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Criterion for Dominance of Directional over Size Fluctuations in Destroying Order
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For systems that exhibit a second-order phase transition with a spontaneously broken continuous O�N�
symmetry at low temperatures, we give a criterion for judging at which temperatureTK long-range
directional fluctuations of the order field destroy the order when approaching the critical temperature
from below. The temperatureTK lies always significantly below the famous Ginzburg temperatureTG

at which size fluctuations of finite range become important.

PACS numbers: 05.40.–a, 64.60.– i

Although the fluctuation behavior of systems in a
second-order phase transition is universal in the imme-
diate vicinity of the transition, and the theory is well
established [1], there are still disputes concerning the
dominant fluctuation mechanism which drives a number
of important phase transitions. A typical example is
the question whether the superfluid transition in liquid
helium is initiated by the proliferation of vortex lines,
which are the defects in all systems with pure angular
fluctuations of a complex order parameter, or by the size
fluctuations of the associated complexorder field f�x�.
At first sight, this question may seem meaningless since
all critical exponents of the transition can be calculated
with great accuracy either from an order field theory with
f4 interaction [2], where size and directional fluctuations
seem to be equally important, or from a Heisenberg model
on a lattice, which contains only directional fluctuations.
In fact, the two descriptions are completely equivalent.
The equivalence can easily be proved for superfluids,
where the Heisenberg model reduces to anXY model.
After a duality transformation, theXY model can be
reexpressed as a sum over a grand-canonical ensemble of
non-self-backtracking vortex lines [3,4] whose prolifera-
tion completely describes all properties of the superfluid
transitions. They produce the same critical exponents as a
complexf4 theory, and the reason for this is simple: the
XY model may be converted into a complexf4 theory by
a transformation of integration variables in the functional
integral of the partition function [4].

The question whether directional or size fluctuations
drive a phase transition does therefore not concern the im-
mediate vicinity of the transition where the properties are
universally governed by a critical exponentv. It is only a
meaningful question in theprecritical regime of the tran-
sition, where a mean-field description of a system breaks
down. There it possesses an answer similar to the Ginzburg
criterion which estimates the temperature range where this
happens due tosize fluctuationsof the order field. The
new criterion to be presented in this note will tell us where
the breakdown is caused bydirectional fluctuations. In
the case of a complex order field, these lead to an early
proliferation of vortex lines before size fluctuations be-
come large.

The new criterion serves to understand the dominance
of directional fluctuations in the recently discovered
restoration of continuous symmetry in Gross-Neveu [5]
and Nambu–Jona-Lasinio models [6], and, more impor-
tantly, the generation of a pseudogap phase above the
superfluid phase in strong-coupling superconductors [7].

In order to lead up to the new criterion, we briefly re-
call the relevant features of the field-theoretic approach
to the critical exponents in the immediate vicinity of sec-
ond-order phase transitions [1]. Since critical properties
are caused by the long-wavelength fluctuations of a sys-
tem, it is sufficient to identify these, assign to each of
them a real order fieldfA�x�, A � 1, . . . , N, the local
generalization of Landau’s order parameter [8], and set
up a Ginzburg-Landau energy density. Its fluctuations are
studied with the help of a functional integral over all field
configurations, weighted by a Boltzmann factor of the to-
tal field energy.

At a moderate temperature distancejT 2 Tcj from the
critical temperatureTc, the functional integral may be
evaluated by the saddle point approximation. This is the
mean-field regime of the field theory. When approaching
the critical point, the fluctuations of the order parameter
increase. They become important in a temperature regime
DTG aroundTc, whose width was first estimated by the
famous Ginzburg criterion [9]: It is the regime where the
fluctuations of the order parameter in pockets of coherence
size reach into the normal phase.

The Ginzburg-Landau field energy density is found from
phenomenological studies of a system in some neighbor-
hood of the critical temperature [8]. One expands the en-
ergy density in powers of the order field and its derivatives.
Then one identifies the temperature interval where all ex-
pansion terms are irrelevant except for those appearing in
a simplef4 theory. At somemean-field critical tempera-
ture TMF

c fi Tc, correlation lengths become infinite in the
mean-field approximation. The mass term goes through
zero linearly inT�TMF

c , i.e., the bare square massm2 is
proportional tot � T�TMF

c 2 1.
As the system enters the critical regime, fluctuations of

the order parameter become important and must be ac-
counted for. This is done by perturbative methods. Each
physical quantity of interest is expanded into a Taylor
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series of the reduced interaction strengthg�m42D, and a
resummation of these in the limitm ! 0 allows us to ex-
tract power lawsmpower , which determine the critical ex-
ponents [10].

We shall now demonstrate that in systems with a contin-
uous symmetry, the Ginzburg criterion is not sufficient to
characterize the temperature range where fluctuations are
important. A system will exhibit strong directional fluctu-
ations before the size fluctuations of the order parameter
become noticeable, leading to a phase transition at a tem-
peratureTK far below the Ginzburg temperatureTG.

For simplicity, we restrict the argument toN order
fields fA with O�N� symmetry inD dimensions. With
a convenient choice of field and mass normalization, the
Ginzburg-Landau energy density inD dimensions may be
written as

´�fA, ≠fA� �
1

2aD

Ω
a2a2�≠fA�x��2

1 tf2
A�x� 1

g
2

�f2
A�x��2

æ
.

From here on we use natural units withkBTMF
c � 1. The

fields have zero engineering dimension;a denotes some
microscopic length scale of the system, usually the size
of atoms or molecules, andg is some interaction strength.
The parametera specifies the zero-temperature coherence
length of the system in units ofa as beingj0 � aa�

p
2.

This can vary greatly from system to system. In super-
conductors, for example,a can lie anywhere between
a few thousand, and less than ten in high-temperature
superconductors.

In this note, we shall be concerned only with the de-
struction of the ordered state which liesbelow the criti-
cal temperature wheret , 0: There the fields in the
energy density fluctuate around an ordered ground state
with a constant vector�fA� � FA � �f�NA � FNA in
field space, whose direction vectorNA breaks sponta-
neously the O�N� symmetry, and whose magnitude isF �q

F2
A �

p
2t�g, where the energy density is minimal,

fluctuating around the condensation energy density´0 �
´�FA, 0� � 2t2�4gaD . The temperature-dependent co-
herence lengthj � aa�

p
2jtj describes the range of the

size fluctuations of the order field.
The magnitude is estimated by assuming the field to live

in patches on a simple cubic lattice of spacingjl � lj,
choosing eventually a spacing parameter betweenl � 1
andl � 2 to ensure the independence of the patches. Then

��f�x� 2 F�2��F2 � l22D�2jtj�D�222ga2Dyl2 �0� , (1)

whereyD
m2�0� �

Rp
2p dDk��2p�D�

PD
i�1�2 2 2 coski� 1 m2�

is the lattice Coulomb potential of reduced massm.
It is equal to

R`
0 ds e2s�m212D��I0�2s��D. For D �

3, 4, . . . , yD
1 �0� has the values [11]

yD
1 �0� 	 0.1710, 0.1270, . . . , 1�2D . (2)

Mean-field behavior breaks down if (1) is of the order
unity, which happens at the reduced Ginzburg temperature

jtGj 	 �KyD
l2 �0��lD22�2��42D�, D , 4 , (3)

where

K � 2D�221g�aD , (4)

i.e., at a Ginzburg temperatureTG � TMF
c �1 2 jtG j�.

Ginzburg, in his original paper [9], estimatedyD
1 �0�

in three dimensions by an integral
R

d3p��2p�3� p2 1
1� 	 �2p2�21

Rp
0 dp p2�� p2 1 1� 	 1�4p, and as-

sumed l � 1, which lead tojtGj 	 �g�a3�2�8p2. In
“old-fashioned” type-II superconductors,jtGj can be as
small as 1028 [12], which explains why conventional
superconductors are well described by mean-field theory.
In modern high-Tc superconductors, on the other hand,
Ginzburg’s estimate leads tojtG j 	 0.01 [13], such that
critical exponents become observable.

For D . 4, the right-hand side in (1) decreases when
approaching the critical point, so only mean-field behavior
is observed. IfD � 4 2 ´ lies only slightly below 4,
the right-hand side of (3) behaves likejtj2´�2, implying
a good mean-field description untiljtj is extremely small.

The derivation of the new criterion is based on the ob-
servation that the kinetic term defines a second, completely
independent, energy scale of the system. For its identifica-
tion, we split the fields according to size and direction in
O�N� field space asfA � fnA, n2

A � 1. The directions
nA describe the long-range fluctuations of the Goldstone
modes. Sufficiently far from the critical regime, we may
neglect the gradient term of the sizef�x�, and approxi-
mate the energy density by

´�f, ≠nA� �
1

2aD

Ω
a2a2f2�x� �≠nA�x��2

1 tf2�x� 1
g
2

f4�x�
æ

.

The fluctuations of the Goldstone modes are controlled by
the gradient term whose magnitude depends on the sizeF
of f at the minimum of the potential. The gradient energy
density is

´nA�≠nA� �
b

2jD22
l

�≠nA�x��2 , (5)

with

b � b�F� � a2�jl�a�D22F2 � aDlD22��2jtj�D�222g .

This is the second energy scale. It measures how much
energy is spent when reversing the direction vectornA over
the distancejl, and is called thestiffnessof the directional
field.

From studies of O�N�-symmetric classical Heisenberg
models it is known that directional fluctuations disorder
a system if the bending stiffness drops below a certain
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critical valuebcr . For largeN, this value can easily be
estimated by a simple manipulation of the functional inte-
gral for the partition function associated with the energy
(5). It may be written as [14]

ZnA �
Z

DnA Dle2�b�2jD22�
R

dDx
�≠nA�x��21l�x� �n2
A�x�21�� ,

where the unit length ofnA�x� is enforced by a Lagrange
multiplier field l�x�. Integrating out thenA�x� fields leaves
us with a purel�x�-field theory, with an energy functional

E�l� �
N
2

Tr log�2≠2 1 l�x�� 2
b

2jD22

Z
dDx l�x� .

(6)

For largeN , the fluctuations of thel field are frozen, and
the disordered state has an energy density given by the ex-
tremum of (6), wherel�x� is a constant satisfying the gap
equationb � bl � NyD

l �0�. The order is destroyed at a
critical stiffness atbcr � b0. On a simple cubic lattice,
we find in three, four, and large-D dimensions [11]:

bcr � NyD
0 �0� 	 N0.2527, N0.1549, N�2D , (7)

respectively. Formula (7) is reliable only for largeN .
However, Monte Carlo simulations show that the critical
value (7) can be trusted already forD � 3 andN � 2 to
within about 10%, where simulations yieldbMC

cr 	 0.45
(see [15]), in good agreement with the value 0.5054
from (7). The simulations are done by putting the
Heisenberg model on a lattice of unit spacing, so that
the energy density forN � 2 takes theXY model form
´nA�≠nA� 	 b

P
m�1, ..., D�1 2 cos=mg�x��, where =i

denotes the lattice gradient in theith coordinate direction,
and g � arctann2�n1. Since the quality of the approxi-
mation increases withN and D, we can trust Eq. (7) to
within 10% for all N andD $ 3. This accuracy will be
sufficient for the criterion to be derived here.

The critical stiffness can, incidentally, be also estimated
by calculating its renormalized version from a sum of
an infinite number of terms in a perturbation expansion.
Expanding the cosine into a Taylor series, and calculat-
ing the harmonic expectation values of quartic, sextic,
etc., terms, we find in a self-consistent approximation of
the Hartree-Fock-Bogoliubov type that the stiffness has a
renormalized value [16]bR � be21�2DbR . This softens
with increasing temperature1�b, until b reaches a critical
valuebcr � e�2D, wherebR drops to zero (see Fig. 1).
In D � 3 dimensions, this happens atbcr � 0.4530, . . ., a
value which is in excellent agreement with the Monte Carlo
numberbMC

cr 	 0.45. The prediction of such sharp drop
is true only in two dimensions, as shown by Kosterlitz and
Thouless [17]. ForD . 2 it is an artifact of the approxi-
mations, and the truers goes to zero likejTc 2 T j�D22�n,
with a critical exponentn 	 1�2 1 �4 2 D��10 1 . . ..

The estimate for the critical stiffness (7) leads now di-
rectly to the announced criterion: The phase fluctuations
will disorder the system if the stiffnessb in Eq. (5) drops

FIG. 1. Softening of the stiffness of theXY model derived
from a self-consistent approximationà la Hartree-Fock-
Bogoliubov. The dashed curve shows the mean-field approxi-
mation given by rs � a2�4D2b2, b � aI0�a��2DI1�a�
�In�a� � modified Bessel functions� which goes to zero line-
arly in jtj. The exact stiffness goes to zero likejTc 2 T j�D22�n ,
with the critical exponentn (	0.6705 for D � 3 [2]).

below the critical value (7), which happens at a reduced
temperature

jtK j 	 �NKyD
0 �0��lD22�2��42D�, D , 4, N $ 2 .

(8)
Thus we obtain the important result that

jtK j 	 �Ny0�0��yD
l2 �0��2��42D�jtGj, D , 4, N $ 2 .

(9)

This implies that for all systems withN $ 2, directional
fluctuations destroy the orderbeforesize fluctuations be-
come large. They cause a phase transition below the Ginz-
burg temperature, atTK � TMF

c �1 2 jtK j�. For D � 3,
and l � �1, 3�2, 2�, the relation becomes jtj 	
�2.20, 3.48, 5.56�N2jtGj. Thus, if the critical regime
is approached in af4 theory with a well-formed
mean-field regime, the transition isalways initiated by
directional fluctuations. In particular, the estimates for the
critical regime of the high-jTcj superconductors [13] will
receive a factor of	9.

The dominance of directional fluctuations is, of course,
most prominent for the limit of largeN , and it is therefore
not surprising that the critical exponents of thef4 theory
and the Heisenberg model have the same1�N expansions
in any dimensionD . 2, as a pleasant demonstration of
the universality of critical phenomena.

By adding to the field energy densitý �f, ≠nA�
the energy density of directional fluctuations with the
field-dependent stiffness b � b�f� � aDf2lD22�
�2jtj�D�221 we can study, as in Ref. [6], the combined en-
ergy density in the disordered phase where the symmetry
is restored but the averageF of the size of the order field
f in nonzero.

How do we determine experimentally the fluctuation
parameterK to estimatejtGj and jtK j? In magnetic
systems, one measures the susceptibility tensorxAB�k� �R

dDx eikx�fA�x�fB�0�� at wave vectork, and decom-
poses it into parallel and perpendicular parts asxAB�k� �
�FAFB�F2�xk�k� 1 �dAB 2 FAFB�F2�x��k�. The
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mean-field behaviors of these quantities arexk�k� 	
a3��a2a2k2 1 2jtj� and x��k� 	 a3�a2a2k2. Com-
bining these atk � 0 with the mean-field behavior of
the spontaneous magnetizationF �

pjtj�g, and with
the temperature-dependent coherence lengthj, we see
that the size ofK can immediately be estimated from a
plot, versust � T�Tc 2 1, of either of the dimensionless
experimental quantities

Kexp 	 jtj22D�2 k2

jD22

x��k�
kBTF2

Ç
k!0

(10)

or

Kexp 	 jtj22D�2 1
jD

xk�0�
kBTF2 , (11)

these being written down in physical units. Note thatt
measures the temperature distance from the experimental
Tc, in contrast tot � T�TMF

c 2 1. In the mean-field
regime, wheret 	 t, Kexp is constant, and can be inserted
into Eq. (8) to find the temperatureTK where directional
fluctuations destroy the order.

In superfluid helium we may plot, in analogy to the
transverse susceptibility expression forKexp , the quan-
tity Kexp 	 jtj22D�2M2kBT�jD22h̄2rs, whereM is the
atomic mass andrs the superfluid mass density, which
at the mean-field level is defined by writing the gradient
energy (5) as� rs�2kBT � �h̄2�M2� �≠nA�x��2. In the criti-
cal regime, the three expressions forKexp go universally
to zero like jtj22D�2, sincej ~ jtj2n , xk�0� 	 jtj�h22�n,
k2x��k�jk!0 	 jtjhn, F2 	 jtjn�D221h�, rs 	 jtj�D22�n ,
with h 	 ��N 1 2��2�N 1 8�2� �4 2 D�2 1 . . ..

Experimentally, the superfluid density of helium for
D � 3 shows no mean-field behaviorà la Ginzburg-
Landau down toT 	 Tc�4, such that the above for-
mulas cannot properly be applied. Let us nevertheless
estimate orders of magnitude of a would-be mean-field
behavior: rs�r 	 2jtj [18], where r � M�a3 is the
total mass density, witha 	 3.59 A [19]. Then the
factor kBTc at Tc � 2.18 K can be expressed as
kBTc 	 2.35h̄2�Ma3 [19]. With j0 	 2 A, we obtain an
estimateK 	 1.2a�j0 	 2. Inserting this into Eq. (8)
and relation (9), we obtain forl � 1 andl � 2

�jtK j, jtGj� 	 �1, 0.12� and �1�4, 0.03� . (12)

The large size ofjtK j reflects the bad quality of a mean-
field description. The largerl gives the more physical
estimate.
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