‘H 30 October 2000

ﬁ PHYSICS LETTERS A

ELSEVIER Physics Letters A 276 (2000) 31-36

www.elsevier.nl/locate/pla

Second topological momeni?) of two closed entangled
polymers

Franco Ferrad, Hagen Kleinert*, Ignazio Lazzizzera

@ Dipartimento di Fisica, Universita di Trento, and INFN, Gruppo Collegato di Trento, I-38050 Povo, Italy
b Institut firr Theoretische Physik, Freie Universitat Berlin, Arnimallee 14, D-14195 Berlin, Germany

Received 8 September 2000; accepted 21 September 2000
Communicated by P.R. Holland

Abstract

We calculate exactly by field theoretical techniques the second topological mamenbf entanglement of two closed
polymersPy and P. This result is used to estimate approximately the mean square average of the linking number of a polymer
P1 in solution with other polymersl 2000 Elsevier Science B.V. All rights reserved.

1. Consider two closed polymei and P, which Py
statistically can be linked with each other any number m !

01_‘ timesm =0, 1, 2, .... The situation is illustrated in P, O
Fig. 1 form = 2. /

An important physical quantity is the probability
distribution of the linking numbem as a function of
the lengths ofP; and P». As afirst step towards finding ~ Fig. 1. Closed polymers;, P, with trajectoriesCy, Cp, respec-
it we calculate, in this Letter, an exact expression for tvely.
the second moment of the distributidm;2).

An approximate result for this quantity was ob-
tained before in Ref. [1] on the basis of a a mean-field
method, considering the density of bond vector®ef
as Gaussian random variables. Such methods are usu

ally quite accurate when a large number of polymers f the © | ‘ ; h h
is involved [2,3]. As an unpleasant feature, however, evance of the two-polymer Systems 1o such systems

they introduce a dependence on the source of Gaussiad’.vasi emphIaS|z;ad]|Jn [41. FOCUS”.‘Q att.ent|o|r|1 U{)hon atpar-
noise, and modify the critical behavior of the system, f'Cu ar mo TCT &, 1’ﬁ°n$ may :maglne all others 1o
whereas topological interactions are not expected to do orm a single long effective moleculey.

that [4,5]. Our Letter goes therefore an important step
beyond this approximation. It treats the two-polymer
problem exactly, and contains an application to the
topological entanglement in diluted solutions. The rel-

2. Let G, (X1, Xx2; L1, Lp) be the configurational
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X2, topologically entangled with a Gaussian linking
numbenn.

The second momerit:2) is defined by the ratio of
integrals [6]

[ d3x1d%x2 [*2°dm mPG(xq, X2; L1, L)

(m2> - +o00
fd?’xld?’xg fioo dm G, (X1, X2; L1, L?)

(1)
The denominator in (1) plays the role of a partition
function:

+o00
ZE/d3X1d3X2 /dm Gm(X1,X2; L1, L2). (2

—00

Due to the translational invariance of the system, the
probabilities depend only on the differences between
the end point coordinates:

Gm(X1,X2; L1, L2) = Gy (X1 — X2; L1, L2). (3

Thus, after a shift of variables, the spatial double
integrals in (1) can be rewritten as

/d3X1 d3x2 G (X1 — X2; L1, L2)

_v / 4% G (X: L1, L2),

whereV denotes the total volume of the system.

3. The most efficient way of describing the statisti-
cal fluctuations of the polymerB; and P, is by two
complex polymer fieldg/{* (x1) andy5?(x2) with ny
andny replicas g1 =1,...,n1, a2 =1,...,n2). At
the end we shall take1, np — 0 to ensure that these
fields describe only one polymer each [7].

For these fields we define an auxiliary probability
G (X1, X2; Z) to find the polymerP; with open ends
atxy, x; and the polymeP, with open ends atp, X5,.
The double vectors; = (x1,x}) and Xz = (x2, x5)
collect initial and final endpoints of the two polymers
Py and P,. Here we follow the approach of Edwards
[8], in which one starts with open polymers with
fixed ends. The case of closed polymers, whare
becomes a true topological number and it is thus
relevant in the present context, is recovered in the
limit of coinciding extrema. We notice that in this way
one introduces in the configurational probability an
artificial dependence on the fixed points and x».
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In physical situations, however, the fluctuations of the
polymers are entirely free. For this reason we have
averaged in (1) over all possible fixed points by means
of the integrations iw/3x1 d3xs.

The auxiliary probabilityG; (X1, X2; 7) is given by
a functional integral [5]

G (X1,%2;2)

. / D(fieldsyy* (x1) ¥, ™

lim

ni,np—

(x1)
X P52 () a2 (xp)e A, (4)

where D(fields) indicates the measure of functional
integration andus, ax are now fixed replica indices.

A = Acs+ Apol is the action governing the fluctua-
tions. It consists of a polymer action

2
Apol=Zfdgx[|5iwi|2+m?|wi|2], (5)
i=1

and a Chern-Simons action to describe the linking
numbenn

Acs= ik / d3x £, AL D, AS. (6)

In Eq. (6) we have omitted a gauge fixing term,
which enforces the Lorentz gauge. The effects of self-
entanglement and of the so-calkedtluded-volumm-
teractions are ignored. The Chern—Simons fields are
coupled to the polymer fields by the covariant deriv-
ativesD! = V + iy;Al, with the coupling constants
y1.2 given by y1 =k, y2 = A. The square masses of
the polymer fields are given bmlz = 2Mz;, where

M = 3/a, with a being the length of the polymer links,
andz; the chemical potentials of the polymers, mea-
sured in units of the temperature. The chemical po-
tentials are conjugate variables to the length parame-
tersLy and L2, respectively. The symbolg; collect

the replicaspi“" of the two polymer fields. Let us note
that in the topological Landau—Ginzburg model (4) the
Chern—Simons fields do not change the critical behav-
ior of the system, as expected.

The parametek is conjugate to the linking num-
ber m. We can therefore calculate the desired prob-
ability G,,(X1,%X2; L1, Lo) from the auxiliary one
Gy (X1, %2; Z) by Laplace integrals ovet = (z1, z1)
and an inverse Fourier transformation oxer



F. Ferrari et al. / Physics Letters A 276 (2000) 31-36

4. Let us use the polymer field theory to calculate whereGo(X;

the partition function (2). It is given by the integral
over the auxiliary probabilities

o0
Mdza Mdzy . 7
Z= /d?’xld?’xz lim o Tl pualataals
xh 17X 21 21
x/2—>>(26‘ 100

+o0o
/dm / dre "™ G (X1, %25 Z). (7)

The integration ovem is trivial and gives 24§(1),
enforcingl = 0, so that

-

c+ioco
Mdzy Mdzo peilitaals

d3x1d3x2 lim .
2mi

x1—>x’l

2mi
) c—ioo

(8)

To calculate G;—o(X1,X2;Z) we observe that the
action.A is quadratic in.. A trivial calculation gives

X G;Lzo()_il, Xo; 2)

Gi=0(X1,%2; 2)

- / D(fieldsie 0w (x1) ¥ (x})

X Y2 (X2)Pa2 (X)), 9)
where
AozAcs+/d3x[|D1w1|2+ Vgl
2
+ Zmﬂwz}. (10)
=1

From Eg. (10) it is clear thaG,—o(X1, X2; Z) is the
product of the configurational probabilities of two
free polymers. In fact, the fieldg,, ¥, are free,
whereas the fields/;, ¥ are apparently not free
because of the couplings with the Chern—Simons fields
through the covariant derivati@!. This is, however,
an illusion: integrating outd, in (9), we find the
flatness conditiom“"ﬁauAL =0. On aflat space with
vanishing boundary conditions at infinity this implies
= 0. As a consequence, the functional integral (9)
factorizes
Go(x1 — X; 21) Go(X2 — X5: 22),
(11)

Gi=0(X1,%2:2) =

33

—X[; z;) are the free correlation functions
of the polymer fields

c+toon
/ p € Gols =X z)

c—ioco

1

o

2

Go(Xi —Xj; Li

M
An L;

3/2
) o~ MOG—X)2/2L;

(12)
Thus we obtain for (8) the integral

Z:2n/d3x1d3xz

X I|m Go(Xl — Xl, Ll)Go( 2 — X2, Lz)
Xl—>X1
/2—>X2

.

yielding the partition function

27'[M3
(4r)
It is important to realize that in Eq. (7) the limits of
coinciding end pointg; — x; and the inverse Laplace
transformations do not commute unless a proper
renormalization scheme is chosen to eliminate the
divergences caused by the insertion of the composite
operatorgy (x)|? and |¥; (x)|2.

(L1l %2 (13)

5. Let us now turn to the numerator in Eq. (1).
Exploiting the identity m2e="* = —32e~"*/g22,
and performing two partial integrations in the same
technique used above to evaluate the partition function
Z yields

N:Kzfd3x1d3x2

c+ioo

ciim [ MM
n3—0 2wi 27
n2—>0c ioo

x /D(fields) exp(—Ao)|1/ff1(X1)|2|¢;2(X2)|2

2

x [(/d3xA1-lIIfVl1/1>
L[ 3 p2p.12
+§ d”x A7 V|
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excluded-volume effects. To be rigorous, we define the
integral (15) on a lattice with spacirig

+ + + Replacing the expectation values by the Wick con-
tractions corresponding to the first diagram in Fig. 2,
we obtain

Fig. 2. Four diagrams contributing in Eq. (14). The lines indicate 4 1
correlation functions of#;-fields. The crossed circles with label VvV M _1/2 _3/2
denote the insertion aff;" (x;)|2. Ni= - (476 (L1Lp)~Y /ds [(1—s5)s]%
0
2 1
Mx2
x |:</d3xA2-11/2*Vl1/2> x /d3x = /d;[(l—z)tﬁ/z
+} / d3x A3|ws|? (14) My? ’
2 2 ' x | d3ye Za@ D | d3x] :
b

whereAg has been defined in (10). In the above equa- . )
tion we have taken the limits of coinciding endpoints The variablescandy have been rescaled with respect
inside the Laplace integral oves, z». This will be to the original ones in order to extract the pehawor of
justified later on the grounds that the potentially dan- V1in L1 andLz. As a consequence, the lattices where
gerous Feynman diagrams containing the insertions of X @ndy are defined have now spacingsy/L1 and
operations like[%;|2 vanish in the limitny, ny — 0. &/+/L2, respectively. The, y integrals may be ex-
The functional integral in Eq. (14) can be calculated Plicitly computed by analytical methods in the phys-

exactly by diagrammatic methods since only four dia- C@llimit L1, L2>> &, in which the above spacings be-
grams shown in Fig. 2 contribute. come small. This has a physical explanation. Indeed,

Only the first diagram in Fig. 2 is divergent from if the polymer lengths are much Iarg_e_rthan the pers_is—
the loop integral formed by two correlation functions t€Nnce Iength,_the effects due to_the finite monomer size
of the vector field. This infinity may be absorbed in the Pecome negligible and can be ignored. _
four-w interaction accounting for the excluded vol-  Finally, itis possible to approximate the integral in
ume effect which we do not consider at the moment. X1 With an integral over a continuous variahleand a
No divergence arises from the insertion of the compos- cutoff in the ultraviolet region:
ite fields|y;" (x;)]2. 00

2 [ do
p?

~

3
d Xi/ |X//|4
6.In this section we evaluate the first term appearing !

in the right hand side of Eq. (14): After these approximations, we obtain

2 c+ioo p J M 12,1
Ny = lim Mdzi Mdz2 15421, Ny=V/r o5 (Lala) /% (16)
4 ny0 2ni 27 ()
1270 c—jco
X /d3x1d3x2/d3x/1d3x§ 7. For the second diagram in Fig. 2 we have to
5 5 calculate
x(lvit o luszo)| e
: aMdz 1
252 202 Nz =«2 lim ——Cettlitle
x (w1l Al)x’l(|‘1/2| Az)x’2>' (15) 2=k g omi 2mi ¢
"27Yc—ioo

There is an ultraviolet-divergence which must be reg-

ularized. This is done by cutting the spatial integrals x /d?’md?’m/d?’x/ld?’% d3x)

off at the persistence length over which a poly- ) )

mer is stiff. This contains the stiffness caused by the X<|¢fl(X1)| |92 (x2) | (A1 - ‘I’fVll’l)X/l
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x (A1 W V), (A§|w2|2)x,2>. (17)

The above amplitude has no ultraviolet divergence,
so that no regularization is required. The Wick con-

tractions pictured in the second Feynman diagrams of

Fig. 2 lead to the integral

t

fdt/C(t, ),

0 (18)

whereC(z, ) is a function independent @f; andL:

1
_ M3
Nz=—4ﬁVL21/2L;1—6/dr
T
0

-3/2

Ct,t)y=[A-nt'(t—1")]
My-x? 2 0
X /d3xd3yd3ze7 211 (V;e_My /2y

X (V)I(Le_MXZ/Z(I_I/))Puv (X, ¥.X),

with Py (X, , ¥, X) = [6,0Z - (Z+ X) — (2 + xX)pzvl/
(1z1%1z+x|3). As in the previous section, the variables
X, Y, Z have been rescaled with respect to the original
ones in order to extract the behavior In. Again,

if L1,L> > & the analytical evaluation o (z, ")
becomes possible, leading to

—1/2, -1
VL, "L

2 1 32k,
(2m)®

No = (29)
where K is the constanttB(3,3) + 3B3. %) -
B(%. 1)+ 3B(3. }) = 197/384~ 0.154, andB(a, b)
is the Beta function. For largk; — oo, this diagram
gives a negligible contribution with respectaq.

The third diagram in Fig. 2 give the same as the
second, except thdt; andL2 are interchangedyz =

N2|L1<—>L2-

8. The fourth Feynman diagram in Fig. 2 has no
ultraviolet divergence. As before, it can be exactly
evaluated apart from the lattice integrations. However,
the behavior of the related Feynman integkal can
be easily estimated in the following limits:

1. L1>>1; L1>> Lo, whereNs oc L7 L,
2. Ly>» 15 Lo>> Ly whereNg o< L, %,
3. L1, Ly 1, Ly/Ly = finite, whereNy o L] /2.

Moreover, if the lengths of the polymers are consid-
erably larger than the persistence length, can be

35

computed in a closed form:

128v M

?W(Lllzz)_l/z

Ny~ —

1 1
x /ds/dt A—sL—1)(sn)Y?
0 0

-1/2

X [L1t(1—s) + L2(1—1)s] (20)

It is simple to check that this expression has exactly
the above behaviors.

9. Collecting all contributions we obtain the result
for the second topological momepi2) = (N1+ No+
N3 + Ng)/Z, with N1, N2, N3, Na, Z given by
Egs. (13), (16), (19), and (20). In all formulas, we
have assumed that the voluvieof the system is much
larger than the size of the volume occupied by a single
polymer, i.e..V > L3.

To discuss the physical content of the above ex-
pression for(m?), we consider a numbey, of poly-
merspa, ..., py, With lengths/y, ..., Iy, in an uni-
form solution. We introduce the polymer concentra-
tion p = M/V as the average mass density of the
polymers per unit volume, wher#1 is the total mass
of the polymersM = Z,&lmalk/a and m, is the
mass of a single monomer of lengthThusly /a is the
number of monomers in the polymgg. The polymer
Py is singled out as anyone of the polymeys say p;,
of lengthL; = I;. The remaining ones are replaced by
a long effective polymeP, of length L, = Zk?é,; Ik.
From the above relations we may also write

aVp

Lo~ .
mg

(21)

In this way, the length of the effective molecuk®

is expressed in terms of physical parameters. Keeping
only the leading terms foV > 1, we find for the
average square number of intersection$)so formed

by P; with the other polymers the approximate result

N1+ N2

2

<m >so|~ 7 > (22)

which, in turn, has the approximate form

<m2> _ap e, _ 2KL1/2 (23)
sol ™ Mgy 2712p02  gAMS3/2 |1
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with K as defined after Eq. (19). This is the announced since there the polymeaP, was considered as a fixed
final result. Since the persistence length is of the same obstacle causing a dependence on the choice of the
order of the monomer lengthandM ~ a~1, (m?) is configuration ofP».

positive for largeL; as it should. Finally, let us emphasize the absence of infrared
divergences in the topological field theory (4) in
the limit of vanishing massesi1,m> = 0. As a
consequence, the second topological moment does not
diverge in the limit of largeL1 if (m?) is calculated
from (4) for polymers passing through two fixed points
X1, X2. This indicates a much stronger reduction of the
configurational fluctuations by topological constraints
than one might have anticipated.

10. In conclusion, we have found an exact field
theoretic formula for the second topological moment
of two polymers. Only the final integrations over the
spatial variables in the Feynman diagrams of Fig. 2
were done approximately. These were defined on a
lattice related to the finite monomer size. Our Chern—
Simons-based theory is free of the shortcomings of
previous mean-field procedures. Our formulafaf)
has been applied to the realistic case of long flexible
polymers in a solution. When the polymer lengths
become large, the Feynman integralsia, ..., Na [1] M.G. Brereton, S. Shah, J. Phys. A: Math. Gen. 13 (1980) 2751.
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