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Phases of a stack of membranes in a large number of dimensions of configuration space
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The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical
harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low
temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the
vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical
temperature is determined as a function of the interlayer separationl.
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I. INTRODUCTION

Under suitable conditions, lipid membranes in aqueo
solution are known to form lamellar structures, characteri
by a parallel arrangement of the membranes alternating
thin layers of water.1 The existence of such structures is
contrast to the behavior of a single tensionless membr
subject to thermal fluctuations, which is always in a dis
dered, crumpled phase, filling the embedding sp
completely.2 In a stack, this phase is suppressed by the st
repulsion between the membranes which prevents them f
passing through each other,1 thus constraining the amplitud
of the height fluctuations of each membrane to be less t
the distance to its nearest neighbors.

Recently, a model for a finite stack of tensionless me
branes was studied with respect to the effects of higher-o
terms of the curvature energy.3 As in previous studies,1 the
steric repulsion between the layers was replaced with an
monic interaction potential. The approach was perturbat
using the renormalization group to sum infinitely ma
terms. It was shown that thermal fluctuations induce
melting of the stack into a vertically disordered phase. By
nature, the perturbative expansion was able to give a s
factory description only for the ordered phase.

For a description of the disordered phase and a be
understanding of the entire transition, we analyze in this
per the behavior of a stack of tensionless membranes ex
for very large dimensiond of the embedding space. Since th
model is exactly solvable in this limit, we can calculate all
relevant properties explicitly, in particular, its comple
phase diagram as a function of the interlayer separationl.

II. THE MODEL

As in Ref. 3, we consider a model in which a multilay
system is made up of (N11) fluid membranes, parallel to
the xy plane of a Cartesian coordinate system, separate
distancel. If the vertical displacement of themth membrane
with respect to this reference plane is described by a func
um(x)[u(x' ,ml), wherex'5(x,y), the energy of the stack
reads

E5(
m

E d2x'AgmF1

2
k0Hm

2 1
B0

2l
~um2um21!2G . ~1!
0163-1829/2001/63~20!/205414~7!/$20.00 63 2054
s
d
th

ne
-
e
ic
m

n

-
er

r-
e,

e
s
is-

er
-
tly

a

n

Here, Hm5]aNm,i is the mean curvature, whereNm
}(2]1um ,2]2um ,1) is the unit normal to themth mem-
brane, and

gm,i j 5d i j 1] ium] jum ~2!

the induced metric, withi , j 51,2, ]15]/]x,]25]/]y and
gm5det@gm,i j #. The parameterk0 is the bending rigidity of a
single membrane, andB0 the compressibility of the stack. In
Eq. ~1!, as in the following, the subscript 0 denotes ba
quantities, whereas renormalized parameters will carry
subscript.

For slow spatial variations, the discrete variableml may
be replaced with a continuous one, andu(x' ,ml)→u(x),
wherex5(x' ,z). In this limit, the energy~1! reduces to

E5E
0

L i
dzE d2x'AgF1

2
K0H21

1

2
B0~]zu!2G . ~3!

Here we have introduced the bulk version of the bend
rigidity K0[k0 / l , and definedL i[Nl. The gradient energy
(]zu)2 has the unphysical feature that it givesz-dependent
reparametrizations a kinetic energy. It should therefore
replaced by the normal gradient energy (N•“u)2. We have
seen in Ref. 3 that this changes the critical exponent w
which the renormalizedB vanishes as the bending rigidit
becomes critical. However, in the limit of larged, which we
are going to investigate, the difference between the two g
dient energies will be negligible.

III. LARGE- d ANALYSIS

For arbitraryd, the vertical displacement of themth mem-
brane in the stack becomes a (d22)-vector fieldum(x').

A. Partition function and the energy

It is useful to considergi j as an independent field,4 and
impose relation~2! with help of a Lagrange multiplierl i j .
We write the partition function as a functional integral ov
all possible configurationsum(x') of the individual mem-
branes in the stack, as well as over all possible metricsgm,i j .
After taking again the continuum limit, the partition functio
reads
©2001 The American Physical Society14-1
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Z5E Dg Dl Due2E0 /kBT, ~4!

with

E05E dz d2x'AgH s01
1

2
B0~]zu!21

1

2
K0~]k

2u!2

1
1

2
K0l i j ~d i j 1] iu] ju2gi j !2

1

4
t0l i i

2 J , ~5!

where u is a (d22)-dimensional vector function ofx' ,z.
Note that the functional integral overl in Eq. ~4! has to be
performed along the imaginary axis to result in ad function.
We have also introduced a term proportional tol i i

2 . This
term is necessary to renormalize the theory, and its co
cient t0 corresponds to the large-d in-plane compressibility
of the membranes. Since we take the membranes to be
compressible, we shall set the renormalizedt equal to zero at
the end of our calculations. We have also included a surf
tensions0, again to absorb infinities and to be set equal
zero after renormalization.

The functional integral overu in Eq. ~4! is Gaussian and
can be carried out to yield an effective energy

Eeff5Ẽ01E1 , ~6!

with

Ẽ05E dz d2x'AgFs01
1

2
K0l i j ~d i j 2gi j !2

1

4
t0l i i

2 G
~7!

and

E15
d22

2
kBT Tr ln@B0v21K0~q'

4 2qil
i j qj !#, ~8!

where the functional trace Tr is here an integral over spac
well as the integral over wave vectorsq' andv, after replac-
ing ]z

2→2v2 andgi j ] i] i→2q2. Note that the discrete na
ture of the stack restricts the integral over the wave vectorv
to the first Brillouin zoneuvu,p/ l .

In the large-d limit, the partition function~4! is dominated
by the saddle point of the effective energy~6! with respect to
the metricgi j and the Lagrange multiplierl i j . For very large
membranes, the saddle point can be assumed to be sym
ric and homogeneous:5–7

gi j 5%0d i j ; l i j 5l0gi j 5
l0

%0
d i j , ~9!

with constant%0 and l0. At the saddle point the effective
energy~6! becomes the free energy of the system.

In the following we shall investigate both, the case of
infinite and a finite stack of membranes. As we will see,
large-d approximation allows for the vertical melting even
an infinite stack, which is not found perturbatively.1
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fi-

in-

ce
o

as

et-

e

B. Infinite stack

Let us first analyze the case of an infinite stack. To si
plify our calculations, we assume the numberN11 of mem-
branes in the stack to be very large, making the distanl
between them very small. In this regime, we may extend
limits 6p/ l of the integral overv to infinity. The explicit l
dependence will be introduced later into our calculations

After evaluating the functional trace in Eq.~8!, we obtain

E15
dkBT

2 E dzd2x'%0AK0

B0
H L4

8p
1

l0

8p
L2

1
l0

2

64p F122 lnS 4L2

l0
D G J , ~10!

where ultraviolet divergences are regularized by introduc
a sharp transverse wave vector cutoffL andd22 has been
replaced byd for larged.

We may now absorb the first term in Eq.~10! by renor-
malizing s0, so that

s5s01
dkBT

16p
AK0

B0
L4 ~11!

is the physical surface tension, which is set equal to ze
The second, quadratically divergent term in Eq.~10! is used
to define the critical temperature as

1

Tc
[

dkB

16p

L2

ABK
. ~12!

The next divergent term, proportional tol0
2, is regularized by

introducing a renormalization scalem and modifying the in-
plane compressibility to

t5t01
dkBT

32p
AK0

B0
lnS 4e21/2

L2

m2D . ~13!

The physical in-plane compressibilityt is now set equal to
zero, as explained in the previous section.

The effective energy thus becomes

Eeff5E dz d2x'Kl%H S 1

%
21D1

T

Tc

1
aT

AK
lF lnS l

l̄
D 2

1

2G J , ~14!

with the constantsa[dkB/64pAB, l̄[m2e21/2.
From the second derivative matrix ofEeff with respect to

% and l we find that the stability of the saddle point
guaranteed only forl,l̄.

Extremizing the above expression with respect to%, we
find two solutions forl, namely,l50 andl5l` , with

l`F lnS l`

l̄
D 2

1

2G5
AK

a S 1

T
2

1

Tc
D . ~15!
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PHASES OF A STACK OF MEMBRANES IN A LARGE . . . PHYSICAL REVIEW B 63 205414
For T,Tc , this equation has no solution forl` . In this
case, the only possible solution isl50, which corresponds
to the ordered phase as we shall verify later. ForT.Tc , the
saddle point lies atl5l` , which is now well defined. This
is the vertically disordered phase.

The free-energy density at the extremum is given by

f 5Kl` ~16!

and its behavior is similar to the one found perturbatively
Ref. 3 ~see Fig. 1!.

Extremizing the effective energy~14! with respect tol,
we find% as a function of temperature. ForT,Tc it is given
by

%2
21512

T

Tc
. ~17!

This asT approachesTc from below, indicating the vertica
melting atTc . In the disordered phase,% is found to be

%1
215

T

T c
212

al`T

AK
. ~18!

As T approachesTc from above,l` tends to zero, and%
goes again to infinity.

The positivity of % and the stability of the saddle poin
imply that there is a maximum temperature given by

1

Tmax
5

1

Tc
2

al̄

AK
, ~19!

below which our assumption that the membranes in the s
are in-plane incompressible does not lead to a stable sys

C. Finite stack of many membranes

Let us now analyze the case of a finite stack of sizeL i .
Now the functional trace in Eq.~8! involves a sum over the
discrete wave vectorsvn , given by

FIG. 1. Free-energy density of an infinite stack of membran
The dashed curve indicates the unphysical branch of the solutio
Eq. ~15!.
20541
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vn5
2p

L i
n, n50,61,62, . . . . ~20!

For smalll0, a series expansion leads to

E15E dz d2s
dkBT

2
%0e1 , ~21!

with

e15
L4

8p
AK0

B0
2

p

12
AB0

K0

1

L i
2

1
l0

8p
AK0

B0
L2

1
l0

4pL i
lnS L'

2

L i
AB0

K0
D

1
l0

2

64p
AK0

B0
F322g12 lnS l0

8pL2

L'
2

L i
AB0

K0
D G

1Ap (
m53

`
~21!m11l0

m

m 22mpm
L i

m22S K0

B0
D (m21)/2

3

GS m21

2 D
GS m

2 D z~m21!. ~22!

As in the case of the infinite stack, we absorb the logarithm
divergence by renormalizing the in-plane compressibility
Eq. ~13!, settingt equal to zero for incompressible mem
branes. The surface tension receives now anL i-dependent
renormalization

s5s01
dkBT

16p
AK0

B0
L42dkBT

p

24
AB0

K0

1

L i
2

, ~23!

and s is again set equal to zero to describe a stack of t
sionless membranes.

Extremization of the renormalized combined effective a
tions ~7! and ~21! with respect to% leads again to two pos
sible solutions for the saddle point, namely,l50 or l
5lL i

, with

lL iF lnS lL i

l̄
D 2

1

2G1lL iF12g1 lnS L'
2

L i

1

8p
AB

K D G
132p3/2(

m53

` ~21!m11lL i

m21

m 22mpm
L i

m22S K

BD (m22)/2

3

GS m21

2 D
GS m

2 D z~m21!5
AK

a S 1

T
2

1

TL i
D , ~24!

where

s.
of
4-3
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1

TL i

5
1

Tc
1

dkB

8p

1

KL i
lnS L'

2

L i
AB

K D ~25!

is the inverse critical temperature for a stack of sizeL i .
For T,TL i

, Eq. ~24! has no solution. In this case, th
stack is in the ordered phase, the only available solution
the saddle point beingl50. ForT.TL i

, there exists a non

zero solutionlL i
, where the system is in the vertically dis

ordered phase.
Let us now examine the saddle point solutions for%. In

the vertically disordered phase wherel5lL i
is nonzero, we

may expand the effective energy in a small-L i series. Ex-
tremization with respect tolL i

leads to

%1
215

T

TL i

212
alL i

T

AK
2

dkBT

2K
Ap (

m53

` ~21!m11lL i

m21

22mpm

3S 12
2

mDL i
m22S K

BD (m21)/2GS m21

2 D
GS m

2 D z~m21!.

~26!

The positivity of% and the stability of the saddle point aga
define a maximal temperature, given by

1

Tmax
L i

5
1

Tmax
2

dkBT

16pKL i
lnS 16p

dkBTc

ABK

l̄
D , ~27!

above which our assumption that the membranes in the s
are in-plane incompressible cannot be maintained.

In the ordered phase, the situation is more delicate.
l50, % can be calculated exactly, and we obtain

%2
21512

dkBT

8pKL i
lnF sinhS 8pKL i

dkBTc
D

L i

2L'
2
AK

B
G , ~28!

with an infrared regulatorL' equal to the inverse lateral siz
of the membranes in the stack. If the sizeL i of the stack is
large, Eq.~28! may be approximated by

%2
21'12

T

TL i

. ~29!

For smaller stacks, however, the positivity of% is not guar-
anteed. For a fixed, but small stack sizeL i , and for fixed
lateral sizeL' of the membranes in the stack, there is
characteristic temperature defined by

T* 5
8pKL i

dkB ln~16pABKL'
2 /dkBTc!

, ~30!

above which%2 changes sign, and Eq.~28! is no longer
applicable. Interestingly, for allL' and for all finite sizesL i
20541
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of the stack, the critical temperatureTL i
is lower thanT* , so

that the vertical melting still occurs. The behavior of% is
depicted in Fig. 2.

Note that Eq.~30! reflects the existence of a characteris
horizontal length scale. At fixed temperatureTL i

,T,T* ,

and for membranes of lateral sizeL' smaller than

Lp5L21 expS 4pKL i

dkBT D , ~31!

the height fluctuations of the individual membranes are
strong enough to destroy the ordered phase. The charac
tic length Lp corresponds to the de Gennes–Taupin per
tence lengthjp ~Ref. 8! of the individual membranes, below
which crumpled membranes appear flat.

D. Finite number of membranes

Until now we have performed our calculations in th
somewhat unphysical continuum approximation, by letti
the interlayer separationl be very small making the numbe
of membranes in the stack very large. Let us now investig
the properties of the stack for a fixed numberN11 of mem-
branes at a finite interlayer distancel.

For this purpose, we replace the continuum derivative]z
2

in the z direction with the discrete gradient operator¹2,
whose eigenvalues are given by

¹2g5
2~12cosvnl !

l 2
g, ~32!

whereg is some test function. The discrete wave vectorsvn
are now given by

vn5
np

Nl
, n51,2, . . . ,N. ~33!

For small-interlayer separationl, the free energy is given by
Eq. ~21! with

FIG. 2. Behavior of%21 as a function ofT. The solid lines
indicate the solutions of the saddle point for%21 for a finite stack.
Above TL i

, %21 is given by Eq.~26!, and belowTL i
by Eq. ~28!.

The dashed lines indicate the behavior of%21 for an infinite stack.
4-4
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e15
L4

8p
AK0

B0
1

1

Nl2
AB0

K0
1

l0

8p
AK0

B0
L2

1
l0

4pNl F2 ln N12N lnS lAK0

B0
L2D G

1
l0

2

64p
AK0

B0
F122 lnS 4L2

l0
D G

1
1

NAp
(

m52

`
~21!m11l0

m

m 2(3m11)/2
l m22

3S K0

B0
D (m21)/2GS m21

2 D
GS m

2 D z̄N~m21!, ~34!

where we have defined the modified zeta function

z̄N~m!5 (
n51

N
1

F12cosS np

N D Gm/2 . ~35!

We proceed by renormalizing the in-plane compressibi
via Eq.~13!, settingt equal to zero for incompressible mem
branes as before. The surface tension receives anl-dependent
renormalization

s5s01
dkBT

16p
AK0

B0
L42

dkBT

2Nl2
AB0

K0
~36!

ands is set equal to zero to describe a stack of tension
membranes, as before. But now the bulk bending rigidity
also modified to

K5K02
dkBT

4p l
ln

L2

m2
. ~37!

Note that this renormalization agrees with the known res
for a single membrane.9

The saddle point forl is now given byl50 or l5l l ,
with

l lF lnS l l

l̄
D 2

1

2G132Ap (
m52

`
~21!m11l l

m21

m 2(3m11)/2
l m22

3S K

BD (m22)/2GS m21

2 D
GS m

2 D z̄N~m21!5
AK

a S 1

T
2

1

Tl
D

~38!

where

1

Tl
5

1

Tc
1

dkB

8pNk H 2 ln N12NF lnS lAK

B
l̄ D 1

1

2G J
~39!
20541
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is the inversel-dependent critical temperature, andk is the
bending rigidity of a single membrane in the stack. The t
solutions forl again imply the existence of two differen
phases, with a phase transition at the critical temperatureTl ,
which, as in the perturbative case, depends only weakly
the number of membranes in the stack. The correspond
solutions for%, obtained by extremizing the effective energ
with respect tol, are given by

%2
21512

T

Tl
, ~40!

for T,Tl , that is, in the ordered phase, and

%1
215

T

Tl
212

al lT

AK
2

dkBT

2ApNK

3 (
m52

`
~21!m11l l

m21

2(3m11)/2 S 12
2

mD

3 l m22S K

BD (m21)/2GS m21

2 D
GS m

2 D z̄N~m21!, ~41!

in the vertically molten phase, whereT.Tl .
The stability of the saddle point requires a minimum i

terlayer separation

l min5m22AB

K
N1/2N expS 4pk

dkBTc
D ~42!

below which the stack becomes unstable.l min is inversely
proportional to de Genne’s penetration depthAK/B,10 which
is of the order of the interlayer separation in smectic liqu
crystals.

The phase diagram of the stack is depicted in Fig. 3.

E. Properties of the phases

Let us now characterize both phases in more detail.
temperatures lower thanTl , the solution of the saddle poin
is l50. This corresponds to the ordered phase. Here,
structure factor

FIG. 3. Qualitative phase diagram in thel 3T plane. The critical
line is plotted forl . l min , for a fixed numberN11 of membranes
in the stack. Asl increases, the critical temperatureTl goes asymp-
totically to zero.
4-5
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Sn~x!5^exp$ inq0@u~x!2u~0!#%&, ~43!

for coherent scattering on the plane surfaces with momen
transfernq052pn/ l , behaves like

Sn~x' ,z!5H z2n2h for x'50

ux'u22n2h for z50.
~44!

This correlation function can be directly observed in x-r
scattering experiments, as half-widths at half-maximum
the anomalous Bragg peaks. As in smectic-A liquid
crystals,11,12 the exponenth is given by

h5
kBT

8p

q0
2

ABK
. ~45!

The algebraic singularities in Eq.~44! reflect the quasi-long-
range periodic order along the stack axis. This order ma
fests itself also in the orientational correlation function of t
membranes. In the limitN→`,l→0, with constantNl
5L i , we find

^] iu~x' ,z!] ju~x'8 ,z!&;
d i j

ux'2x'8 u3
. ~46!

This slow, algebraic fall-off of the correlation function im
plies that, at large distances, the normal vectors to the m
branes remain roughly parallel, so that the surfaces rem
flat on the average. The effect of thermal fluctuations is s
pressed, and they do not disorder the stack.

For temperatures higher thanTl , there is a nonzero solu
tion of the saddle point,l5l l . This corresponds to the dis
ordered phase. In this phase, the structure factorSn(x) be-
haves, forz50, like

Sn~x' ,0!5exp~22n2hlux'u2!, ~47!

revealing the absence of periodic order along thez axis. In
this phase, the normals to the membranes are uncorre
beyond a length scalel l

21/2, as can be derived from th
expression for the orientational correlation function, whi
in the limit N→`,l→0 with constantNl5L i reads

^] iu~x' ,z!] ju~x'8 ,z!&;d i j exp~2Al l ux'2x'8 u!. ~48!

The length scalel l
21/2 may thus be identified with the per

sistence lengthjp .13 We note that our model allows th
membranes to interpenetrate in the disordered phase,
consequence of their harmonic interaction potential in
vertical direction, which underestimates the effect of t
steric repulsion between them.

Our system is very similar to a smectic-A liquid crystal,
which consists of vertically oriented rodlike molecules la
ered along thez axis. Experimentally, the spontaneously br
ken translational symmetry along this axis and the sponta
ously broken rotational symmetry in the layers are resto
in a two-step melting process. In the first transition, wh
can be of first or second order, the smectic melts via dis
cation loop unbinding into a translationally disordered ne
atic. In the second, which is always first order, the orien
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tions of the molecules in the nematic become disordered
yield a fully isotropic liquid. If we try to interpret our mode
as a smectic-A liquid crystal, we see that our vertical meltin
transition is analogous to the smectic-to-nematic one. T
physical mechanism by which our transition takes pla
however, is quite different from the dislocation loop unbin
ing of the defect model. Our membranes cannot split to fo
dislocations. Instead, they become rough~see Fig. 4!. This is
similar to the two possible ways of representing the sup
fluid transition in helium: in a defect model, it is explaine
by a proliferation of vortex lines, whereas in the complexf4

theory by a roughening of the order field.
Our model does not contain any information about t

orientation of the molecules, and is thus unable to desc
the second transition. The molecules may be imagined
being attached to the surface in the vertical direction. T
normal vectors to the layered membranes have no relatio
the molecule orientation — they are purely a geometri
property of the surfaces. A nematic phase similar to the
predicted by us was found in Ref. 14. There, the auth
consider not a stack of membranes, but an open-memb
system where the topology is allowed to vary.

Let us now calculate the entropy loss in the order
phase. By a simple scaling argument,1 this quantity is in-
versely proportional to the quadratic interlayer spacing

2TDS5
a

l 2
, ~49!

wherea is a temperature-dependent proportionality consta
Explicitly, it is given by the difference between the fre
energy density of a single, isolated membrane, and the f
energy density of the stack. For small values ofl, it is given
by

2TDS5
1

2
AB

KS 11cot
p

4ND 1

Nl2
2

l

2p l S 12 ln
l l

2
AK

BD
1

l

2pNl (
n51

N

ln sin
np

2N
. ~50!

The ordered phase corresponds tol50. In that case, Eq.
~50! agrees with Eq.~49!, and we see no correction to th
entropy loss. If the size of the membranes in the stack
smaller than the characteristic lengthLp , an ordered phase

FIG. 4. Interpretation of the vertical melting of the stack as
smectic-to-nematic phase transition.~a! Smectic-A layers atT50,
~b! layers at 0,T,Tl : still smectic,~c! interpenetrating rough lay-
ers atT.Tl : nematic.
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still exists for small values ofl @see discussion after Eq
~31!#, in which case the corrections to the first term in E
~50! will appear.

IV. CONCLUSIONS

In the limit of large-embedding dimensiond, we have
shown that a stack of tensionless and incompressible m
20541
.

m-

branes melts vertically upon approaching a critical tempe
ture, where the lamellar phase goes over into a disorde
phase. In contrast to the low-temperature ordered ph
where the decay of orientational correlations is powerli
the high-temperature disordered phase is characterized b
exponential decay of orientational correlations, with differe
length scales in the transversal and longitudinal direction
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