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Nonperturbative XY-model approach to strong coupling superconductivity
in two and three dimensions
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For an electron gas withd-function attraction, we investigate the crossover from weak- to strong-coupling
superconductivity in two and three dimensions. From mean-field theory we extract the stiffness of phase
fluctuations and set up effectiveXY models which serve to determine nonperturbatively the temperature of
phase decoherence where superconductivity breaks down. We find the transition temperatureTc as a monoto-
nous function of the coupling strength both in two and three dimensions, and give analytic formulas for the
merging of temperature of phase decoherence with the temperature of pair formation in the weak-coupling
limit. @S0163-1829~99!07605-5#
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I. INTRODUCTION

The crossover from BCS superconductors to a Bo
Einstein condensate of tightly bound fermion pairs was fi
studied many years ago in Refs. 1–3 in a model w
d-function attraction. This crossover has recently raised
newed interest,4–34 especially after the publication of exper
mental results on cuprate superconductors and their the
ical interpretation in Ref. 33. In this paper we presen
detailed study of the crossover based on a nonperturba
procedure in which mean-field properties are used to se
an effectiveXY model whose well-known nonperturbativ
properties render information on the entire crossover reg
of the above model.

Physically, the most important distinctions between co
ventional weak-coupling~BCS! and strong-coupling~Bose-
Einstein! regime lies in the fact that in the former only
small fraction of the conduction electrons is paired with t
superfluid density involving all pairs, whereas in the lat
practically all carriers are paired below a certain tempera
T* , although not condensed. The temperature has to be
ered further below some critical temperatureTc,T* to
make these pairs condense and establish phase coher
which leads to superconductive behavior. We shall neg
the coupling to the magnetic vector potential throughout
forthcoming discussion, so that the phase coherence be
Tc can be of long range, unspoiled by the Meissner eff
which would reduce the range to a finite penetration dep
In the model to be investigated in this paper, the crosso
from BCS- to Bose-type superconductivity will take pla
either by varying the coupling strength, or by decreasing
carrier density.

Since in the BCS theory pair binding is weak, it can w
be described by mean-field theory for the pair fields. In
opposite limit of strong pair bonding, on the other han
superconductivity sets in via a macroscopic occupation
the q50 level, and we are obliged to go beyond mean-fie
PRB 590163-1829/99/59~18!/12083~7!/$15.00
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theory to describe it. In three dimensions, crossover fr
BCS superconductivity to the Bose-Einstein condensation
tightly bound fermion pairs was first investigated in Ref.
by summing particle-particle ladder diagrams which cor
spond to Gaussian fluctuations around the mean field. In
functional integral formalism this was studied in Ref. 5.
both papers, fluctuation corrections were retained in
number equation, which was solved together with the me
field gap equation. In this approximation, starting from
fermionic system, the gas of electron pairs was mapped
the strong-coupling limit to an ideal Bose gas, and the cr
cal temperature asymptotically becomes the temperatur
the Bose-Einstein condensation of an ideal Bose gas of
ticles with mass 2m and densityn/2, wherem andn are the
fermion mass and density. The critical temperatureTc has an
artificial maximum at an intermediate coupling strength, th
approaching a limiting value in the strong-coupling lim
from above. This artifact was removed in the generaliz
self-consistent Green-function numerical approach in Ref

In this paper we shall study the properties of collecti
modes with help of the lowest gradient terms governing
Gaussian fluctuations around the mean-field solution. Th
fluctuations are most violent in the phase of the order par
eter. Phase transitions in a system with these fluctuations
well understood in two and three dimensions from extens
studies of theXY model. By setting up an equivalentXY
model we are therefore able to describe very well the on
and disappearance of superconductivity in the entire cro
over regime. In this way, we shall obtain simple formulas
the critical temperatureTc , which turns out to be a monoto
nously increasing function of the coupling strength and c
rier density in both two and three dimensions. In the we
coupling limit, we give simple explicit formulas which show
how the temperature of theXY-model transition converges t
the transition temperature in the BCS theory.

II. MODEL

The weak- to strong-coupling crossover in two dime
sions was studied via the Kosterlitz-Thouless theory in Re
12 083 ©1999 The American Physical Society
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26 and 24. In Ref. 24 it was investigated within the sa
model as ours at a fixed carrier density, but only numerica
We shall see in Sec. IV that these numerical results do
cover the entire crossover region; in particular the merg
of TKT andT* in the weak-coupling region is missing—th
phenomenon that we describe analytically in our paper.
different properties of size and phase fluctuations were
exploited in Ref. 36.

The Hamiltonian of our model is the typical BCS Ham
tonian inD dimensions (\51),

H5(
s

E dDx cs
†~x!S 2

¹2

2m
2m Dcs~x!

1gE dDx c↑
†~x!c↓

†~x!c↓~x!c↑~x!, ~1!

wherecs(x) is the Fermi field operator,s5↑,↓ denotes the
spin components,m is the effective fermionic mass, andg
,0 the strength of an attractive potentialgd(x2x8).

The mean-field equations for the gap parameterD and the
chemical potentialm are obtained in the standard way fro
the equations~see, for example, Ref. 35!

2
1

g
5

1

V (
k

1

2Ek
tanh

Ek

2T
, ~2!

n5
N

V
5

1

V (
k

S 12
jk

Ek
tanh

Ek

2TD , ~3!

where the sum runs over all wave vectorsk, N is the total
number of fermions,V the volume of the system, and

Ek5Ajk
21D2 with jk5

k2

2m
2m ~4!

are the energies of single-particle excitations.
Thed-function potential produces an artificial divergenc

and requires regularization. A BCS superconductor posse
a natural cutoff supplied by the Debye frequencyvD . For
the crossover problem to be treated here this is no long
useful quantity, since in the strong-coupling limit all ferm
ons participate in the interaction, not only those in a th
shell of widthvD around the Fermi surface. To be applicab
in this regime, we renormalize the gap equation in three
mensions with the help of the experimentally observa
s-wave scattering lengthas , for which the low-energy limit
of the two-body scattering process gives an equally diverg
expression9–13

m

4pas
5

1

g
1

1

V (
k

m

k2
. ~5!

Eliminating g from Eqs.~5! and ~2!, we obtain a renormal-
ized gap equation

2
m

4pas
5

1

V (
k

F 1

2Ek
tanh

Ek

2T
2

m

k2G , ~6!

in which 1/kFas plays the role of a dimensionless couplin
constant which monotonically increases from2` to ` as
the bare coupling constantg runs from small~BCS limit! to
e
.

ot
g

e
so

,
es

a

i-
e

nt

large values~BE limit!. This equation is to be solved simu
taneously with Eq.~3!. These mean-field equations were an
lyzed at a fixed carrier density in Refs. 5 and 7. Here
shall first reproduce some of the earlier estimates forT* and
m.

In the BCS limit, the chemical potentialm does not differ
much from the Fermi energyeF , whereas with increasing
interaction strength the distribution functionnk broadens and
m decreases. In the BE limit we have tightly bound pairs a
nondegenerate fermions with a large negative chemical
tential,umu@T. In the strong-coupling limit, Eq.~6! provides
us with an estimate forT* , the characteristic temperature o
the thermal pair breaking,5 whereas Eq.~3! determinesm.
From Eq.~3! we obtain in the BE limitm52Eb/2, where
Eb51/mas

2 is the binding energy of the bound pairs. In th
BE limit, we can estimate that the pseudogap sets in atT*
.Eb/2 ln(Eb /eF)3/2. A simple ‘‘chemical’’ equilibrium esti-
mate (mb52m f) yields Tdissoc.Eb / ln(Eb /eF)3/2 for the tem-
perature of pair dissociation, which shows that at strong c
plings T* is indeed related to pair formation.5,6

The gap in the spectrum of single-particle excitations h
a special feature3,1,7 when the chemical potential changes
sign. The sign change occurs at the minimum of the Bo
liubov quasiparticle energyEk , which defines the gap en
ergy in the quasiparticle spectrum:

Egap5min~jk
21D2!1/2. ~7!

Thus, for a positive chemical potential, the gap energy
given directly by the gap functionD, whereas for negative
chemical potential, it is larger than that:

Egap5H D for m.0,

~m21D2!1/2 for m,0.
~8!

In two dimensions, a nonzero bound-state energye0 exists
for any coupling strength. The cutoff can therefore be elim
nated by subtracting, from the two-dimensional ze
temperature gap equation11–13

2
1

g
5

1

2V (
k

1

Ajk
21D2

5
m

4pE2x0

`

dz
1

A11z2
, ~9!

wherez5k2/2mD2x0 , x05D/m, the bound-state equatio

2
1

g
5

1

V (
k

1

k2/m1e0

5
m

2pE2x0

`

dz
1

2z1e0 /D12x0
.

~10!

After performing the elementary integrals, we find

e0

D
5A11x0

22x0 . ~11!

In the next sections we will work at finite temperature;
doing so, we do not fix the carrier density but assume
presence of a reservoir which provides us with
temperature-independent chemical potential m
5m(1/kFas ;T50). Such a fixedm will be most convenient
for deriving simple analytic results for the finite-temperatu
behavior of the system. In this fixed-m model, the carrier
density becomes temperature dependent. In Ref. 24, the
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perature dependence of the chemical potential was calcu
numerically for the entire crossover region within such
‘‘fixed carrier density model,’’ where it turned out to be ve
small in comparison with the dependence on the coup
strength. For experimental measurements ofm see Ref. 37.

III. PHASE FLUCTUATIONS IN TWO DIMENSIONS
AND KOSTERLITZ-THOULESS TRANSITION

In this section we make use of derivative expansion
determine the relevant stiffness parameter for the study
phase fluctuations, which in two dimensions determines
temperature of the Kosterlitz-Thouless~KT! transition. In a
two-dimensional system, the phase fluctuations are most
lent causing the strongest modifications of the mean-fi
properties. The Coleman-Mermin-Wagner-Hohenb
theorem38 forbids the existence of a strict long-range ord
but there is quasi-long-range order manifesting itself in
power behavior of the correlation functions at all tempe
tures belowTKT .

The effective Hamiltonian from which we deduce th
stiffness of the phase fluctuations was derived in Refs.
and 41. In this section we summarize a few important asp
of it, with a reminder of its derivation given below. Writin
the space-time-dependent order parameter asD(x)eiu(x),
wherex denotes the 4-vectorx5(t,x) formed from imagi-
nary time and position vector, the partition function may
written as a functional integral41,39,40

Z~m,T!5E D DD Du exp$2bV@m,T,D~x!,]u~x!#%,

~12!

where

bV@m,T,D~x!,]u~x!#

5
1

gE0

b

dtE dx D2~x!2Tr ln G211Tr ln G0
21

~13!

is the one-loop effective action, containing the inverse Gr
function of the fermions in the collective pair field

G2152 Î ]t1t3S ¹2

2m
1m D1t1D~t,x!

2t3F i ]tu~t,x!

2
1

@¹u~t,x!#2

8m G
1 Î F i¹2u~t,x!

4m
1

i¹u~t,x!¹

2m G . ~14!

Here t1 and t3 are the usual Pauli matrices, andG0
5Gum,D,u50 is added for regularization.

Let us now assume that phase gradients are small. T
V@m,T,D(x),]u(x)# can be approximated as follows:

V@m,D~x!,]u~x!#.Vkin@m,T,D,]u~x!#1Vpot~m,T,D!,
~15!

with the ‘‘kinetic’’ term ~see Refs. 41 and 40!
ted

g
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Vkin@m,T,D,]u~x!#5T Tr (
n51

`
1

n
~GS!nuD5const, ~16!

and the ‘‘potential’’ term

Vpot~m,T,D!5S 1

gE dDx D22T Tr ln G21

1T Tr ln G0
21D U

D5const

. ~17!

The latter coincides with the mean-field energy, determin
the modulus ofD(m,T). The kinetic partVkin contains gra-
dient terms governing the stiffness of the phase fluctuati
whose size is determined by the modulus ofD(m,T). Both
Vkin andVpot are expressed in terms of the Green function
the fermions, which solves the equation

F2 Î ]t1t3S ¹2

2m
1m D1t1DGG~t,x!

5d~t!d~x! . ~18!

The operatorS(]u) in Eq. ~16! is

S~]u![t3F i ]tu

2
1

~¹u!2

8m G2 Î F i¹2u

4m
1

i¹u~t,x!¹

2m G .
~19!

The gradient expansion that we use to determine stiffn
was first performed in Ref. 41 at zero temperature. In R
24, the kinetic termVkin was calculated in two dimensions a
finite temperature for arbitrary chemical potential retaini
terms withn51,2 in expansion~16!.

The result is

Vkin5
T

2E0

b

dtE dDx$n~m,T,D!i ]tu

1J@m,T,D~m,T!#~¹u!2

1K@m,T,D~m,T!#~]tu!2%, ~20!

whereJ(m,T,D) is the stiffness coefficient, whose explic
form is

J~m,T,D!5
1

4m
n~m,T,D!

2
T

4pE2m/2T

`

dx
x1m/2T

cosh2Ax21D2/4T2
. ~21!

The other coefficients are

K~m,T,D!5
m

8pS 11
m

Am21D2
tanh

Am21D2

2T D , ~22!

andn(m,T,D), the density of fermions~3! which varies with
temperature in our model. At the temperatureT* where the
modulus ofD vanishes, the stiffness also disappears.

We are now ready to set up an effectiveXY model gov-
erning the phase fluctuations. The model Hamiltonian co
sponding to the gradient term inu(x) is42,8
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H5
J

2E dx@¹u~x!#2. ~23!

In contrast to the standardXY model, the stiffness paramete
is not a constant but depends on temperature via the solu
of gap and number equations~2! and ~3!.

In this model, a Kosterlitz-Thouless vortex unbendi
transition takes place belowT* . For vortices of a high fugac
ity, the temperature of the phase transition is determined
the well-known formula43

TKT5
p

2
J, ~24!

which follows from the divergence of the average square s
of a vortex-antivortex pair. Since these attract each othe
a Coulomb potentialv(r )52pJ ln(r/r0), the average squar
distance is

^r 2&}E
r 0

`

dr r r 2e2~2pJ/T!ln~r /r 0!

}
1

422pJ/T
, ~25!

which diverges indeed at the temperature~24!. In our case
TKT should be determined self-consistently:

TKT5
p

2
J@m,TKT ,D~m,TKT!#. ~26!

From Eqs.~21!, ~3!, and ~24!, it is easily seen thatTKT in-
deed tends to zero when the pair attraction vanishes
which caseD(T50)50. In general, the behavior ofTKT for
strong and weak couplings is found by the following cons
erations. We observe that the particle numbern does not vary
appreciably in these limits with temperature in the range
,T,T* , so that weak-coupling estimates forTKT derived
within the model with a temperature-independent chem
potential~i.e., when the system is coupled to a large res
voir! practically coincide with those derived from a fixe
fermion density. Further it is immediately realized that in t
weak-coupling limit,D(TKT ,m)/TKT is a small parameter
At zero coupling, the stiffnessJ@m,TKT ,D(m,TKT)# van-
ishes identically, such that an estimate ofJ at weak couplings
requires calculating a lowest-order correction to the sec
term of Eq.~21! proportional toD(TKT ,m)/TKT . Thus the
weak-coupling expression for stiffness reads

J~T!.
7z~3!

16p3
eF

D2~T!

T* 2
. ~27!

Equating this with the stiffness in Eq.~24!, we obtain the
weak-coupling equation forTKT :

TKT.
eF

4 S 12
TKT

T*
D , ~28!

whereeF5(p/m)n is the Fermi energy of free fermions.
is useful to introduce reduced dimensionless temperat

T̃KT[TKT /eF andT̃* 5T* /eF , which are small in the weak
coupling limit. Then we rewrite Eq.~28! as
on

y

e
y

in

-

0

l
r-

d

es

T̃KT.
1

4

1

111/4T̃*
. ~29!

For smallT̃* we may expand

T̃KT'T̃* 24T̃* 2. ~30!

This equation shows explicitly how for decreasing coupli
strengthTKT merges withT* .

For weak coupling strengths,TKT behaves like

T̃KT'
eg

p

eF

D~0!
. ~31!

The merging of the two temperatures in the weak-coupl
regime is displayed in Fig. 1.

Consider now the opposite limit of strong coupling
There we see from Eqs.~26!, ~2!, ~3!, and ~21! for
TKT , n(T,m), and D(T,m) that TKT tends to a constan
value. We can observe that in the strong-coupling lim
D(TKT) is always situated close to the zero-temperat
value of D(TKT ,m)'D(T50,m). Taking this into account
we derive an estimate for the second term in Eq.~21!, thus
obtaining the strong-coupling equation forTKT :

TKT.
p

8 H 1

m
n2

TKT

p
expF2

Am21D2~TKT ,m!

TKT
G J . ~32!

With the approximationD(TKT ,m)'D(T50,m), we find
that the first term in the exponent tends in the stron
coupling limit to a constant,D2(TKT ,m)/2mTKT→24,
whereas the first term in the brackets tends to2`, so that
Eq. ~32! has the limiting form

TKT.
p

8

n

mH 12
1

8
expF2m

eF
24G J . ~33!

Thus for increasing coupling strength, the phase-decohere
temperatureTKT tends very quickly toward a constant:

TKT.
p

8

n

m
. ~34!

FIG. 1. Weak-coupling behavior ofTKT . The solid line isT* ,
and the dashed line representsTKT .
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In this limit we know from Eq.~3! that the difference in the
carrier density at zero temperature,n(T50), becomes equa
to n(T5TKT), so that our limiting result coincides with tha
obtained in the ‘‘fixed carrier density model’’:

TKT5
eF~n0!

8
5

p

8m
n0 , ~35!

where we have inserted againeF(n)5(p/m)n for the Fermi
energy of free fermions at the carrier densityn05n(T50).

From the above asymptotic formulas for weak- a
strong-coupling limits we see that the temperature of
Kosterlitz-Thouless transition is a monotonous function
coupling strength and carrier density. The crossover ta
place in a narrow regionm/DP(21,1). It is also observed in
the behavior of the three-dimensional condensation temp
ture Tc of the gas of tightly bound, almost free, compos
bosons in Refs. 2, 5, and 9. In the first two of these re
ences, which include only quadratic fluctuations around
mean field ~corresponding to ladder diagrams!, Tc was
shown to tend to a constant free Bose gas valueTc
5@n/2z(3/2)#2/3p/m, with no dependence the internal stru
ture of the boson. Here we find a similar result in two d
mensions, whereTKT tends to a constant depending only
the mass 2m and the densityn/2 of the pairs. No dependenc
on the coupling strength is left. The only difference wi
respect to the three-dimensional case is that here the tr
tion temperatureTc5TKT is linear in the carrier densityn,
while growing like n2/3 in three dimensions. Our limiting
result ~35! agrees with Refs. 26 and 24. There exists a c
responding equation for the temperatureT* in the strong-
coupling limit e0@eF :

T* .
e0

2

1

ln e0 /eF
. ~36!

IV. PHASE FLUCTUATIONS IN THREE DIMENSIONS

In this section we discuss, in a completely analogous w
the fluctuations in three dimensions, where the stiffness
efficient is, for small temperatures whereD(T) is close to
D(0),

J3D~m,T,D!5
1

4m
n~m,T,D!2

A2m

16p2

1

T

3E
2m

`

dj
~j1m!3/2

cosh2~Aj21D2/2T!
, ~37!

governing the phase fluctuations via an effectiveXY model

H5
J3D

2 E d3x@¹u~x!#2. ~38!

The temperature of the phase transition in this model
reasonably be estimated using mean-field~MF! methods for
the lattice three-dimensional~3D! XY model8
e
f
es

ra-

r-
e

si-

r-

y,
o-

n

T3D
MF.3J3Da; ~39!

a51/nb
1/3 is the lattice spacing of the theory,8 wherenb is

number of pairs.
In the weak-coupling limit, the stiffness coefficient can

derived with the help of Gorkov’s well-known method~set-
ting Tc'T* ) as

J3D5
7

48p4
z~3!

pF
3

m

D2

T* 2
. ~40!

This is precisely the coefficient of the gradient term in t
Ginzburg-Landau expansion. In the weak-coupling limit, t
two temperatures merge according to the formula

T̃c5T̃* 2aT̃* 5/2, ~41!

which contains a larger power ofT̃* in the second term as
well as a smaller prefactora5(2p2)2/3/2'3.65, as com-
pared with the two-dimensional separation formula~30!. The
merging behavior is displayed in Fig. 2.

In the strong-coupling limit of the theory where we ha
tightly bound composite bosons, the phase stiffness te
asymptotically to

J5
n

4m
2

3A2pm

16p2
T3/2expF2

Am21D2

T G . ~42!

It obviously tends in this limit quickly to

JBE5
n

4m
. ~43!

An estimate for the critical temperature, obtained via t
mean-field treatment of the 3DXY model on the lattice read
in this limit:

Tc5
3

2mF S n

2D 2/3

2
1

n1/3

1

27/6p3/2
Tc

3/2m3/2expS 2
Am21D2

Tc
D G .

~44!

This quickly tends from below to the value

FIG. 2. Weak-coupling behavior ofTc in three dimensions. The
solid line isT* , Tc is plotted with dashed line.
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Tc
3D XY5

3n2/3

25/3m
5eF

3

~6p2!2/3
.0.2eF . ~45!

This result is very close to the temperature of the conden
tion of bosons of mass 2m and densityn/2, which, as was
discussed in Sec. I, was obtained including the effect
Gaussian fluctuations into the mean-field equation for
particle number2,5 yielding44

Tc
Bosons5@n/2z~3/2!#2/3p/m50.218eF . ~46!

V. CONCLUSION

We have studied the crossover from BCS to Bose-t
superconductivity. For this purpose we have used the gr
ent expansion of the effective energy functional to set up
equivalentXY model which allows us to investigate the o
set of long-range order in the phase fluctuations. In two
mensions, we have given a simple analytic expression wh
shows how the resulting Kosterlitz-Thouless temperat
TKT at which quasi-long-range order sets in moves towa
the pair-binding temperatureT* , and merges with it in the
weak-coupling limit. A similar expression was found in thr
dimensions. In the strong-coupling limit we find that th
a-

f
e

e
i-
n

i-
h
e
s

critical temperature tends in both two and three dimensio
critical temperature to a constant value as the chemical
tential changes it sign.

Let us finally remark that the separation ofT* andTc has
an analogy in the ferroelectrics and magnets which also c
tain two separate characteristic temperatures~for example, in
the latter case, the Stoner and the Curie temperatures!. It also
can be studied more precisely in a simple field-theore
model in 21e dimensions with anO(n) symmetry for large
n. In such a model, the existence of two small parametere
and 1/n has permitted us recently toprove the existence of
two transitions, and to exhibit clearly their different physic
origins.45
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