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Phases of a stack of membranes in a large number of dimensions of configuration space
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The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical
harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low
temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the
vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical
temperature is determined as a function of the interlayer sepatation
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[. INTRODUCTION Here, H,=d,Ny; is the mean curvature, wherél
(= d1Umy,— doUy,1) is the unit normal to thenth mem-
Under suitable conditions, lipid membranes in aqueousrane, and

solution are known to form lamellar structures, characterized
by a parallel arrangement of the membranes alternating with Imij = 8ij + i UmdjUn 2)
thin layers of watet. The existence of such structures is in '
contrast to the behavior of a single tensionless membrange induced metric, with,j=1,2, 3,=d/dx,d,=dldy and
subject to thermal fluctuations, which is always in a disor-g —defg,, 1. The parametex, is the bending rigidity of a
dered, crumpled phase, filing the embedding spacgingle membrane, ari8l, the compressibility of the stack. In
completely? In a stack, this phase is suppressed by the sterigq. (1), as in the following, the subscript O denotes bare

repulsion between the membranes which prevents them fromantities, whereas renormalized parameters will carry no
passing through each othethus constraining the amplitude subscript.

of the height fluctuations of each membrane to be less than gy sjow spatial variations, the discrete variabié may
e P ot tensioless mem %, 712620 Wil & coninuos one, aut, ) ()
branes waBSI studied with respect to the effects of higher-ordg}/herex (x.,2). In this fimit, the energy(1) reduces to
terms of the curvature energyAs in previous studie$ the L
steric repulsion between the layers was replaced with an har- E= f ”dzf d?x, \g
monic interaction potential. The approach was perturbative, 0
using the renormalization group to sum infinitely many
terms. It was shown that thermal fluctuations induce theHere we have introduced the bulk version of the bending
melting of the stack into a vertically disordered phase. By itsrigidity Ko=«,/I, and definedj=NI. The gradient energy
nature, the perturbative expansion was able to give a sati§s,u)? has the unphysical feature that it giveslependent
factory description only for the ordered phase. reparametrizations a kinetic energy. It should therefore be
For a description of the disordered phase and a betteeplaced by the normal gradient enerdy- ¥ u)?. We have
understanding of the entire transition, we analyze in this paseen in Ref. 3 that this changes the critical exponent with
per the behavior of a stack of tensionless membranes exactlyhich the renormalized® vanishes as the bending rigidity
for very large dimensiod of the embedding space. Since the becomes critical. However, in the limit of large which we
model is exactly solvable in this limit, we can calculate all itsare going to investigate, the difference between the two gra-
relevant properties explicitly, in particular, its complete dient energies will be negligible.
phase diagram as a function of the interlayer separation

1 2 1 2
EKOH +§Bo(ﬁzu) . 3

Ill. LARGE- d ANALYSIS

Il THE MODEL For arbitraryd, the vertical displacement of thieth mem-

As in Ref. 3, we consider a model in which a multilayer brane in the stack becomes @ 2)-vector fieldug,(x,).
system is made up ofN+1) fluid membranes, parallel to
the xy plane of a Cartesian coordinate system, separated a
distancdl. If the vertical displacement of thmth membrane
with respect to this reference plane is described by a function It is useful to consideg;; as an independent fiefdand
um()()zu()(L ,m|), Wherexl:()(,y), the energy of the stack impose relatior(Z) with help of a Lagrange multlplle)\” .
reads We write the partition function as a functional integral over

all possible configurationsi,(x,) of the individual mem-
1 5 branes in the stack, as well as over all possible megics .
0 : . ) - " .
EKonnJF ﬁ(um_ un 2. @ ,rb\ef;edrstaklng again the continuum limit, the partition function

A. Partition function and the energy

e-3> jdle@
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B. Infinite stack

_ —Eg/kgT
z f Dg DA Due ’ “) Let us first analyze the case of an infinite stack. To sim-

plify our calculations, we assume the numbét 1 of mem-
branes in the stack to be very large, making the distdnce
between them very small. In this regime, we may extend the
limits = 77/l of the integral ovew to infinity. The explicitl
dependence will be introduced later into our calculations.
After evaluating the functional trace in E(), we obtain

with

1 2 1 2,12
0'0+§BO(¢9ZU) +§K0((9ku)

Eozf dz x, \g

2

1 . 1
+EKQ)\”(ﬁij‘Fﬁiuaju_gij)_Z’To)\ﬁ , (5) dkBT KO A4 )\0
E]_: 2 JdZdZXJ_QO B—[g‘l'@[\z
whereu is a (d—2)-dimensional vector function of, ,z. 0
Note that the functional integral ovarin Eg. (4) has to be 5 4A2
performed along the imaginary axis to result i éunction. tean 172 |”<)\_)” (10
We have also introduced a term proportional)\tﬁ). This 0
term is necessary to renormalize the theory, and its coeffiwhere ultraviolet divergences are regularized by introducing
cient 7, corresponds to the largkin-plane compressibility @ sharp transverse wave vector cutaffandd—2 has been
of the membranes. Since we take the membranes to be iieplaced byd for larged.
compressible, we shall set the renormalizestjual to zero at We may now absorb the first term in EQLO) by renor-
the end of our calculations. We have also included a surfac@alizing o, so that
tensionag, again to absorb infinities and to be set equal to
zero after renormalization. 3 dkBT\/K\O 4
The functional integral oveu in Eq. (4) is Gaussian and T=00t Tar B_OA (1D
can be carried out to yield an effective energy

is the physical surface tension, which is set equal to zero.
The second, quadratically divergent term in EtD) is used

Eer=Eo+Ey, 6) to define the critical temperature as
with 1 dkg A?
=t (12)
T. 167 [BK

10 1.,
oot 5 KA (8= 8ij) — 770Aii

E0=f dz x, \g

The next divergent term, proportional )té, is regularized by

™ introducing a renormalization scale and modifying the in-
and plane compressibility to
d-2 N B dkeT [Kq _1/2/\2
Ei=— keT Trin[Bow?+Ko(a! —aiXq))],  (8) T=Tot 55— \/B_Oln 4e 2] (13

where the functional trace Tr is here an integral over space akhe physical in-plane compressibilityis now set equal to
well as the integral over wave vectays andw, after replac-  Zero, as explained in the previous section.

ing 92— — ? andg'! 4;9,— — g2 Note that the discrete na-  The effective energy thus becomes

ture of the stack restricts the integral over the wave veabors

to the first Brillouin zongw|</l. B 1 T
In the larges limit, the partition function(4) is dominated Berr= f dz dZXiK)\Q| (E -1 Te
by the saddle point of the effective ener@) with respect to
the metricg;; and the Lagrange multiplier”. For very large aT N1
membranes, the saddle point can be assumed to be symmet- + \/_R)\ In T 3| ( (14)
ric and homogeneous:’

N with the constanta=dkg/64m\B, \=pu2e 12
_ . ii—y il — 0 dij From the second derivative matrix By with respect to
i =006 ; ANl=Aggl=—0", 9 - - ff S
9ii = €od%i od 0 © e and \ we find that the stability of the saddle point is
guaranteed only fok <.
Extremizing the above expression with respecptowe
find two solutions forA, namely,A =0 and\ =\, with

i)

with constanto, and \y. At the saddle point the effective
energy(6) becomes the free energy of the system.

In the following we shall investigate both, the case of an
infinite and a finite stack of membranes. As we will see, the
larged approximation allows for the vertical melting even in -
an infinite stack, which is not found perturbativély.

(15
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FIG. 1. Free-energy density of an infinite stack of membranes.

The dashed curve indicates the unphysical branch of the solution of

Eq. (15).

For T<T,, this equation has no solution far, . In this
case, the only possible solution)s=0, which corresponds
to the ordered phase as we shall verify later. ForT., the
saddle point lies ak=\,,, which is now well defined. This
is the vertically disordered phase.

The free-energy density at the extremum is given by

f=KA\, (16)

and its behavior is similar to the one found perturbatively in
Ref. 3(see Fig. L

Extremizing the effective energild) with respect to,
we find ¢ as a function of temperature. FOK T, it is given

by

T
=1

T 7

0
This asT approached . from below, indicating the vertical
melting atT,. In the disordered phase, is found to be

(18)

As T approached ; from above,\.,
goes again to infinity.

The positivity of o and the stability of the saddle point
imply that there is a maximum temperature given by

tends to zero, an@®

an

\/_E’

1 1

Te

(19

Tmax

2
@p=7-N =0,x1,+2,.... (20)
I
For small\, a series expansion leads to
dkgT
El—f dz dZO' ZB ©o€1, (21)
with
_A4 /Ko /Bo o Ko,
e1=—\/g5 — A
8w Bo KoL‘ 8w BO
A L2 /B
+ o in| 2
4ol \ L VK
¥ Ao L2 /Bo
+% 3 2'}’+2|n( A2 L” -
* 1)m+1)\o . KO (m-1)/2
+\/—2:3 m22m m LH (B_O
m—l)
2

As in the case of the infinite stack, we absorb the logarithmic
divergence by renormalizing the in-plane compressibility via
Eqg. (13), setting 7 equal to zero for incompressible mem-
branes. The surface tension receives nowlgidlependent
renormalization

o d kBT .
0=00+ 15 A —d kBT e @
[

and o is again set equal to zero to describe a stack of ten-
sionless membranes.

Extremization of the renormalized combined effective ac-
tions (7) and(21) with respect tog leads again to two pos-
sible solutions for the saddle point, namely=0 or X

R
(- )(mzwz

+ 32773’22
m=3

Lfl

H 8

1

)‘Ln 2

K

-2
ML

m+1

m 22mﬂ_m

below which our assumption that the membranes in the stack

are in-plane incompressible does not lead to a stable system.

C. Finite stack of many membranes

Let us now analyze the case of a finite stack of dize
Now the functional trace in Eq8) involves a sum over the
discrete wave vectors,, given by

m—1

r
X——

|

2
f(m-1)=
2

T T,_H 24

sl

r

where
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1 _1 dg 1 Lf\/ﬁ
T, To 87 KLy ", VK

is the inverse critical temperature for a stack of dize
For T<TL|, Eqg. (24) has no solution. In this case, the

stack is in the ordered phase, the only available solution for
the saddle point being=0. ForT> TL”, there exists a non-

zero solution)\,_”, where the system is in the vertically dis-
ordered phase. T, T T. T

(25

Let us now examine the saddle point solutions gorin . i . o
the Vertica”y disordered phase wheve: )\LH is nonzero, we FIG. 2. Behavior OfQ as a function ofT. The solid lines

indicate the solutions of the saddle point @r? for a finite stack.
Above TLH’ o !is given by Eq.(26), and beIowTL” by Eq. (29).
The dashed lines indicate the behaviorgof! for an infinite stack.

may expand the effective energy in a snigllseries. Ex-
tremization with respect t(hLH leads to

T ary T dkgT — & (—1)r‘”+1)\'|11”_1

-1_ ' N of the stack, the critical temperatufg, is lower thanT*, so
Q+ T 1 2K T 2m_m . . . I . .
L VK m=3 27N that the vertical melting still occurs. The behavior @fis
1 depicted in Fig. 2.
. /2F( m ) Note that Eq(30) reflects the existence of a characteristic
« 1_3)Lm—2(5)(m ) 2 f(m=1) horizontal length scale. At fixed temperatufg <T<T*,
m) | B I m ' and for membranes of lateral sike smaller than
2
26 47KL
(26) Lp=A—1exp(—k '), (3D)
The positivity ofg and the stability of the saddle point again dkgT

define a maximal temperature, given by
the height fluctuations of the individual membranes are not
167 BK strong enough to destroy the ordered phase. The characteris-
dkeTe x| @7 i length L, corresponds to the de Gennes—Taupin persis-
tence lengthé, (Ref. 8 of the individual membranes, below

above which our assumption that the membranes in the staskhich crumpled membranes appear flat.
are in-plane incompressible cannot be maintained.

In the ordered phase, the situation is more delicate. For
A=0, ¢ can be calculated exactly, and we obtain

1 1 dkeT
= — n

L

T Trax 16mKL

D. Finite number of membranes

Until now we have performed our calculations in the

[ 87KL, somewhat unphysical continuum approximation, by letting
B dksT | 2™\ dkgT, the interlayer separationbe very small making the number
o_"=1- 87KL n ) (28) of membranes in the stack very large. Let us now investigate
I i\/E the properties of the stack for a fixed numbet 1 of mem-
2Lf B branes at a finite interlayer distanke

For this purpose, we replace the continuum deriva,ﬂﬁle
in the z direction with the discrete gradient operator,
whose eigenvalues are given by

with an infrared regulatok ;, equal to the inverse lateral size
of the membranes in the stack. If the sizeof the stack is
large, EqQ.(28) may be approximated by

“1._q_ 2(1—cosw,l)
e_"~1 TLH' (29 V9= — g, (32
For smaller stacks, however, the positivity @fis not guar-
anteed. For a fixed, but small stack sizg, and for fixed whereg is some test function. The discrete wave vectogs
lateral sizeL, of the membranes in the stack, there is aare now given by
characteristic temperature defined by

8mKL

_ wy=——, n=12...N. (33
dkg IN(167VBKL?/dkgTo)

*

(30

above whichg _ changes sign, and E@28) is no longer For small-interlayer separatidnthe free energy is given by
applicable. Interestingly, for all, and for all finite sized.| Eqg. (21 with
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A* Ko 1 [Bo Ny [K
R _0+ N _0+ _O _OAZ T
v BO N|2 KO 8w BO
0
_ + 2
27N InN 2NIn(I\/BOA ”

A3 o1 o1 4A?
* 64r BO o

1 % (_l)m+l)\0m o

+

Disordered phase

1

+ N \/; &y i oGmr e FIG. 3. Qualitative phase diagram in the T plane. The critical
line is plotted forl >1,,,, for a fixed numbeN+1 of membranes
m—1 in the stack. Ad increases, the critical temperatufggoes asymp-
Ko (m—1)/2 ( )_ totically to zero.
X(-) —7——{n(m—1), 34 : .
Bo (T) is the inversd-dependent critical temperature, ards the

bending rigidity of a single membrane in the stack. The two
solutions for\ again imply the existence of two different
phases, with a phase transition at the critical temperature

2

where we have defined the modified zeta function

N 1 which, as in the perturbative case, depends only weakly on
n(m=> 7 (35)  the number of membranes in the stack. The corresponding
=1 1-co na solutions forg, obtained by extremizing the effective energy
N with respect ton, are given by
We proceed by renormalizing the in-plane compressibility 1 T
via Eq.(13), settingr equal to zero for incompressible mem- e"=1- f (40)
branes as before. The surface tension receivésiapendent o
renormalization for T<T,, that is, in the ordered phase, and
ST fRoyo_ T fBo i T AT dkeT
7= 167 VBN oniz 39 Y VK 2yaNK
ando is set equal to zero to describe a stack of tensionless Zo (=Mt 2
membranes, as before. But now the bulk bending rigidity is X 22 T o6mnz |t m
also modified to m=
m—1
2 -
K=Ko— —(ZkBITInA—Z. (37) -2 K ("“‘”’zr( 2 )— N
L) X B —mZN(m— ), (41
Note that this renormalization agrees with the known result r 2
for a single membrane. . .
The saddle point fok is now given byA=0 or A=\, in the vertlc_a_lly molten phase, w_he?l'e>T|_. - .
with The stability of the saddle point requires a minimum in-
terlayer separation
)\I ( 1)m+1)\
N Inf=|—%|+32 —I”"2 - B 4mx
! ( A ) \/— E:2 m 2(3m+1)/2 Imin: m 2 \/;Nl/zN eX% dkBTc (42)
m—1 below which the stack becomes unstalilg,, is inversely
K\ (m=2)/2 —_ VK1 1 proportional to de Genne’s penetration degty/B,'° which
B m ¢n(m—-1)= alT T is of the order of the interlayer separation in smectic liquid
(5) crystals.
The phase diagram of the stack is depicted in Fig. 3.
(38)
where E. Properties of the phases
Let us now characterize both phases in more detail. For
i_ 1 dkg _inN+oninl | \/Ef N 1 temperatures lower thafy , the solution of the saddle point
T 87-rN B 2 is A=0. This corresponds to the ordered phase. Here, the

(39 structure factor
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Sn(x)=(exp{ingg[u(x) —u(0)]}), (43 e *—0\'\5/0’
for coherent scattering on the plane surfaces with momentum 4 "’W V
transferngy=2mn/lI, behaves like - AN
z7n%n for x, =0 -
Sh(x,2)= (44) @ (b) ©

|X¢|_2n27’ for z=0. ] ] ]
FIG. 4. Interpretation of the vertical melting of the stack as a

This correlation function can be directly observed in x-raysmectic-to-nematic phase transitida) SmecticA layers atT=0,
scattering experiments, as half-widths at half-maximum of(b) layers at 8<T<T, : still smectic,(c) interpenetrating rough lay-
the anomalous Bragg peaks. As in smedicliquid  ers atT>T,: nematic.
crystalst*2the exponent; is given by
tions of the molecules in the nematic become disordered to
kgT q% yield a fully isotropic liquid. If we try to interpret our model
[y JBK’ (45 as a smectic liquid crystal, we see that our vertical melting
transition is analogous to the smectic-to-nematic one. The
The algebraic singularities in E€44) reflect the quasi-long- physical mechanism by which our transition takes place,
range periodic order along the stack axis. This order manihowever, is quite different from the dislocation loop unbind-
fests itself also in the orientational correlation function of theing of the defect model. Our membranes cannot split to form
membranes. In the limitN—o,|—0, with constantNI dislocations. Instead, they become roudgee Fig. 4. This is
=Ly, we find similar to the two possible ways of representing the super-
fluid transition in helium: in a defect model, it is explained
) i by a proliferation of vortex lines, whereas in the compdk
(FU(X,,2)FU(X] ,2))~ ———. (46)  theory by a roughening of the order field.
%, =] Our model does not contain any information about the
This slow, algebraic fall-off of the correlation function im- orientation of the molecules, and is thus unable to describe
plies that, at large distances, the normal vectors to the menthe second transition. The molecules may be imagined as
branes remain roughly parallel, so that the surfaces remaipeing attached to the surface in the vertical direction. The
flat on the average. The effect of thermal fluctuations is suppormal vectors to the layered membranes have no relation to
pressed, and they do not disorder the stack. the molecule orientation — they are purely a geometrical
For temperatures higher thdn, there is a nonzero solu- property of the surfaces. A nematic phase similar to the one

tion of the saddle poin, =\, . This corresponds to the dis- Ppredicted by us was found in Ref. 14. There, the authors
ordered phase. In this phase, the structure fag{¢x) be-  consider not a stack of membranes, but an open-membrane

haves, forz=0, like system where the topology is allowed to vary.
Let us now calculate the entropy loss in the ordered
S\(x, ,0)=exp —2n%yA|x,|?), (47 phase. By a simple scaling argumérthis quantity is in-

. - _ versely proportional to the quadratic interlayer spacin
revealing the absence of periodic order along zteis. In Y prop q yer spacing

this phase, the normals to the membranes are uncorrelated
beyond a length scala; *?, as can be derived from the
expression for the orientational correlation function, which
in the limit N—oo,| —0 with constaniNI=L reads

a
~TAS= =, (49)

, , wherea is a temperature-dependent proportionality constant.
(du(x, 2)3u(x] ,2))~Syexp(—Nilx, —x[]). (48 Explicitly, it is given by the difference between the free-
~1/2 energy density of a single, isolated membrane, and the free-

The length scale\, ““ may thus be identified with the per- . o
sistence Iengt}‘fp.m We note that our model allows the €N€rgy density of the stack. For small values\oft is given
membranes to interpenetrate in the disordered phase, as ]
consequence of their harmonic interaction potential in the
vertical direction, which underestimates the effect of the 1\/§ m| 1 N Y \/R
steric repulsion between them. o —TAS=5V\¢ 1+00tm)m_m 1-In>\ 5

Our system is very similar to a smec#ciiquid crystal,
which consists of vertically oriented rodlike molecules lay- AN nar
ered along the axis. Experimentally, the spontaneously bro- +— 2 Insin —. (50
ken translational symmetry along this axis and the spontane- 2mNI 7=1 2N
ously broken rotational symmetry in the layers are restored
in a two-step melting process. In the first transition, which The ordered phase corresponds\te 0. In that case, Eq.
can be of first or second order, the smectic melts via dislo¢50) agrees with Eq(49), and we see no correction to the
cation loop unbinding into a translationally disordered nem-entropy loss. If the size of the membranes in the stack is
atic. In the second, which is always first order, the orientasmaller than the characteristic lendth, an ordered phase

205414-6



PHASES OF A STACK OF MEMBRANES IN A LARGE . .. PHSICAL REVIEW B 63 205414

still exists for small values of [see discussion after Eq. branes melts vertically upon approaching a critical tempera-
(31)], in which case the corrections to the first term in Eq.ture, where the lamellar phase goes over into a disordered
(50) will appear. phase. In contrast to the low-temperature ordered phase,
where the decay of orientational correlations is powerlike,
IV. CONCLUSIONS the high-temperature disordered phase is characterized by an
In the limit of large-embedding dimensioth we have IexpoEentlallI dgca;r/] of orlentatlor?al cc(i)rlrela'Flozs, v;n:jh dlff_erent
shown that a stack of tensionless and incompressible mem?ngt scales In the transversal and longitudinal directions.
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