase coherenee]l understood in two and three dimensions from extensive
which leads to superconductive behavior. We shall neglecstudies of theXY model. By setting up an equivalentY
the coupling to the magnetic vector potential throughout themodel we are therefore able to describe very well the onset
forthcoming discussion, so that the phase coherence beloand disappearance of superconductivity in the entire cross-
T. can be of long range, unspoiled by the Meissner effecever regime. In this way, we shall obtain simple formulas for
which would reduce the range to a finite penetration depththe critical temperatur&., which turns out to be a monoto-
In the model to be investigated in this paper, the crossoveously increasing function of the coupling strength and car-
from BCS- to Bose-type superconductivity will take place fer d_ensrgy in both_two _and three_d_|men3|ons. In_the weak-
either by varying the coupling strength, or by decreasing th oupling limit, we give simple explicit forr.n.ulas which show
carrier density. ow the temperature of th€Y-model transition converges to
Since in the BCS theory pair binding is weak, it can well (e transition temperature in the BCS theory.
be described by mean-field theory for the pair fields. In the
opposite limit of strong pair bonding, on the other hand,
superconductivity sets in via a macroscopic occupation of The weak- to strong-coupling crossover in two dimen-
the g=0 level, and we are obliged to go beyond mean-fieldsions was studied via the Kosterlitz-Thouless theory in Refs.
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26 and 24. In Ref. 24 it was investigated within the samdarge valuegBE limit). This equation is to be solved simul-
model as ours at a fixed carrier density, but only numericallytaneously with Eq(3). These mean-field equations were ana-
We shall see in Sec. IV that these numerical results do ndyzed at a fixed carrier density in Refs. 5 and 7. Here we
cover the entire crossover region; in particular the merginghall first reproduce some of the earlier estimatesifoand

of Tkt andT* in the weak-coupling region is missing—the .

phenomenon that we describe analytically in our paper. The In the BCS limit, the chemical potential does not differ
different properties of size and phase fluctuations were alsmuch from the Fermi energyr, whereas with increasing

exploited in Ref. 36. interaction strength the distribution functiop broadens and
The Hamiltonian of our model is the typical BCS Hamil- . decreases. In the BE limit we have tightly bound pairs and
tonian inD dimensions §=1), nondegenerate fermions with a large negative chemical po-
5 tential,| u|>T. In the strong-coupling limit, Eq6) provides
H= f dPx lﬂT(X)( _ V__ )iﬁ (X) us with an estir_nate foT_*, the characteristic temperature of
> o 2m 7 the thermal pair breakingwhereas Eq(3) determinesyu.

From Eqg.(3) we obtain in the BE limitu= —E/2, where
2 . . . .
+ dPx () T (x X X), 1 Ep=1/mag is the binding energy of the bound pairs. In the

gf OO YL (X) 91 (X) @ BE limit, we can estimate that the pseudogap sets ih*at

wherey,(x) is the Fermi field operatogr=1,| denotes the zEb/2|”(Eb/€F)3/2-_ A simple “chemical” eg/tzjilibrium esti-

spin componentsm is the effective fermionic mass, angd ~ Mate (up=2uy) yields Tgissoc=Ep /IN(Ey/€r)” for the tem-
<0 the strength of an attractive potentgs(x—x’). perature of pair dissociation, which shows that at strong cou-

The mean-field equations for the gap paramatemd the  Plings T* is indeed related to pair formatigf.

chemical potentiaj, are obtained in the standard way from  The gap in the spectrum of single-particle excitations has

the equationgsee, for example, Ref. 35 a special feature"’ when the chemical potential changes its
sign. The sign change occurs at the minimum of the Bogo-
1 1 1 Ex liubov quasiparticle energ§,, which defines the gap en-
— === 2 -—tanh—, (2 : P .
g V<% 2E 2T ergy in the quasiparticle spectrum:
N 1 & E E gop= Min(&5+A%)12 @)
N=V~=vVv < 1—E—ktanhﬁ : @) Thus, for a positive chemical potential, the gap energy is

] given directly by the gap functiod, whereas for negative
where the sum runs over all wave vectérsN is the total  chemical potential, it is larger than that:
number of fermionsyY the volume of the system, and
) A for u>0,

k E. —
Ec=VETAZ  with &=5_— (4) 0| (w2 +AaHY2 for u<O.
In two dimensions, a nonzero bound-state enegggxists

for any coupling strength. The cutoff can therefore be elimi-
ngted by subtracting, from the two-dimensional zero-
emperature gap equatin®®

®

are the energies of single-particle excitations.

The §-function potential produces an artificial divergence,
and requires regularization. A BCS superconductor possess
a natural cutoff supplied by the Debye frequenay. For
the crossover problem to be treated here this is no longer a

. . . : - . 1 1 1 m 1
useful quantity, since in the strong-coupling limit all fermi- — = 2 2—=_f dz——,
ons participate in the interaction, not only those in a thin 9 2V Jg+A? Am)x 14z
shell of widthwp, around the Fermi surface. To be fippl'cable.wherez=k2/2mA—x0, xo=A/u, the bound-state equation
in this regime, we renormalize the gap equation in three di-
mensions with the help of the experimentally observable

(€)

: ) e 1 1 1 m (=
s-wave scattering length,, for which the low-energy limit ——=_ 2 ——= _f dz————
of the two-body scattering process gives an equally divergent 9 VX KIm+e 2m)—x, 22+ €lA+2Xg
expressiofr 13 (10
After performing the elementary integrals, we find
m 1 N 1 2 m 5)
=242 e

4ma; g VX K2 KO: J1+x2—xo. (12)
Eliminating g from Egs.(5) and (2), we obtain a renormal-
ized gap equation In the next sections we will work at finite temperature; in

doing so, we do not fix the carrier density but assume the

m 1 1 Ex m presence of a reservoir which provides us with a
C4mag VK 2—Ektanhﬁ—— ' 6) temperature-independent chemical potential u

= u(lkeag; T=0). Such a fixegu will be most convenient

in which 1kgas plays the role of a dimensionless coupling for deriving simple analytic results for the finite-temperature
constant which monotonically increases fronw to  as  behavior of the system. In this fixed-model, the carrier

the bare coupling constagtruns from smal(BCS limit) to  density becomes temperature dependent. In Ref. 24, the tem-
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perature dependence of the chemical potential was calculated 1

numerically for the entire crossover region within such a Qi . T A, 0000 ]=TTr > =(G3)" a—const (16)
“fixed carrier density model,” where it turned out to be very n=1n

small in comparison with the dependence on the couplinging the “potential” term

strength. For experimental measurementg.cfee Ref. 37.

1
— = D 2_ -1
Ill. PHASE FLUCTUATIONS IN TWO DIMENSIONS me(’u'T'A) gf d™XAT=TTring
AND KOSTERLITZ-THOULESS TRANSITION
. . . . . -1
In this section we make use of derivative expansion to +TTrinG, ) (17)
A=const

determine the relevant stiffness parameter for the study of
phase fluctuations, which in two dimensions determines thehe latter coincides with the mean-field energy, determining
temperature of the Kosterlitz-ThouledsT) transition. In @  the modulus ofA(u,T). The kinetic partQ,;, contains gra-
two-dimensional system, the phase fluctuations are most viaient terms governing the stiffness of the phase fluctuations
lent causing the strongest modifications of the mean-fieldvhose size is determined by the modulusAdfu,T). Both
properties. ~ The  Coleman-Mermin-Wagner-Hohenberg),,, and() ., are expressed in terms of the Green function of
theoreni® forbids the existence of a strict long-range order,the fermions, which solves the equation

but there is quasi-long-range order manifesting itself in a
power behavior of the correlation functions at all tempera-
tures belowT .

The effective Hamiltonian from which we deduce the
stiffness of the phase fluctuations was derived in Refs. 24 =6(71)8(X) . (18)
and 41. In this section we summarize a few important aspec . .
of it, with a reminder of its derivation given beF;ow. Writiﬁg LFhe operatoi (46) in Eq. (16) is
the space-time-dependent order parameterAés)e'?™,
wherex denotes the 4-vector=(r,x) formed from imagi- 2(00)=74
nary time and position vector, the partition function may be
written as a functional integrét3®4°

V2

—’|\0"T+T3 ﬁ—’_'u“ + 7 A|G(7,X)

iV20 ive(r,x)V
4mJr 2m ’

i9,0 +(V )2 ;
2 8m

(19

The gradient expansion that we use to determine stiffness
B was first performed in Ref. 41 at zero temperature. In Ref.
Z(p,T)= f ADADOexp{— LA w, T,A(X),30(X) 1}, 24, the kinetic ternf),;, was calculated in two dimensions at
(120  finite temperature for arbitrary chemical potential retaining
terms withn=1,2 in expansior{16).
where The result is

BOL T, A(X),06(x)] T (8 _
w QkinZEL drf dPx{n(u,T,A)id.0
=—f er' dxA%(x)—TrInG 1+ TrinG,*
gJo +I[ 1, T, A (1, T)](V )2

(13 + KL, T, A (2, T)](8,6)3), (20)

is the one-loop effective action, containing the inverse Gree@vhereJ(M,T,A) is the stiffness coefficient, whose explicit
function of the fermions in the collective pair field

form is
. v? 1
Gl =—10,+ 73| ot |+ TA(7,X) I, TA)=Z=n(w.T,A)
; 2
., |(?T¢9(r,x)+[V0(7,x)] T fo ; X+ /2T on
2 8m - X .
Am) et cosyX2+AZAT
. 2 .
+I IV26(7.x) +IVO(T,X)V (14)  The other coefficients are
am 2m
[20A2
Here 7, and 73 are the usual Pauli matrices, ar@, :ﬂ ~ pwtA
. e K(u,T,A) 1+ tanh , (22
=G| ,.a,0-0 is added for regularization. 8w JuZ+A? 2T

Let us now assume that phase gradients are small. Then ) . . . .
Q[u,T,A(x),36(x)] can be approximated as follows: andn(,u,T,A)., the density of fermiong3) which varies with
temperature in our model. At the temperatlie where the

[, AX),30) 1= [0, T.A,I0(x)]+ O T.A), modulus ofA vanishes, the stiffness also disappears.
[ 400, 9000 1= Danl 1 )]+ Qpol ()15) We are now ready to set up an effecti& model gov-
erning the phase fluctuations. The model Hamiltonian corre-
with the “kinetic” term (see Refs. 41 and 40 sponding to the gradient term #(x) is**®
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H= %j dx[V 6(x)12. (23 0.11

In contrast to the standaXlY model, the stiffness parameter o gl
is not a constant but depends on temperature via the solution
of gap and number equatio2) and(3).

In this model, a Kosterlitz-Thouless vortex unbending 0’06'\‘\_‘
transition takes place beloW* . For vortices of a high fugac-
ity, the temperature of the phase transition is determined by 0.047 ™}
the well-known formul&® NN
0.02f TS
-
Tkr=51J, (24

_ _ _ 07710 20 30 40 50 60 70
which follows from the divergence of the average square size 1/A(0)

of a vortex-antivortex pair. Since these attract each other by

a Coulomb potentiab (r)=2J In(r/ry), the average square FIG. 1. Weak-coupling behavior dfc. The solid line isT*,

and the dashed line represeifis; .

distance is
a, | 24— (2m3IT)In(r /o) ~ 1 1
(r®yec | drrr2e (7 0 Thkr=7 ———=. (29)
o 4 1+1/4T*
1 ~
_— For smallT* we may expand
“a— 27T’ @9 e may exm

which diverges indeed at the temperat(2d). In our case :|:K-|—’~":|:* —4T*2, (30

Tk should be determined self-consistently: _ ) o _ )
This equation shows explicitly how for decreasing coupling

T strengthTy+ merges withT*.
TKTZEJ[:‘MTKT A Tir) ] (26) For weak coupling strength3 behaves like
From Eqgs.(21), (3), and(24), it is easily seen thafyt in- - e’ e
deed tends to zero when the pair attraction vanishes, in TKTQ?W- (32)

which caseA (T=0)=0. In general, the behavior dfc for

strong and weak couplings is found by the following consid-The merging of the two temperatures in the weak-coupling
erations. We observe that the particle numieéoes not vary  regime is displayed in Fig. 1.

appreciably in these limits with temperature in the range O Consider now the opposite limit of strong couplings.
<T<T*, so that weak-coupling estimates fokr derived There we see from EQqs(26), (2), (3), and (21) for
within the model with a temperature-independent chemicair .., n(T,u), and A(T,u«) that Txr tends to a constant
potential (i.e., when the system is coupled to a large reservalue. We can observe that in the strong-coupling limit
voir) practically coincide with those derived from a fixed A(T,;) is always situated close to the zero-temperature
fermion density. Further it is immediately realized that in thevalue of A(Txr,u)~A(T=0,u). Taking this into account
weak-coupling limit, A(Txr,u)/Tyr is @ small parameter. we derive an estimate for the second term in &), thus

At zero coupling, the stiffness[u,Txr,A(u,Tkr)] van-  obtaining the strong-coupling equation fbgr :
ishes identically, such that an estimatel@it weak couplings

requires calculating a lowest-order correction to the second w1 Ter 2+ A% (Tyr . )
term of Eq.(21) proportional toA(Tgr,u)/Tkr. Thus the TKng mh ™ XA~ T . (32
KT

weak-coupling expression for stiffness reads
With the approximationA(Tyt,ux)~A(T=0,ux), we find

7(3)  AXT) 27) that the first term in the exponent tends in the strong-

163 €F T*2 ° coupling limit to a constant,A%(Tyr,u)/2uTr— —4,

) o ) ) _ whereas the first term in the brackets tends—te, so that
Equating this with the stiffness in E¢24), we obtain the Eq. (32) has the limiting form

weak-coupling equation fof i+ :

- T n[l 1 F{Z,u, 4
€ TKT KT g —o®Xg——
Tyr= Z(l— - ) (29 8ml~ 8 e

J(M)=

] . (33

Thus for increasing coupling strength, the phase-decoherence
whereeg=(ar/m)n is the Fermi energy of free fermions. It temperaturel (1 tends very quickly toward a constant:
is useful to introduce reduced dimensionless temperatures

TFKTETKT/eF andT* =T*/eg, which are small in the weak-

coupling limit. Then we rewrite Eq28) as ' (34

31>

T
Tr= )
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In this limit we know from Eq.(3) that the difference in the 0.3
carrier density at zero temperaturg,T=0), becomes equal
to n(T=Tgy), so that our limiting result coincides with that  0.251
obtained in the “fixed carrier density model”:
0.2]
eg(n T
TKT:¥ “Bmo (39 0.15} ™
where we have inserted agaip(n) = (7/m)n for the Fermi 0.1t \\
energy of free fermions at the carrier densiy=n(T=0). I  Tom
From the above asymptotic formulas for weak- and ©-9°%
strong-coupling limits we see that the temperature of the
Kosterlitz-Thouless transition is a monotonous function of 0 4 6 8 10 12 14 16 18 20
coupling strength and carrier density. The crossover takes ©/A(0)

place in a narrow regiop/A e (—1,1). Itis also observed in ) . . . : .
the behavior of the three-dimensional condensation tempera- |- 2- Weak-coupling behavior df, in three dimensions. The
. .. solid line isT*, T, is plotted with dashed line.

ture T, of the gas of tightly bound, almost free, composite

bosons in Refs. 2, 5, and 9. In the first two of these refer-
ences, which include only quadratic fluctuations around the
mean field (corresponding to ladder diagramsl, was
shown to tend to a constant free Bose gas value . ber of pairs.

— 213 H H
=[n/2{(3/2)]"m/m, with no dependence the internal struc- " e \weak-coupling limit, the stiffness coefficient can be

ture of the boson. Here we find a similar result in two di- derived with the help of Gorkov's well-known methdset-
mensions, wheré& « tends to a constant depending only Onting T.~T*) as
Cc

the mass #h and the density/2 of the pairs. No dependence

T35=3J3pa; (39)

a=1/n}" is the lattice spacing of the thedfywheren, is

on the coupling strength is left. The only difference with 7 p3 2
respect to the three-dimensional case is that here the transi- J3D:_§(3)_F _ (40)
tion temperaturel .= Ty is linear in the carrier density, 4874 m T*2

while growing like n?3 in three dimensions. Our limiting

result(35) agrees with Refs. 26 and 24. There exists a cor
responding equation for the temperatdre in the strong-
coupling limit e;> e :

This is precisely the coefficient of the gradient term in the
Ginzburg-Landau expansion. In the weak-coupling limit, the
two temperatures merge according to the formula

To=T*—aT*%? (42)
€p 1

e
= 2 InE()/EF-

36 which contains a larger power df* in the second term as
well as a smaller prefactor=(27%)%%2~3.65, as com-
pared with the two-dimensional separation form{@8). The
merging behavior is displayed in Fig. 2.

In this section we discuss, in a completely analogous way, N the strong-coupling limit of the theory where we have
the fluctuations in three dimensions, where the stifiness colghtly bound composite bosons, the phase stiffness tends

efficient is, for small temperatures whefdT) is close to ~ aSymptotically to

IV. PHASE FLUCTUATIONS IN THREE DIMENSIONS

A(0),
n  3y2mm_,, Vpl+A?
J=4———2T ex i (42
1 J2m 1 m 16w
J3D(M,T,A):4_n(M,T,A)_ 2? X . C . .
m 167 It obviously tends in this limit quickly to
® (E+m)¥

x| d . (3 _n

f—u gcosr'?( VE+AZI2T) S Jee= 77 (43

governing the phase fluctuations via an effect’¢ model ~ An estimate for the critical temperature, obtained via the
mean-field treatment of the 3BY model on the lattice reads

in this limit:
Ho 20 A3V O(x)]? (39)
’ 2/3 [, 2 2
2 T :i E _i 1 T3/2m3lzex _ M——'—A
¢ 2ml\2 nl3 7632 " ¢ T, )
The temperature of the phase transition in this model can (44)

reasonably be estimated using mean-fiéfF) methods for
the lattice three-dimension&D) XY modef This quickly tends from below to the value
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critical temperature tends in both two and three dimensions
critical temperature to a constant value as the chemical po-
tential changes it sign.

This result is very close to the temperature of the condensa- L€t us finally remark that the separation®of and T, has
tion of bosons of massr and densityn/2, which, as was & analogy in the ferroelect.nc.s and magnets which alsg con-
discussed in Sec. I, was obtained including the effect of@in two separate characteristic temperat(f@sexample, in
Gaussian fluctuations into the mean-field equation for thdhe latter case, the Stoner and the Curie temperatut@sso
particle numbé® yielding* can be_ studlec_i more prec_lsely in a simple field-theoretic
model in 2+ e dimensions with ar©(n) symmetry for large
n. In such a model, the existence of two small parameters
and 1h has permitted us recently farove the existence of
two transitions, and to exhibit clearly their different physical
origins®®
We have studied the crossover from BCS to Bose-type
superconductivity. For this purpose we have used the gradi-
ent expansion of the effective energy functional to set up an
equivalentXY model which allows us to investigate the on-  We thank Professor K. Bennemann, Professor K. Maki,
set of long-range order in the phase fluctuations. In two diand Professor V. Emery for explaining to us some aspects of
mensions, we have given a simple analytic expression whicfi* crossover in superconductive cuprates, and Professor Y.
shows how the resulting Kosterlitz-Thouless temperaturdJemura for useful remarks. One of (&.B.) is grateful to
T«7 at which quasi-long-range order sets in moves towardshe members of Professor Kleinert's group at the Institut fu
the pair-binding temperatur€*, and merges with it in the Theoretische Physik of the Freie UniversiBerlin for their
weak-coupling limit. A similar expression was found in three kind hospitality, and to Dr. S.G. Sharapov for discussions of
dimensions. In the strong-coupling limit we find that the our results.

T?OSOHS: [n/2£(3/2)127/m=0.218 . (46)

V. CONCLUSION
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