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Abstract

We present an efficient algorithm for calculating multi-loop Feynman integrals perturbatively. © 2000 Elsevier Science
B.V. All rights reserved.

PACS 03.20.+ i; 04.20.Fy; 02.40.+ m

1. Recently, a new method has been proposed to calculate Feynman integrals of multi-loop diagrams
perturbatively [1]. Together with the solution procedure for graphical recursion relations developed in Ref. [2],
this should ultimately lead to the completely automatized computer generation of perturbation expansions of
field theories up to high orders. Such expansions are needed in al strongly coupled fluctuating field systems, for
example those describing the critical phenomena close to second-order phase transitions (see Ref. [3] and
Addendum [4]). So far, expansions have been limited to seven loops only [5,6], which are barely sufficient to
yield critical exponents [7] with an accuracy comparable to experimental data [8].

In this Letter, we would like to show how the expansions proposed in Ref. [1] can be performed most
efficiently, such that they can be carried out on a computer to high orders in a limited computer time.

2. A basic Feynman integral with L loops, n internal lines, and E external momenta k;, ..., kg hasthe form

d®p, 1

D_ d°py >
Iak_f(Zw)D (2m)° k1:[1(1+qk2)a“' n=b @

with some powers a,, where g, are the momenta carried by the lines, and the integrations run over al loop
momenta p,. The line momenta ¢, are linear combinations of the loop momenta p; and the external momenta
k.

i

* Corresponding author. URL: http: / /www.physik.fu-berlin.de/ ~ kleinert.
E-mail addresses: boris@thphys.uni-heidelberg.de (B. Kastening), kleinert@physik.fu-berlin.de (H. Kleinert).

0375-9601,/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
Pll: S0375-9601(00)00199-7



B. Kastening, H. Kleinert / Physics Letters A 269 (2000) 50-54 51

For simplicity, we have set all masses equa to unity. A Feynman integral with different non-zero masses can
be reduced to (1) by an appropriate rescaling of the line momenta q,. Following Ref. [1], we view the integral
(1) as a special case I, =1,(1) of the function

eak(k— Dag

d®p, d°p. I
12(k) = 5 2
() f(277') (277) 1:[ (1+qu) 2

to be calculated perturbatively via a Taylor series expansions in powers of «.
It is the purpose of this Letter to point out that the simplest way to derive such an expansion is by rewriting
each generalized propagator in the Schwinger parametric form

ek = 1)’
(1+ qu) F(a)

Then the integras (2) take the form

fdtta lg-tdak—1)- Kt]q (3)

1 1 % d®p, d®p,
| = .. dt tal le=ti ... dt. t gt [ — ...
ak(K) I—v(al) F( n)[ 1 /;) n- n v/‘(2’77_)D '/(ZW)D

xexp{ - kil[ak(l— K) + Ktk]qf}. (4)
Collecting the L loop momenta p; and the E externa momenta k; in single vector symbols
P=(Py---.P), k=(kq ... kg), (5)
we rewrite
> [a(1— k) + kt] o =3p"Mp+p'M'k + 3k'M"k (6)
k=1

and complete the sgquares to
n
Y [a(1—«) + ct]g2=3(p+M IM'K) M(p+ M IM'K) + 2k(M” = MM~ IM")K, (7)
k=1

with symmetric matrices M and M”. After a shift p—>p—M"*M’k of integration variables, the p,
integrations become Gaussian, and we obtain

o 1
Iak(K) - I'(ay) -

al_l_l .. * an_l_n 1), T "no__ 1Taa—1pp7
F(n)fdtlt t [Odtt e hexp(— 3K'(M” — MM~ IM")k)

del dP® PL o TP
ATl rmh

(ZW)—LD/Z
T T(a) I (ay)

exp( —3k"(M” = M'"M~'M") k)
(detm)"/?

)

fdtltal le 1-~f:dtnt§"’1e’t

(8)
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where the matrices M, M’, and M" depend on « and the t, through linear combinations
c(k.t) =a(l—«k) + kt,. (9)

Although the entries of the matrix M depend on the routing of the loop momenta through the different lines, the
determinant of M is invariant under changes of the routing, except for trivial relabelings of the a,.

In order to derive the desired expansion of IaDk(K) in powers of k, we expand the integrand on the right hand
side of (8) in powers of «, whose coefficients are polynomials in the parameters t; (i=1,...,L). The
t;-integrals can then all be performed using the formula

fmdme*t=r(y+ 1). (10)
0

For diagrams without external momenta, appearing in the perturbation expansions for the ground state of
quantum field theories, (8) simplifies to

] ) (zﬂ)—LD/z
()= Tay - I'(ay)

[odtytptes - [ dt, ti e (detM) 2 (11)
0 0

More general Feynman integrals than those in Eqg. (1) may contain loop momenta p, in the numerator of the
integrand. These can be calculated with a simple extension of the above technique, by introducing *‘source
terms’ Y1_, j, - p; into the exponents of (2) and (3), and appropriately differentiate the resulting «-expansion
with respect to j;, which are set equal to zero at the end.

3. As afirst example, take the exactly solvable one-loop integral

ID=f d°p 1 _ r'(a—D/2) (12)
ol @em® @)’ (m)°r(a)
Its k-generalized version can be expressed in terms of a confluent hypergeometric function,
|D(K)Ef de ea(K—l)Pz _ 1 (21+E_a.M)
2 (27T)D (1-|-Kp2)a (47TK)D/2 2’ 2 ' K
1 I'(a—D/2) D L D _a(l—K)
g e Ve AR S
I'(b/2-a) a-D/2 D_a(l—K)
F(D/Z) _K) 1 Fl avl+a_?v B ) (13)
with
Faipiz)= ¥ Lo 2 _ers o Pochhammer’ssymbol 14
1 1(011/3,Z)=k:0(3)kﬁ, (3)5=W—r:0(a+f) (Pochhammer’ssymbol).  (14)

In Ref. [1] this was caculated perturbatively via a Wick expansion. Here we use our general formula (11) for
vacuum integrals. The number of loopsis L = 1, and we identify

0,=p, =8, ¢ =all-«k)+kt, M=2(c,), detM=2c,. (15)
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Expanding (detM)~°/2 in powers of «, and performing the resulting integrals over t in Eqg. (11), we find
directly the perturbation expansion for the loop integrals (12) in any dimension D:

12 ()
1 D(2+D)x?> D(2+D)(4+D)«? (2+a)D(2+D)(4+ D)(6+D)«*
T @ra?2 | T 8a 242 128a°

_(6+5a)D(2+D)(4+D)(6+D)(8+ D) x>

960 a(k®)|. (16)

The expansion can easily extended any desired order. It agrees, of course, with what we would obtain from the
exact expression (13) via a large-argument expansion of the confluent hypergeometric function.

4. As a nontrivial example, take the integral of the watermelon diagram treated in Ref. [1] only in D=2
dimensions:

@ / dDPl dPp; dPps 1 1 1 1
D(2mP (2m)P 1+pf1+p3l+pil+ (p1+p2+p3)? 17

This integral has the powers
ay=a,=a,=8,=1, (18)
and we identify the line momenta as

=P Q=P Gz=P3, Q=P +P,+0P;, (19)
such that the matrix M is

a +a, a, a,
M=2 a, a+a, a, | (20)
a, a, a;+a,
detM = 8(a, 8,8, + 8,38, + 858, + 8,3858,) . (21)

For the function 12(x), we then obtain in any dimension D

o 9D(2+ D)k? 9D(2+ D)(4+ D)x® 3D(2+ D)(1048 + 522D + 81D?)k*
(k)= 225 30,2 |1 - +
24730/ 32 128 4096

9D(2+ D)(4 + D)(2576 + 918D + 117D?)k® D(2 + D)(564864 + 397744D + 110916D2 + 15228 D3+ 891D %)k ®
- +
40960 65536

3D(2 + D)(4 + D)(29651840 + 15696528D + 3452148 D2 + 391068D° + 19683D %)k’
B 9175040

3D(2 + D)(4 + D)(1419854080 + 843338336D + 212508840D2 + 29562300D 3 + 2344950D* + 85779D %) « 8
+

+@(k9)|.
83886080

(22)
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For D = 1 this reduces to

27k2  135k®  14850k*  O7497«5  3268929x° 63271629k’
1M(k) = o357 |1+ - + - + -
2473/ 32 128 4096 8192 65536 262144
20569248565k & s s
R
16777216 (<) (23)

and for D=2to

15157x® 157293k’
4 8 32 32 64 128

12(k) =

[1 k2  27k3  453k* 16475
2873 B
3720699« 8

1 a(kY)

512 ! (2

thus extending easily the expansions in Ref. [1].
For D = 3, the expansion reads

g . 1352  945k%  150435x%  1206387«°  48595005x° 1079675235k’
= ——5 |1+ - + — + —
(%) =57 57 32 128 4096 8192 65536 262144
432899207685k ® o -
+ .
16777216 («7) (25)

5. Having developed the tools for finding perturbation expansions of Feynman integrals, it remains to study
the large-order behavior, and to find suitable methods for the resummation of the expansions with high
accuracy. Together with the automatized generation of the Feynman diagrams of Ref. [2], this will open the way
for an ‘industrial production’ of high-loop expansions for critical exponents,
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