‘H Available online at www.sciencedirect.com

%@% sc.euce@m“cn PHYSIGA ﬁﬂ

ELSEVIER Physica A 323 (2003) 370-400

www.elsevier.com/locate/physa

Functional differential equations for the free
energy and the effective energy in the
broken-symmetry phase of ¢*-theory and their
recursive graphical solution

Axel Pelster*, Hagen Kleinert

Institut fiir Theoretische Physik, Freie Universitit Berlin, Arnimallee 14, Berlin 14195, Germany

Received 17 April 2002

Abstract

Extending recent work on QED and the symmetric phase of the euclidean multicomponent
scalar ¢*-theory, we construct the vacuum diagrams of the free energy and the effective energy
in the ordered phase of ¢*-theory. By regarding them as functionals of the free correlation func-
tion and the interaction vertices, we graphically solve nonlinear functional differential equations,
obtaining loop by loop all connected and one-particle irreducible vacuum diagrams with their
proper weights.

(© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Some time ago, one of us proposed a program for a systematical construction of all
Feynman diagrams of a field theory together with their proper weights by graphically
solving a set of functional differential equations [1]. It relies on considering a Feynman
diagram as a functional of its graphical elements, i.e., its lines and vertices. Functional
derivatives with respect to these graphical elements are represented by removing lines
or vertices of a Feynman diagram in all possible ways. With these graphical operations,
the program proceeds in four steps. First, a nonlinear functional differential equation
for the free energy is derived as a consequence of the field equations. Subsequently,
this functional differential equation is converted into a recursion relation for the loop

* Corresponding author.
E-mail addresses: pelster@physik.fu-berlin.de (A. Pelster), kleinert@physik.fu-berlin.de (H. Kleinert).

0378-4371/03/$ - see front matter (©) 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0378-4371(02)01932-5



A. Pelster, H. Kleinert! Physica A 323 (2003) 370—400 371

expansion coefficients of the free energy. From its graphical solution, the connected
vacuum diagrams are constructed. Finally, all diagrams of n-point functions are obtained
from removing lines or vertices from the connected vacuum diagrams.

This program was recently used to systematically generate all connected Feynman
diagrams of QED [2], of Ginzburg-Landau theory [3] and of the euclidean multicom-
ponent scalar ¢* theory [4,5]. In the disordered, symmetric phase of the latter theory,
where the field expectation value vanishes, the energy functional consists only of even
powers of the field. To generate all connected diagrams of the n-point functions, it
was sufficient to work with the functional derivative with respect to the free correla-
tion function [4]. In the ordered phase, however, where the symmetry is spontaneously
broken by a nonzero field expectation value, the situation is more complicated as the
energy functional also contains odd powers of the field. To handle these, it is neces-
sary to extend the symmetric treatment by a second type of functional derivative. This
was first done in Ref. [5] using functional derivatives with respect to both the free
correlation function and the external current by keeping the number of derivatives at a
minimum. The procedure led to two coupled nonlinear graphical recursion relations for
each of the connected and the one-particle irreducible vacuum diagrams, respectively.
In this paper, we show that all these vacuum diagrams can be obtained from a single
nonlinear graphical recursion relation which is derived via functional derivatives with
respect to both the free correlation function and the 3-vertex. Thus, we obtain a result
which is relevant for the calculation of universal amplitude ratios [6,7] by an additive
renormalization of the vacuum energy above [8,9] and below the critical point. As is
explained, for instance, in Ref. [10], this calculation can be performed by evaluating
the one-particle irreducible vacuum diagrams of the effective energy with the help of
the background method.

2. Negative free energy

Consider a self-interacting scalar field ¢ with N components in d euclidean dimen-
sions whose thermal fluctuations are controlled by the energy functional
1 _ 1
E[¢] =E[0] */J1¢1 + 5 / Gp'di1ha + - Kz prachs
1 2 Ji 6 /i3
1
+ Lizapr a3 pa . (1)
24 Jix4

In this short-hand notation, the spatial and tensorial arguments of the field ¢, the current
J, the bilocal kernel G~!, as well as the cubic and the quartic interactions K and L
are indicated by simple number indices, i.e.,

1={x,u}, /l_g:/dd)ﬁ, $1 = ¢y (x1),

_ e _
N=J,(x), Gp' =G, L (x.x),  Kis = Ky g0 (¥1,52,33)

L1234 = LO{],O{z,O(},14(xlax23x35x4) . (2)
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The kernel is a functional matrix G~!, while K and L are functional tensors, all being
symmetric in their respective indices. The energy functional (1) describes generically
d-dimensional euclidean ¢*-theories. These are models for a family of universality
classes of continuous phase transitions, such as the O(N )-symmetric ¢*-theory, which
serves to derive the critical phenomena in dilute polymer solutions (N =0), Ising- and
Heisenberg-like magnets (N = 1,3), and superfluids (N = 2). In the disordered phase
above the critical point, where the system displays the full O(N) symmetry and the
field expectation value vanishes, the energy functional (1) consists of even powers of
the field and is specified by

E[0]=0,
Ju(x1)=0,
Gy L (X1,32) = 03y 00 (— 0%, +mP)S(x1 — x2) ,

K%],O(z,m(xlaxzax?)) = O )
L = T (SO + Oarts Oty + Oy 0
“1,a2,13,14(x1>x29x39x4) - g { o102 Oty T 0oty 3Oy, Ootyzy 912,0(3}

X O(x1 — x2)0(x; — x3)0(x; — Xx4) . 3)

The bare mass m? is proportional to the temperature distance from the critical point,
and ¢ is the coupling strength. In the ordered phase below the critical point, where
the symmetry is spontanecously broken by a nonzero field expectation value, one has
to allow also for odd powers of the field. This situation is modelled by the energy
functional (1) and (3) if an additional shift of the field ¢ around some background
field y is taken into account according to the replacement ¢ — y + ¢ (cf. [10,
Section 5.3]). Thus the energy functional (1) is specified by

1
B0 = 5 3 [ a0~ 4wz )+ 243 [t )

1,002

T 00) = ==, Y (01) = ()30
2
_ )
Goq,lozz(xlaXZ) = {5011,22 (aazc] + m2 + 8 aZXi(XI))
3

+ g Loy (X1 )Xocz(xl)} o(x1 —x2),
Koy (X1, X2, X3) = g {001 Xy (1) + Foty 1 Loty (X1) oy 05 2y (X1) FO(x1 — x2)
X0(x) —x3) ,
Laynonas(41,%2,33.38) = § {01010 + O + O Don

X 0(x1 — Xx2)0(x1 — x3)0(x1 —x4) . 4
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In the following, we shall leave J, G~', K, and L completely general, except for the
symmetry with respect to their indices, and insert the physical values (3) or (4) only at
the end when we are looking at the disordered or the ordered phase, respectively. By
doing so we regard the energy (1) as a functional of its arguments J, G~!, K, L, i.e.,

E[¢] = E[$,J,G™", K, L], (5)

so that the same functional dependences are inherited by all field-theoretic quantities
derived from it. In particular, we are interested in studying the dependence of the par-
tition function, which is determined as a functional integral over a Boltzmann weight
in natural units

Z[J,G7 K, L] = / GpeFIG KL (6)

and its logarithm, the negative free energy
W[J,G" K, L]=1n Z[J,G" K, L] . (7)

By performing a loop expansion of the partition function (6), the contributions to the
negative free energy (7) consist of all connected vacuum diagrams constructed accord-
ing to Feynman rules. A single dot represents the energy shift

o= —E[0] (8)

a cross an integral over the current

x—E/lJl )

and a line represents the free correlation function

1 — 2 = Gyo, (10)

which is the functional inverse of the kernel G~! in the energy functional (1), defined
by

/G12G2_31 =013 . (11)
2
A 3-vertex represents an integral over the cubic interaction
/L = - K3 (12)
123
and a 4-vertex stands for an integral over the quartic interaction
>< = — L34 . (13)
1234

If the cubic and the quartic interactions K and L in (1) vanish, the functional integral in
(6) is Gaussian and can be immediately calculated to obtain for the negative free energy

1 1
wOL1,G71,0,0] = —E[0] — 5 Trln G '+ 3 / Gy, (14)
12
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where the trace of the logarithm of the kernel is defined by the series [10, p. 16]
_ — (—1)! / —1 ~1
TrinG'=) ~—— Gy — ot {G' —du}. 15
rin ; n l...n{ 12 i} {G, 1} (15)

The zeroth-order contribution (14) to the negative free energy will be graphically rep-
resented by

1 1
WO =t 1Ot (16)

In order to find the connected vacuum diagrams of the negative free energy together
with their weights for nonvanishing cubic and quartic interactions K and L, we proceed
as follows. We first introduce, in Section 2.1, functional derivatives with respect to the
graphical elements J, G~', K, L of Feynman diagrams. With these we derive, in
Section 2.2, a single nonlinear functional differential equation for the negative free
energy. This is converted into a graphical relation in Section 2.3 which is solved
graphically in Section 2.4.

2.1. Functional derivatives

Each Feynman diagram may be considered as a functional of the quantities in (1)
characterizing the field theory, i.e., of the current J, the kernel G~', and the interactions
K and L. In this section, we introduce functional derivatives with respect to these,
identify their associated graphical representations, and study field-theoretic relations
between them.

2.1.1. Graphical representation
We start with studying the functional derivative with respect to the current J, whose
basic rule is
g—f =01 . (17)
We represent this graphically by extending the elements of Feynman diagrams by an
open dot with two labelled line ends representing the delta function:

1—— 2= (512. (18)

Thus, we can write differentiation (17) graphically as

g 2 = 1-o2. (19)
d x—1

Differentiating a cross with respect to the current replaces the cross by the spatial index
of the current.

Since ¢ is a real scalar field, the kernel G~! is a symmetric functional matrix. This
property has to be taken into account when performing functional derivatives with
respect to the kernel G~!, whose basic rule is [4,5]

Gt 1
——= = — {01304 + 61403} . 20
5Gy,! 2{ 13042 + 014032} (20)
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From identity (11) and the functional chain rule, we find the effect of this derivative
on the free propagator

oG
-2 121 =G13Gy + Gi14G3; . (21)
0Gy,
This has the graphical representation
2 0 2 = 1 3 4 2 + 1 4 3 2
0G4 a ’

(22)

Thus, differentiating a free correlation function with respect to the kernel G~ amounts
to cutting the associated line into two pieces. The differentiation rule (20) ensures that
the spatial indices of the kernel are symmetrically attached to the newly created line
ends in the two possible ways. Differentiating a general Feynman diagram with respect
to G~!, the product rule of functional differentiation leads to diagrams in each of which
one of the lines of the original Feynman diagram is cut.

We now study the graphical effect of functional derivatives with respect to the free
propagator G, where the basic differentiation rule reads

oG, 1
—— =={0130 014032} . 23
3G 2{ 13042 + 014032} (23)
This can be written graphically as follows:
) 1
9 =013 4o e 4 3o 2p. (24)
53 n 1 2 3 { 1 3 4 2 + 1 4 3 2}

Thus differentiating a line with respect to the free correlation function removes the
line, leaving in a symmetrized way the spatial indices of the free correlation function
on the vertices to which the line was connected.

As the interactions K and L are functional tensors which are symmetric in their
respective indices, their functional derivatives are

oK 1

5[(;22 = 6 {514525536 -+ 5 perm.} . (25)
SL 1

MZ: = {15026037045 + 23 perm.} . (26)

They have the graphical representations

) 1 1
5 A = g ¢ds T 5perm. o, (27)
6 1. 3 2 VAN
4" 6 2
1\ /2
é 1.2 1
G >< = — g ? + 23 perm. , . (28)
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Thus, differentiating a 3- or a 4-vertex with respect to the cubic or the quartic interaction
removes this vertex, leaving in a symmetrized way the spatial indices of the interaction
on the line ends to which the vertex was connected.

2.1.2. Compatibility relations
The functional derivative of the energy functional (1) with respect to the current J;
gives the field ¢;:
__OE[J]
=

Products of fields, on the other hand, can be obtained in various ways from functional
derivatives of the energy functional (1)

PE) _,OE[g]

(29)

¢l¢2: 5J15J2 - 5G1_21 P (30)
_ OE[9] | FE[$] _ OE[$]
¢1¢2¢3 o 5]15J25J3 B 25G1_215J3 =0 5K123 ’ (31)
_ O'El¢] . SEll _ _FE[$]
D1020304 = 57 S o, _25Gg15J35J4 = 5K imols
2
FCE[P] _,,0El9] (32)

0G,'0G T oL

as follows from (17), (20), (25) and (26). Applying these rules to the functional
integral of the partition function (6), we obtain for the functional derivatives of the
negative free energy (7) various compatibility relations, for instance

ow _ 1 W + oW oW (33)
5G5' 2 \ondh SN L)
ow 1 W oW oW
=3 { 1 + 1 } H (34)
0Kis 3 [6G,'0J5 Gy, 03
ow 1 W oW ow
SL 76 e i i 1 (35)
1234 060G, 0G5, 0G, 0G3,

In the following it will turn out that the compatibility relation (34) is crucial for
deriving a single functional differential equation for .

2.2. Functional differential equation for W =InZ

We start from the identity

/ @fpé%{me—”“} 0, (36)
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which follows by direct functional integration from the vanishing of the exponential at
infinite fields. Taking into account the explicit form of the energy functional (1), we
perform the functional derivative with respect to the field and obtain

/ 9¢{512+J1¢2— / Gyl dachs
3

1 1
- = Kizarp3ps — — / L1345¢2¢3¢4¢5} e =0, (37)
2 Jyu 6 Jus

Substituting field products by functional derivatives according to (29)—(32), we keep
the number of these derivatives at a minimum and express the resulting equation in
terms of the partition function (6):

oZ

0Z
OnZ+J—+2 | Gl ——
12 + 15.]2 + /3 13 5G2_31

o7z o7
3 K 4 L =0.
+ B4 5K 03 + /345 B S L34
(38)

Going over from Z to W =1nZ, we obtain the linear functional differential equation

oW oW oW SW
S1p +J 2 | G5! 3] K 4 L =0.
A oJ, + / 5G it / B4 5K s + /345 B S Laas

(39)

Applying the compatibility relations (34) and (35), this linear functional differential
equation turns into the nonlinear one

5W oW
S+ J /G‘l
12 15‘] s 13 5G23
B _/ © 2w N SW_ow
V8GR 000Gy s

2 2w SW oW
v+ ° ¥ , 40
3 /345 1345{5G2_315G4_5‘ 3G, 5G4_51} (40)

which is identical with Eq. (55) in Ref. [5]. In order to eliminate functional derivatives
with respect to the current J, we consider the second identity

/Q(f)bd)l (41)

which leads to

_ 1 1 _
/ D¢ {_Jl +/ Gp' o + = / Kizaps + — / L1234¢2¢3¢4} e ElY]
2 2 Jx 6 Joa

=0. (42)




378 A. Pelster, H. Kleinert! Physica A 323 (2003) 370—-400

Applying again the substitution rules (29)—(31) while keeping the number of functional
derivatives at a minimum, and taking into account the partition function (6), we obtain
for the negative free energy W =InZ:

ow
0K3ss

/4 ow
= [ Gl + Ky3uGro —— + / Lr345G12 (43)
2 G 2345

o 234 0Gy,

Differentiatin
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Note that due to (34) the functional derivative with respect to the cubic interaction K
in (43) is compatible with functional derivatives with respect to the current J and the
kernel G'. Inserting (34) in (43) would lead to Eq. (54) in Ref. [5],

ow ow
= [ Guh+ K»34Gro——
o/t ) 234 5Gy!
1 W ow oW
t= | LG + oo 46
3/2345 2345 12{5G515J3 3G 5J3} (46)

such that functional derivatives with respect to the current J in Eq. (40) can no longer
be eliminated. This line of approach has been pursued in Ref. [5] where the two
coupled nonlinear differential equations (40) and (46) for the negative free energy are
used for deriving all connected vacuum diagrams.

2.3. Graphical relation

With the help of the functional chain rule, the first and second derivatives with
respect to the kernel G~! are rewritten as

0 0
- GG 47
5G1_21 /34 13 245(}34 47)
and
5? / 5?
—_— = G15Gr6G37G4g ———
5G1_215G3_41 s 15G26G37G4s 5Gsc0Gs

1
+ 3 / {G13G25Ga6 + G14G25G36 + G23G15Gag
56

o
+G24G15G36}@ ) (48)

respectively. The functional differential equation (45) for W takes then the form

ow
oo [+ [ Guns 2 [ 6w 2
11 ! b 124142 b 12 5G12

= Ki123G12G34J4
1234

ow ow
+2/ Ki123G14G25G36Js —— — / L1234G15J5s ——
123456 0Gss 12345 0K>34
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ow
-2 K123K456G14G25G37G68W
12345678 78

ow
- / K123K456G12G34G57G68f
12345678 78

W W oW
K123K456G14G27G33Gs9 G { }

- +
1234567891 0G780Gy;  0Grg 0Go;

ow
+ K123L4567G12G34
1234567 0Ks67
/4 oW oW
Ki123K4567G14G27G

- /123456789 12307 TRT {5K5675G89 * 0Ks67 5G89}
4 / ow
+ = L1234G12G35Ga6—~—
3 Ji23ase 0Gsg

2
2 4 ow 5W}- (49)

— L1234G15G26G37G.
+3 /12345678 [2AISR6TT 48{5G565G78 +5G56 0G73

If the cubic and the quartic interactions K and L vanish, Eq. (49) is solved by the
zeroth-order contribution to the negative free energy (14) which has the functional
derivatives

Sw©® owo 1 1
=/ G, —F—= 3 Gy + = i,
2

5]1 5G12 3
2w 1 o
0G120Gs4 T {G131G24l + GI4IG231} . (50)

For nonvanishing cubic and quartic interactions K and L, the right-hand side in
Eq. (49) produces corrections to (14) which we shall denote by W™  Thus, the
negative free energy W decomposes according to

w=wO 4+ i (51)

Inserting this into (49) and using (50), we obtain the following functional differential
equation for the interaction negative free energy W(m):

5W(int)
G -
/12 275G

1 1
=—- / L1234G12G3s + / K123K456G14G25G36
4 Ji234 4 Ji234s6
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3
+ 3 / K123K456G14G23Gs6 — Ki123G12G34J4
123456 1234
1 1
—5 L1234G12G35GaeJsJs + = K123K456G14Go5G37GegJ7J3
123456 12345678

1 1
+ = / K123K456G12G34G57GesJ7Js — = / Ki123G14G25G36J4J 5T
2 Ji234s678 2 Ji23as6

1

~5 / L1234G15G26G37GygJs 6703
12345678

1

+ 3 /  K123K456G14G27 G338 Gso G178 JoJ
1234567891

Syt
6Grg

) W(int)
0Gse

- / L1234G12G35Gag + / K123K456G14G25G37Gag
123456 12345678

S W(int)
0Grg

+ / K123K456G12G34Gs57Geg
12345678

3 s

- = K123L4567G12G34 ——
4 /1234567 0Ks67

5 W(im) 1 5 W(im)
- K123G14GrsGygJs——— + = / L1234G15Js ——
/1 23456 0Gss 2 Jious 0K234

1

+ 3 / L1234G15G26G37GagJ5Js
12345678

Syt
0G7s

1 5W(int)
+ = /  K123K456G14G271G38 G50 GgrJ7Js ———
2 Ji234567891 5G91

1

Sint)
- = / K123L4567G14G27G33J7J3
123456789

0Ks67

4

1 52 W(int) 5W(int) 5W(int)
- = L1234G15Gr6G37G.
3 /12345678 1T {5G565G78 M 0Gss  0Grs }

1

+ 3 /  K123K456G14G27G33Gso Ggp {
1234567891

52 W(int) 6W(int) 5W(int)
3Gr50Gy | 0Grs Gy }

1 52 W(int) 5W(im) 5W(im)
- = K123L4561G14G27G
5 /123456789 123L4567G14 G227 38{5K5675G89 + 5Kser 9Gso }
(52)
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With the help of the graphical rules (9), (10), (12), (13), this can be written diagram-
matically as follows:

1 s nt) 1 1 1

CE—=100 150 +00 +Q £3,Q, +5O=x +5
1 I 1 SWiin 1 6Wnt) <! SW (i)
+§ *t3 il:: + X, S1—2 CI2 51— t 2 §1—2

3 1 gy (int) 1 6W““‘) 1 gy (int) 1 W 1 SW(int)
1 O <§ =, d1—2 2 { 1 t3 ><2 51—2 7>¥<2 51—2

3 2 2

1
1 1 6w(mt) 1 ; 62W(int) 1 ; 62W(int) 1 2 62W(int)
+Z: {2 T3 3 o1—283—14 *3 3 61—2083—14 *3 s 1

36 L s 0 1 b6a—s
37 72 37 2
1wl 4 3 gw@m) 1 gwin9 oo swint) 1 gwint) 1} & SW int)
+§ 61—2 2><4 63—4 +5 f1—2 2 4 §3—a4 +5 1 2 5 §4—=5

s 1 s
(53)

The effect of the term on the left-hand side is to count the number of lines of
each connected vacuum diagram. Indeed, the functional derivative J6/0Gi; removes
successively the lines which are, subsequently, reinserted by the operation | 1o G12. The
right-hand side contains altogether 25 terms, 10 without W 12 linear in W) and
3 bilinear in W0,

2.4. Loopwise recursive graphical solution

Now we show how Eq. (53) is solved graphically for the current-free connected
vacuum diagrams. To this end we expand the interaction negative free energy Wt
with respect to the loop order /

o0
wim =3 " (54)

With the help of (54) we convert Eq. (53) into a recursive graphical solution for the
current-free expansion coefficients W), For [ =2, Eq. (53) reduces to

sWw@
(2 -loo+jo+ioo. =
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which is immediately solved by

1 1 1
Woh=2O0 +56 +;0-0 . (56)

as the first vacuum diagram contains 2 and the last two vacuum diagrams 3 lines. For
! > 3 we obtain the graphical recursion relation

1w 1 dwi-1) 1 oW1 ) AGEY 3 1 gwi-1)
Cz b1—2 X 51— T sz 51—t O, 51— 1 O <§ 1

1
+1 2 s2w -1 1 ; S2w-1 1 2 s2w -1
3 N1 s1—203—a T2 L3 51i—2s3—7 T3 : 1
2 4 5

1—2{ 1 6W(ll) .

3 SWU='-1) 1 sw@) 3 SWU-U-1
+ - _ »—« _—
,2:2 3 d1—:2 2><4 03—1a +2 01—2 2 4 63—

=
1 @) 1 U=t'-1)

+1 W ) 4 W . (57)
2 1 3 5 §4—5

§ A
372

We observe that for either a vanishing cubic or quartic interaction the graphical recur-
sion relation (57) only involves the graphical operation of removing lines. Proceeding
to the loop order /=3, we have to evaluate from the vacuum diagrams (56) a one-line
amputation

Sw® 1

11 1 1 11 Ot 58
61—2:ZO<2+ZCZ2+Z C :2+§ O-2 )

a two-line amputation

(52W(2) 1, 3 1 L 5 1
9w _ =z 1 5 . 1 .
61—203—14 42><4+ 4 2> *<4+ perm. o + 3 j\ + 3perm. ; ,

17 T4
(59)
a 3-vertex amputation
swe o1 1 112
I & 3*2+ E{ (»—3 + 2p011n.}7 (60)
PN
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and the amputation of one line and one 3-vertex

1
W 1 i 1 (1—54—-2
T2 5 +operm. o + ﬁ{ 3 —|—5perm.}
5k, 1
3 2 3 9
1 1—-—45—3 1 172
+ ﬁ{ &2 + 5perm.} +ﬁ{ * + 2perm.}.
5 4

(61)
Then we obtain from Eq. (57) for [ =3:

1 W® 1 3 3 3 1 5 5
G -i® O o0 o000+ T il g

5 5 5 1 1
+5 O +; OO +EO—O—Q +E@+ZOOO,
(62)

which leads to the connected vacuum diagrams listed in Table 1 together with
the subsequent loop order / = 4. In a similar way, the graphical relation (53) can
be recursively iterated to construct the connected vacuum diagrams which involve
currents.

The topology of each connected diagram in Table 1 can be characterized by the 5
component vector (S,D,T,F;N). Here S, D, T, F denote the number of self-, double,
triple and fourfold connections, whereas N stands for the number of identical vertex
permutations where the 3- and 4-vertices as well as the currents remain attached to
the lines emerging from them in the same way as before. The proper weights of
the connected vacuum diagrams in the ¢3—¢*-theory are then given by the formula
[4,11,12]

1

W= sisio3irary -
For higher orders, it becomes more and more difficult to identify by inspection the
number N of identical vertex permutations. A mnemonic rule states that the number
N of identical vertex permutations is given by twice the number of symmetry axes,
if the diagram is imagined in a suitable maximally symmetric way in some higher
dimensional space. A more systematic determination of N is possible by introducing a
matrix notation for the diagrams as explained in detail in Refs. [4,12].

(63)

3. Effective energy

In field theory one is often interested in the functional Legendre transform of the
negative free energy W[J,G~!, K, L] with respect to the current J [12—15]. To this end
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Table 1. Continued

e W WS 1/48 1/16
(1,1,1,0;1) (2,1,0,0;1) (2,0,1,0;2) (3,1,0,0;1)
1/32 1/32 1/32 1/384
(3,1,0,0;2) (3,1,0,0;2) (4,0,0,0;2) (4,0,0,0;24)
. 2 1/8 @ 1/16 @ 1/8 1/24 1/16
(0,1,0,0;4) (0,3,0,0;2) (0,2,0,0;2) (0,1,1,0;2) (1,1,0,0;1) (1,2,0,0;2)
1/16 1/16 OO 1/16 1/16 o000 V18
(1,2,0,0;2) (2,0,0,0;4) (2,1,0,0;2) (2,2,0,0;1) (3,0,0,0;2)
1/24 1/72 1/24 18~ @
(1,0,1,0:2) é (2,1,0,051) 0_8 (0,0,2,0;2) (1,1,1,051) CO_@ (1,2,0,0;1)
1/32 0O—0 /16 1/32 1/24
(2,2,0,0;2) (3,1,0,051) (3,1,0,0;2) (2,0,1,051)
o0 M o0LQH
(2,0,1,0;2) (4,0,0,0;2)
1/48 1/24 1/48 1/32
4 3 o000
(0,3,0,0;6) (1,0,1,0;2) é (3,0,0,0;6) (2,2,0,0;2)

Within each loop order / the diagrams are distinguished with respect to the number p of 4-vertices. Each
diagram is characterized by the vector (S, D, T, F; N) whose components specify the number of self-, double,
triple, fourfold connections, and of the identical vertex permutations, respectively.

one introduces the new field

SWI[J,G~ K, L]

O[J,G LK L] = , 64
i ] o, S (64)

which implicitly defines J as a functional of @:
Ji=L[®,G K, L]. (65)

From the Egs. (6) and (7) we read off that @ coincides with the 1-point function of
the theory, i.e., the field expectation value of the fluctuations around the background
field y in Eq. (4) in the presence of the current J. The functional Legendre transform
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of the negative free energy W[J, G LK, L] with respect to the current J results in the
effective energy

SWJ[®,G 'K, L],G",K, L]
5Jl[d5aG71’K’L] G- K, L

e, 6", K, 11— / J6,G K, L]
1

—-W[J[®,G K, L],G™',K, L], (66)
which simplifies due to (64):

re.¢ 'K, 1] :/J1[¢>G_I>K>L](pl - WJe,G K L,G K L]. (67)
1

Taking into account the functional chain rule, it leads to the equation of state

SI®,G~ 'K, L]

_ —1
5@] _Jl[(pyG 7K7L]' (68)

G-LK,L

Performing a loop expansion, the respective contributions to the effective energy (67)
may be displayed as one-particle irreducible vacuum diagrams which are constructed
according to the Feynman rules (8), (10), (12), (13). In addition a dot with a wiggled
line represents an integral over the field expectation value

.mzflqsl _ (69)

For instance, if the cubic and the quartic interactions K and L vanish, the zeroth order
contribution to the negative free energy (14) leads with (64) to the field expectation
value

#014.671.0.0= [ Gz (70)
2

which is inverted as

J'[@,G7,0,0] :/ G, @, (71)

2
to result in the zeroth-order contribution to the effective energy
(0) —1 1 -1 4
r'’te, G ,0,0]:E[O]+§TrlnG +5 G, P19, . (72)
12

Its graphical representation reads by definition

1 1
S () e
*+50+;3 (73)

In order to find the one-particle irreducible vacuum diagrams of the effective energy
together with their weights for nonvanishing cubic and quartic interactions K and L,
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we proceed as follows. We start in Section 3.1 with investigating the consequences of
the functional Legendre transform with respect to the current for functional derivatives
and their compatibility relations. With these results we derive in Section 3.2 a single
nonlinear functional differential equation for the effective energy which is converted
into a graphical relation in Section 3.3 and recursively solved in Section 3.4.

3.1. Functional Legendre transform

In order to investigate in detail the field-theoretic consequences of the functional
Legendre transform, we start with the effective energy I'[®, G~!, K, L] and introduce the
current J via the equation of state (68). As this implicitly defines the field expectation
value as a functional of the current, i.e.,

@ =[G K L], (74)
the negative free energy is recovered according to

W[J,G K L] = /qusl[J,G*l,K, L] -T[®[J,G " K,L,G"',K,L]. (75)
1

With this we derive useful relations between the functional derivatives of the negative
free energy W and the effective energy I, respectively.

3.1.1. Functional derivatives
Taking into account the functional chain rule, the first functional derivatives of the
negative free energy W read (64) and

SWIJ,G VK, L] SI[P[J,G\, K, L],G~, K, L]
3Gy, JK.L o 3G, DKL ’ 7o
SWIL,G™, K, L] _ OI.GT K. L).G\.K. 1] -
0K 123 J.G-1L 0K123 ®,G-1,L
SWI[J,G™K, L] _ SI[®[J,G K, L],G™ ', K, L] (78)
0L1234 J.G-1.K OL1234 6.G-1 K

To evaluate second functional derivatives of the negative free energy # is more in-
volved. At first we observe
FWIJ,G LK, L]
0J,0J;

_ 00[],G K L]
G-, K L 0/

>

G-K, L

[ 0L[P[J,G K, L],G™ K, L]
B 0P [J,G, K, L]

-1
GI,K,L)
~1
b
G-LKL

(79)

[ &T®[J,GK LL,G K, L]
-\ 0D1[J, G, K, L]6D,[J, G, K, L]
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where we used (64), (68) and the fact that the derivative of a functional equals the
inverse of the derivative of the inverse functional. To precise the meaning of relation
(79), we rederive it from another point of view. To this end we consider the functional
identity
O [®[J, G, K, L],G ", K, L]
oJ,

=0 (80)
G-LK L

and apply the functional chain rule together with (64) and (68), so that we result in
/’ Pr(e[J,G K, L,G K, L]
3 001[J,G7L K, L]o®3[J, G, K, L]

G-LK L

FWI[J,G™L K, L]
0J30.J,

=61 . (81)
G-LK, L

Furthermore we obtain from (76) by applying again the functional chain rule and

relation (79)
J,K.L>G—1,K,L

O [ OW[J,GLK L]

0J3 3G,
. / Pr[o[J,G ', K,L],G",K, L]
- S®3[J, G, K, L10®4[J,G~1, K, L]

-1
GI,K,L>

5 <5F[<I>[J, G-,K,L],G~\,K, L] ) 2)
¢,K,L G_],K,L

" S0al].G 1K, L] 3G,
and, correspondingly,
FPWI[J,G"K, L]
8G;,'0G,! kL
_ OI[PJ,G LK LG K, L]
B 0G3,10GT)! oKL

+/ SI[P[J, G, K, L],G~\, K, L]
56 5(p5[‘]9 Gil,KyL]é(pﬁ[Jy G*l,K’L]

~1
G-I,K,L)

. S OI®[J,G K, L],G™", K, L]
0®s[J,G1,K, L] 6Gy,' okL) G- k1
) 5 ( SI[O[J,G, K, L].G~', K, L] )
— —1 '
(S‘Dé[JaG 7K7 L] 5G34 DK, L G-.K,L

(83)



390 A. Pelster, H. Kleinert! Physica A 323 (2003) 370—-400

3.1.2. Compatibility relations

Performing the functional Legendre transform with respect to the current, the com-
patibility relation (33) between functional derivatives with respect to the current J and
the kernel G—!, we result in

— 019, (84)
OKL

<52F[<I>, G- K, L]

-1
_ L OT.G7 K. 1]
50,50, 6rxi)

8Gp!

due to (64), (76) and (79). The compatibility relation (34) between functional deriva-
tives with respect to the current J, the kernel G~! and the 3-vertex K is converted by

using (64), (76), (77) and (82) to
—1
Gl,K,L)

/i <5r[<1>, G- K, L] ) (52r[¢,G1,K,L]
4 0Dy 3Gy oxt) ook 0P30D4
@5 . (85)

SI[®,G~\, K, L] SI[®,G~, K, L]
0K23 ®.G-1.L 5szl BKL

=3

Furthermore we perform the functional Legendre transform of the compatibility relation
(35) between functional derivatives with respect to the kernel G~! and the 4-vertex L
which leads with (76), (78) and (83) to

<D,K,L>G1’K’L

[ (ones s o (oGl KL
56 0Ds 3G o) g1 iy O 8G;,!

-1
_ 6 SI®,G~ 'K, L]
G-1,K L

<52F[q5, G LK L]

5Ps0Dg 0L 1234 6.G-1.K
SI6,G-1,K, L] SI[®,G',K, L] ST[®,G',K, L]
—1 —1 - =1 T A1
0G|, 0Gy, SKL oG, KL 0Gy, OK.L
(86)

3.2. Functional differential equation for I’

Now we aim at deriving a functional differential equation for the effective energy I'.
To this end we start with the first functional differential equation (40) for W, which
originates from the identity (36), and perform the functional Legendre transform with
respect to the current J. Inserting (64),(68), (76), (82) and (83) by taking into account
the compatibility relation (84) between functional derivatives with respect to the field
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expectation value @ and the kernel G~!, we thus obtain

or or
o O — -2 .
12+ 50, /3G13 3G,
or 5r or
=/ Kisa— ‘P4+/ Kiza—— 2—— — Dy Ps
w6y, s Y5Gy 005 | 96y
N 2 / I *r N or or
3 fs PP 665G, 665 G,

2 *r *r or
—l-*/ Lizas—— — 2—— — P67, (87)

3 Jaaser 0Gy; 0@ 0G5 097 | 0G;
which corresponds to Eq. (109) in Ref. [5]. Then we reduce the number of functional
derivatives by inserting a combination of the two compatibility relations (84) and (85),

ie.,

5*r or or or

- 2 by =3 2o, (88)
4 0G|, 0,4 0Gs, 0Ki3 oGy,

in the last term of Eq. (87), so that we result in

or or
B /+/<p——2/ G, —
! 1 1 1CISQSI 12 12 5Gf21
or &#r or
= K123¢37,1+/ Kis—— 2 —— — 39y
123 oG, 1234 0G|, 09,4 0G,
+g/ . O, or or
3 Ji23a 124 8G,'0Gy, G 6Gy

2 oAr or or
+ = L 3 — [/ . 89
3 /12345 1234 0G5 ®s { 0Kzis Gy, 5} (89)

In order to eliminate functional derivatives with respect to the field expectation value
@, we consider the second functional differential equation (43) for W, which stems
from identity (41). Applying (64), (68), (76) and (77), we obtain

or or or
2o G—1<D+/K—+/L ; 90
50, /2 P2t | 1235G2’31 L B (90)
which leads to
ST 1 *r
——— = {013P, + 3Py +/ Ksas—— 7
5G,' @3 2{ ; 45 3Gy, 3G
5r
+/ Lysse———— - ©n
456 3G, 0Kuss
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Thus we can, indeed, eliminate functional derivatives with respect to the field expecta-
tion value @ on the right-hand side of Eq. (89). In this way, we end up with a single
nonlinear functional differential equation for the effective energy I which involves on
the right-hand side functional derivatives with respect to the kernel G~! and the cubic
interaction K:

T or
b /+/q’>——2/ [ ——
11 . | 1(5451 . 12 5G1_21

*r or
= / KisKase————7 12— — P:%
123456 0G|, 0G5 060G

or
+3 K33 —— — Ki23 P10, D5
123 060Gy, 123

#r or
+/ Ki23Laser—— 2—— — 039,
1234567 0G|, 0Kuse | 0G4

n 2 / I 6'r + or  or
3 1234\ T ST As = -
3 Jio 5G1215G341 5G121 5G341

or 2 or
+2/ Lip3a®Ps—— 