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Abstract

We calculate exactly by field theoretical techniques the second topological moment〈m2〉 of entanglement of two closed
polymersP1 andP2. This result is used to estimate approximately the mean square average of the linking number of a polymer
P1 in solution with other polymers. 2000 Elsevier Science B.V. All rights reserved.

1. Consider two closed polymersP1 andP2 which
statistically can be linked with each other any number
of timesm= 0,1,2, . . . . The situation is illustrated in
Fig. 1 form= 2.

An important physical quantity is the probability
distribution of the linking numberm as a function of
the lengths ofP1 andP2. As a first step towards finding
it we calculate, in this Letter, an exact expression for
the second moment of the distribution,〈m2〉.

An approximate result for this quantity was ob-
tained before in Ref. [1] on the basis of a a mean-field
method, considering the density of bond vectors ofP2
as Gaussian random variables. Such methods are usu-
ally quite accurate when a large number of polymers
is involved [2,3]. As an unpleasant feature, however,
they introduce a dependence on the source of Gaussian
noise, and modify the critical behavior of the system,
whereas topological interactions are not expected to do
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Fig. 1. Closed polymersP1, P2 with trajectoriesC1, C2, respec-
tively.

that [4,5]. Our Letter goes therefore an important step
beyond this approximation. It treats the two-polymer
problem exactly, and contains an application to the
topological entanglement in diluted solutions. The rel-
evance of the two-polymer systems to such systems
was emphasized in [1]. Focusing attention upon a par-
ticular molecule,P1, one may imagine all others to
form a single long effective moleculeP2.

2. Let Gm(x1,x2;L1,L2) be the configurational
probability to find the polymerP1 of lengthL1 with
fixed coinciding end points atx1 and the polymer
P2 of lengthL2 with fixed coinciding end points at
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x2, topologically entangled with a Gaussian linking
numberm.

The second moment〈m2〉 is defined by the ratio of
integrals [6]

(1)

〈
m2〉= ∫ d3x1d

3x2
∫ +∞
−∞ dm m2Gm(x1,x2;L1,L2)∫

d3x1d3x2
∫ +∞
−∞ dmGm(x1,x2;L1,L2)

.

The denominator in (1) plays the role of a partition
function:

(2)Z ≡
∫
d3x1d

3x2

+∞∫
−∞

dmGm(x1,x2;L1,L2).

Due to the translational invariance of the system, the
probabilities depend only on the differences between
the end point coordinates:

(3)Gm(x1,x2;L1,L2)=Gm(x1− x2;L1,L2).

Thus, after a shift of variables, the spatial double
integrals in (1) can be rewritten as∫
d3x1d

3x2Gm(x1− x2;L1,L2)

= V
∫
d3x Gm(x;L1,L2),

whereV denotes the total volume of the system.

3. The most efficient way of describing the statisti-
cal fluctuations of the polymersP1 andP2 is by two
complex polymer fieldsψa1

1 (x1) andψa2
2 (x2) with n1

and n2 replicas (a1 = 1, . . . , n1, a2 = 1, . . . , n2). At
the end we shall taken1, n2→ 0 to ensure that these
fields describe only one polymer each [7].

For these fields we define an auxiliary probability
Gλ(Ex1, Ex2; Ez ) to find the polymerP1 with open ends
at x1,x′1 and the polymerP2 with open ends atx2,x′2.
The double vectorsEx1 ≡ (x1,x′1) and Ex2 ≡ (x2,x′2)
collect initial and final endpoints of the two polymers
P1 andP2. Here we follow the approach of Edwards
[8], in which one starts with open polymers with
fixed ends. The case of closed polymers, wherem

becomes a true topological number and it is thus
relevant in the present context, is recovered in the
limit of coinciding extrema. We notice that in this way
one introduces in the configurational probability an
artificial dependence on the fixed pointsx1 and x2.

In physical situations, however, the fluctuations of the
polymers are entirely free. For this reason we have
averaged in (1) over all possible fixed points by means
of the integrations ind3x1d

3x2.
The auxiliary probabilityGλ(Ex1, Ex2; Ez ) is given by

a functional integral [5]

Gλ(Ex1, Ex2; Ez )
= lim
n1,n2→0

∫
D(fields)ψa1

1 (x1)ψ
∗a1
1

(
x′1
)

(4)×ψa2
2 (x2)ψ

∗a2
2

(
x′2
)
e−A,

whereD(fields) indicates the measure of functional
integration anda1, a2 are now fixed replica indices.
A = ACS+Apol is the action governing the fluctua-
tions. It consists of a polymer action

(5)Apol=
2∑
i=1

∫
d3x

[∣∣SDiΨi∣∣2+m2
i |Ψi |2

]
,

and a Chern–Simons action to describe the linking
numberm

(6)ACS= iκ
∫
d3x εµνρA

µ
1 ∂νA

ρ
2 .

In Eq. (6) we have omitted a gauge fixing term,
which enforces the Lorentz gauge. The effects of self-
entanglement and of the so-calledexcluded-volumein-
teractions are ignored. The Chern–Simons fields are
coupled to the polymer fields by the covariant deriv-
ativesDi = ∇ + iγiAi , with the coupling constants
γ1,2 given byγ1 = κ , γ2 = λ. The square masses of
the polymer fields are given bym2

i = 2Mzi , where
M = 3/a, with a being the length of the polymer links,
andzi the chemical potentials of the polymers, mea-
sured in units of the temperature. The chemical po-
tentials are conjugate variables to the length parame-
tersL1 andL2, respectively. The symbolsΨi collect
the replicasψaii of the two polymer fields. Let us note
that in the topological Landau–Ginzburg model (4) the
Chern–Simons fields do not change the critical behav-
ior of the system, as expected.

The parameterλ is conjugate to the linking num-
berm. We can therefore calculate the desired prob-
ability Gm(Ex1, Ex2;L1,L2) from the auxiliary one
Gλ(Ex1, Ex2; Ez ) by Laplace integrals overEz = (z1, z1)

and an inverse Fourier transformation overλ.
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4. Let us use the polymer field theory to calculate
the partition function (2). It is given by the integral
over the auxiliary probabilities

Z =
∫
d3x1d

3x2 lim
x′1→x1
x′2→x2

c+∞∫
c−i∞

M dz1

2πi

M dz2

2πi
ez1L1+z2L2

(7)×
+∞∫
−∞

dm

+∞∫
−∞

dλe−imλGλ
(Ex1, Ex2; Ez

)
.

The integration overm is trivial and gives 2πδ(λ),
enforcingλ= 0, so that

Z =
∫
d3x1d

3x2 lim
x1→x′1
x′2→x2

c+i∞∫
c−i∞

M dz1

2πi

M dz2

2πi
ez1L1+z2L2

(8)×Gλ=0
(Ex1, Ex2; Ez

)
.

To calculateGλ=0(Ex1, Ex2; Ez ) we observe that the
actionA is quadratic inλ. A trivial calculation gives

Gλ=0
(Ex1, Ex2; Ez

)= ∫ D(fields)e−A0ψ
a1
1 (x1)ψ

∗a1
1

(
x′1
)

(9)×ψa2
2 (x2)ψ

a2
2 (x

′),

where

A0≡ACS+
∫
d3x

[
|D1Ψ1|2+ |∇Ψ2|2

(10)+
2∑
i=1

m2
i |Ψi |2

]
.

From Eq. (10) it is clear thatGλ=0(Ex1, Ex2; Ez ) is the
product of the configurational probabilities of two
free polymers. In fact, the fieldsΨ2, Ψ ∗2 are free,
whereas the fieldsΨ1, Ψ ∗1 are apparently not free
because of the couplings with the Chern–Simons fields
through the covariant derivativeD1. This is, however,
an illusion: integrating outAµ2 in (9), we find the
flatness condition:εµνρ∂νAiµ = 0. On a flat space with
vanishing boundary conditions at infinity this implies
A
µ
1 = 0. As a consequence, the functional integral (9)

factorizes

(11)

Gλ=0
(Ex1, Ex2; Ez

)=G0
(
x1− x′1; z1

)
G0
(
x2− x′2; z2

)
,

whereG0(xi−x′i; zi) are the free correlation functions
of the polymer fields

G0
(
xi − x′i;Li

)= c+i∞∫
c−i∞

M dzi

2πi
eziLiG0

(
xi − x′i; zi

)

(12)

= 1

2

(
M

4πLi

)3/2

e−M(xi−x′i )2/2Li .

Thus we obtain for (8) the integral

Z = 2π
∫
d3x1d

3x2

× lim
x′1→x1
x′2→x2

G0
(
x1− x′1;L1

)
G0
(
x2− x′2;L2

)
,

yielding the partition function

(13)Z = 2πM3V 2

(4π)3
(L1L2)

−3/2.

It is important to realize that in Eq. (7) the limits of
coinciding end pointsx′i→ xi and the inverse Laplace
transformations do not commute unless a proper
renormalization scheme is chosen to eliminate the
divergences caused by the insertion of the composite
operators|ψaii (x)|2 and|Ψi(x)|2.

5. Let us now turn to the numerator in Eq. (1).
Exploiting the identitym2e−imλ = −∂2e−imλ/∂λ2,
and performing two partial integrations inλ, the same
technique used above to evaluate the partition function
Z yields

N = κ2
∫
d3x1d

3x2

× lim
n1→0
n2→0

c+i∞∫
c−i∞

M dz1

2πi

M dz2

2πi
ez1L1+z2L2

×
∫
D(fields)exp(−A0)

∣∣ψa1
1 (x1)

∣∣2∣∣ψa2
2 (x2)

∣∣2
×
[(∫

d3xA1 ·Ψ ∗1∇Ψ1

)2

+ 1

2

∫
d3xA2

1 |Ψ1|2
]
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Fig. 2. Four diagrams contributing in Eq. (14). The lines indicate
correlation functions ofΨi -fields. The crossed circles with labeli
denote the insertion of|ψaii (xi )|2.

×
[(∫

d3xA2 ·Ψ ∗2∇Ψ2

)2

(14)+ 1

2

∫
d3xA2

2|Ψ2|2
]
,

whereA0 has been defined in (10). In the above equa-
tion we have taken the limits of coinciding endpoints
inside the Laplace integral overz1, z2. This will be
justified later on the grounds that the potentially dan-
gerous Feynman diagrams containing the insertions of
operations like|Ψi |2 vanish in the limitn1, n2→ 0.
The functional integral in Eq. (14) can be calculated
exactly by diagrammatic methods since only four dia-
grams shown in Fig. 2 contribute.

Only the first diagram in Fig. 2 is divergent from
the loop integral formed by two correlation functions
of the vector field. This infinity may be absorbed in the
four-Ψ interaction accounting for the excluded vol-
ume effect which we do not consider at the moment.
No divergence arises from the insertion of the compos-
ite fields|ψaii (xi )|2.

6. In this section we evaluate the first term appearing
in the right hand side of Eq. (14):

N1= κ
2

4
lim
n1→0
n2→0

c+i∞∫
c−i∞

M dz1

2πi

M dz2

2πi
ez1L1+z2L2

×
∫
d3x1d

3x2

∫
d3x ′1d3x ′2

×
〈∣∣ψa1

1 (x1)
∣∣2∣∣ψa2

2 (x2)
∣∣2

(15)× (|Ψ1|2A2
1

)
x′1

(|Ψ2|2A2
2

)
x′2

〉
.

There is an ultraviolet-divergence which must be reg-
ularized. This is done by cutting the spatial integrals
off at the persistence lengthξ over which a poly-
mer is stiff. This contains the stiffness caused by the

excluded-volume effects. To be rigorous, we define the
integral (15) on a lattice with spacingξ .

Replacing the expectation values by the Wick con-
tractions corresponding to the first diagram in Fig. 2,
we obtain

N1= V

4π

M4

(4π)6
(L1L2)

−1/2

1∫
0

ds [(1− s)s]−3/2

×
∫
d3x e

− Mx2
2s(1−s)

1∫
0

dt [(1− t)t]−3/2

×
∫
d3y e

− My2

2t (1−t)
∫
d3x ′′1

1

|x′′1|4
.

The variablesx andy have been rescaled with respect
to the original ones in order to extract the behavior of
N1 in L1 andL2. As a consequence, the lattices where
x and y are defined have now spacingsξ/

√
L1 and

ξ/
√
L2, respectively. Thex, y integrals may be ex-

plicitly computed by analytical methods in the phys-
ical limit L1,L2� ξ , in which the above spacings be-
come small. This has a physical explanation. Indeed,
if the polymer lengths are much larger than the persis-
tence length, the effects due to the finite monomer size
become negligible and can be ignored.

Finally, it is possible to approximate the integral in
x′′1 with an integral over a continuous variableρ and a
cutoff in the ultraviolet region:∫
d3x ′′1

1

|x′′1|4
∼ 4π2

∞∫
ξ

dρ

ρ2 .

After these approximations, we obtain

(16)N1= V√π M

(4π)3
(L1L2)

−1/2ξ−1.

7. For the second diagram in Fig. 2 we have to
calculate

N2= κ2 lim
n1→0
n2→0

c+i∞∫
c−i∞

M dz1

2πi

M dz2

2πi
ez1L1+z2L2

×
∫
d3x1d

3x2

∫
d3x ′1d3x ′′1 d3x ′2

×
〈∣∣ψa1

1 (x1)
∣∣2∣∣ψa2

2 (x2)
∣∣2(A1 ·Ψ ∗1∇Ψ1

)
x′1
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(17)× (A1 ·Ψ ∗1∇Ψ1
)
x′′1

(
A2

2|Ψ2|2
)
x′2

〉
.

The above amplitude has no ultraviolet divergence,
so that no regularization is required. The Wick con-
tractions pictured in the second Feynman diagrams of
Fig. 2 lead to the integral

(18)

N2=−4
√

2VL−1/2
2 L−1

1
M3

π6

1∫
0

dt

t∫
0

dt ′C(t, t ′),

whereC(t, t ′) is a function independent ofL1 andL2:

C(t, t ′)= [(1− t)t ′(t − t ′ )]−3/2

×
∫
d3x d3y d3ze

−M(y−x)2

2(1−t)
(∇νy e−My2/2t ′)

× (∇µx e−Mx2/2(t−t ′))Pµν(x,y,x),
with Pµν(x, ,y,x) ≡ [δµνz · (z+ x) − (z + x)µzν]/
(|z|3|z+ x|3). As in the previous section, the variables
x, y, z have been rescaled with respect to the original
ones in order to extract the behavior inL1. Again,
if L1,L2 � ξ the analytical evaluation ofC(t, t ′)
becomes possible, leading to

(19)N2=−VL
−1/2
2 L−1

1

(2π)6
M3/24K,

where K is the constant16B(
3
2,

1
2) + 1

2B(
5
2,

1
2) −

B(7
2,

1
2)+ 1

3B(
9
2,

1
2)= 19π/384≈ 0.154, andB(a, b)

is the Beta function. For largeL1→∞, this diagram
gives a negligible contribution with respect toN1.

The third diagram in Fig. 2 give the same as the
second, except thatL1 andL2 are interchanged:N3=
N2|L1↔L2.

8. The fourth Feynman diagram in Fig. 2 has no
ultraviolet divergence. As before, it can be exactly
evaluated apart from the lattice integrations. However,
the behavior of the related Feynman integralN4 can
be easily estimated in the following limits:

1. L1� 1;L1� L2, whereN4∝L−1
1 ,

2. L2� 1;L2� L1 whereN4∝ L−1
2 ,

3. L1,L2� 1,L2/L1= finite, whereN4∝L−3/2
1 .

Moreover, if the lengths of the polymers are consid-
erably larger than the persistence length,N4 can be

computed in a closed form:

N4≈−128V

π5

M

π3/2
(L1L2)

−1/2

×
1∫

0

ds

1∫
0

dt (1− s)(1− t)(st)1/2

(20)× [L1t (1− s)+L2(1− t)s
]−1/2

.

It is simple to check that this expression has exactly
the above behaviors.

9. Collecting all contributions we obtain the result
for the second topological moment〈m2〉 = (N1+N2+
N3 + N4)/Z, with N1, N2, N3, N4, Z given by
Eqs. (13), (16), (19), and (20). In all formulas, we
have assumed that the volumeV of the system is much
larger than the size of the volume occupied by a single
polymer, i.e.,V � L3

1.
To discuss the physical content of the above ex-

pression for〈m2〉, we consider a numberNp of poly-
mersp1, . . . , pNp with lengthsl1, . . . , lNp in an uni-
form solution. We introduce the polymer concentra-
tion ρ =M/V as the average mass density of the
polymers per unit volume, whereM is the total mass

of the polymersM =∑Np
k=1malk/a andma is the

mass of a single monomer of lengtha. Thuslk/a is the
number of monomers in the polymerpk . The polymer
P1 is singled out as anyone of the polymerspk , saypk̄ ,
of lengthL1= lk̄ . The remaining ones are replaced by
a long effective polymerP2 of lengthL2 =∑k 6=k̄ lk .
From the above relations we may also write

(21)L2≈ aVρ
ma

.

In this way, the length of the effective moleculeP2
is expressed in terms of physical parameters. Keeping
only the leading terms forV � 1, we find for the
average square number of intersections〈m2〉sol formed
by P1 with the other polymers the approximate result

(22)
〈
m2〉

sol≈
N1+N2

Z
,

which, in turn, has the approximate form

(23)
〈
m2〉

sol=
aρ

ma

[
ξ−1L1

2π1/2M2
− 2KL1/2

1

π4M3/2

]
,
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withK as defined after Eq. (19). This is the announced
final result. Since the persistence length is of the same
order of the monomer lengtha andM ∼ a−1, 〈m2〉 is
positive for largeL1 as it should.

10. In conclusion, we have found an exact field
theoretic formula for the second topological moment
of two polymers. Only the final integrations over the
spatial variables in the Feynman diagrams of Fig. 2
were done approximately. These were defined on a
lattice related to the finite monomer size. Our Chern–
Simons-based theory is free of the shortcomings of
previous mean-field procedures. Our formula for〈m2〉
has been applied to the realistic case of long flexible
polymers in a solution. When the polymer lengths
become large, the Feynman integrals inN1, . . . ,N4
can be evaluated analytically. In this way we have been
able to derive the result (23) for the average square
number of intersections formed by a polymerP1 with
all the others. This calculation isexact in the long-
polymer limit. The corrections to (23) are suppressed
by further inverse square roots of the polymer lengths.

To leading order inL1, our result (23) agrees with
that of [9], but our exact subleading correction go
beyond the approximation of [9]. Note that there is
no direct comparison of our result with that of [6],

since there the polymerP2 was considered as a fixed
obstacle causing a dependence on the choice of the
configuration ofP2.

Finally, let us emphasize the absence of infrared
divergences in the topological field theory (4) in
the limit of vanishing massesm1,m2 = 0. As a
consequence, the second topological moment does not
diverge in the limit of largeL1 if 〈m2〉 is calculated
from (4) for polymers passing through two fixed points
x1, x2. This indicates a much stronger reduction of the
configurational fluctuations by topological constraints
than one might have anticipated.
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