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Abstract

Extending recent work on QED and the symmetric phase of the euclidean multicomponent

scalar �4-theory, we construct the vacuum diagrams of the free energy and the e ective energy

in the ordered phase of �4-theory. By regarding them as functionals of the free correlation func-

tion and the interaction vertices, we graphically solve nonlinear functional di erential equations,

obtaining loop by loop all connected and one-particle irreducible vacuum diagrams with their

proper weights.

c© 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Some time ago, one of us proposed a program for a systematical construction of all

Feynman diagrams of a 3eld theory together with their proper weights by graphically

solving a set of functional di erential equations [1]. It relies on considering a Feynman

diagram as a functional of its graphical elements, i.e., its lines and vertices. Functional

derivatives with respect to these graphical elements are represented by removing lines

or vertices of a Feynman diagram in all possible ways. With these graphical operations,

the program proceeds in four steps. First, a nonlinear functional di erential equation

for the free energy is derived as a consequence of the 3eld equations. Subsequently,

this functional di erential equation is converted into a recursion relation for the loop
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expansion coe@cients of the free energy. From its graphical solution, the connected

vacuum diagrams are constructed. Finally, all diagrams of n-point functions are obtained

from removing lines or vertices from the connected vacuum diagrams.

This program was recently used to systematically generate all connected Feynman

diagrams of QED [2], of Ginzburg–Landau theory [3] and of the euclidean multicom-

ponent scalar �4 theory [4,5]. In the disordered, symmetric phase of the latter theory,

where the 3eld expectation value vanishes, the energy functional consists only of even

powers of the 3eld. To generate all connected diagrams of the n-point functions, it

was su@cient to work with the functional derivative with respect to the free correla-

tion function [4]. In the ordered phase, however, where the symmetry is spontaneously

broken by a nonzero 3eld expectation value, the situation is more complicated as the

energy functional also contains odd powers of the 3eld. To handle these, it is neces-

sary to extend the symmetric treatment by a second type of functional derivative. This

was 3rst done in Ref. [5] using functional derivatives with respect to both the free

correlation function and the external current by keeping the number of derivatives at a

minimum. The procedure led to two coupled nonlinear graphical recursion relations for

each of the connected and the one-particle irreducible vacuum diagrams, respectively.

In this paper, we show that all these vacuum diagrams can be obtained from a single

nonlinear graphical recursion relation which is derived via functional derivatives with

respect to both the free correlation function and the 3-vertex. Thus, we obtain a result

which is relevant for the calculation of universal amplitude ratios [6,7] by an additive

renormalization of the vacuum energy above [8,9] and below the critical point. As is

explained, for instance, in Ref. [10], this calculation can be performed by evaluating

the one-particle irreducible vacuum diagrams of the e ective energy with the help of

the background method.

2. Negative free energy

Consider a self-interacting scalar 3eld � with N components in d euclidean dimen-

sions whose thermal Euctuations are controlled by the energy functional

E[�] = E[0]−

∫

1

J1�1 +
1

2

∫

12

G−1
12 �1�2 +

1

6

∫

123

K123�1�2�3

+
1

24

∫

1234

L1234�1�2�3�4 : (1)

In this short-hand notation, the spatial and tensorial arguments of the 3eld �, the current

J , the bilocal kernel G−1, as well as the cubic and the quartic interactions K and L

are indicated by simple number indices, i.e.,

1 ≡ {x1; 1};

∫

1

≡
∑

1

∫

ddx1; �1 ≡ �1(x1) ;

J1 ≡ J1(x1); G−1
12 ≡ G−1

1 ;2
(x1; x2); K123 ≡ K1 ;2 ;3(x1; x2; x3) ;

L1234 ≡ L1 ;2 ;3 ;4(x1; x2; x3; x4) : (2)
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The kernel is a functional matrix G−1, while K and L are functional tensors, all being

symmetric in their respective indices. The energy functional (1) describes generically

d-dimensional euclidean �4-theories. These are models for a family of universality

classes of continuous phase transitions, such as the O(N )-symmetric �4-theory, which

serves to derive the critical phenomena in dilute polymer solutions (N =0), Ising- and

Heisenberg-like magnets (N = 1; 3), and superEuids (N = 2). In the disordered phase

above the critical point, where the system displays the full O(N ) symmetry and the

3eld expectation value vanishes, the energy functional (1) consists of even powers of

the 3eld and is speci3ed by

E[0] = 0 ;

J1(x1) = 0 ;

G−1
1 ;2

(x1; x2) = �1 ;2(−9
2
x1
+ m2)�(x1 − x2) ;

K1 ;2 ;3(x1; x2; x3) = 0 ;

L1 ;2 ;3 ;4(x1; x2; x3; x4) =
g

3
{�1 ;2�3 ;4 + �1 ;3�2 ;4 + �1 ;4�2 ;3}

×�(x1 − x2)�(x1 − x3)�(x1 − x4) : (3)

The bare mass m2 is proportional to the temperature distance from the critical point,

and g is the coupling strength. In the ordered phase below the critical point, where

the symmetry is spontaneously broken by a nonzero 3eld expectation value, one has

to allow also for odd powers of the 3eld. This situation is modelled by the energy

functional (1) and (3) if an additional shift of the 3eld � around some background

3eld � is taken into account according to the replacement � → � + � (cf. [10,

Section 5.3]). Thus the energy functional (1) is speci3ed by

E[0] =
1

2

∑

1

∫

ddx1�1(x1)(−9
2
x1
+ m2)�1(x1) +

g

24

∑

1 ;2

∫

ddx1�
2
1
(x1)�

2
2
(x1) ;

J1(x1) =−(−92x1 + m
2)�1(x1)−

g

6
�1(x1)

∑

2

�22(x1) ;

G−1
1 ;2

(x1; x2) =

{

�1 ;2

(

−92x1 + m
2 +

g

6

∑

3

�23(x1)

)

+
g

3
�1(x1)�2(x1)

}

�(x1 − x2) ;

K1 ;2 ;3(x1; x2; x3) =
g

3
{�1 ;2�3(x1) + �1 ;3�2(x1) + �2 ;3�1(x1)}�(x1 − x2)

×�(x1 − x3) ;

L1 ;2 ;3 ;4(x1; x2; x3; x4) =
g

3
{�1 ;2�3 ;4 + �1 ;3�2 ;4 + �1 ;4�2 ;3}

×�(x1 − x2)�(x1 − x3)�(x1 − x4) : (4)
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In the following, we shall leave J , G−1, K , and L completely general, except for the

symmetry with respect to their indices, and insert the physical values (3) or (4) only at

the end when we are looking at the disordered or the ordered phase, respectively. By

doing so we regard the energy (1) as a functional of its arguments J , G−1, K , L, i.e.,

E[�] = E[�; J; G−1; K; L] ; (5)

so that the same functional dependences are inherited by all 3eld-theoretic quantities

derived from it. In particular, we are interested in studying the dependence of the par-

tition function, which is determined as a functional integral over a Boltzmann weight

in natural units

Z[J; G−1; K; L] =

∫

D�e−E[�;J;G
−1 ;K;L] (6)

and its logarithm, the negative free energy

W [J; G−1; K; L] = ln Z[J; G−1; K; L] : (7)

By performing a loop expansion of the partition function (6), the contributions to the

negative free energy (7) consist of all connected vacuum diagrams constructed accord-

ing to Feynman rules. A single dot represents the energy shift

• ≡ −E[0] (8)

a cross an integral over the current

≡

∫

1

J1 (9)

and a line represents the free correlation function

(10)

which is the functional inverse of the kernel G−1 in the energy functional (1), de3ned

by
∫

2

G12G
−1
23 = �13 : (11)

A 3-vertex represents an integral over the cubic interaction

≡ −

∫

123

K123 (12)

and a 4-vertex stands for an integral over the quartic interaction

≡ −

∫

1234

L1234 : (13)

If the cubic and the quartic interactions K and L in (1) vanish, the functional integral in

(6) is Gaussian and can be immediately calculated to obtain for the negative free energy

W (0)[J; G−1; 0; 0] =−E[0]−
1

2
Tr lnG−1 +

1

2

∫

12

G12J1J2 ; (14)
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where the trace of the logarithm of the kernel is de3ned by the series [10, p. 16]

Tr lnG−1 =

∞
∑

n=1

(−1)n+1

n

∫

1:::n

{G−1
12 − �12} · · · {G

−1
n1 − �n1} : (15)

The zeroth-order contribution (14) to the negative free energy will be graphically rep-

resented by

W (0) = •+
1

2
©+

1

2
: (16)

In order to 3nd the connected vacuum diagrams of the negative free energy together

with their weights for nonvanishing cubic and quartic interactions K and L, we proceed

as follows. We 3rst introduce, in Section 2.1, functional derivatives with respect to the

graphical elements J , G−1, K , L of Feynman diagrams. With these we derive, in

Section 2.2, a single nonlinear functional di erential equation for the negative free

energy. This is converted into a graphical relation in Section 2.3 which is solved

graphically in Section 2.4.

2.1. Functional derivatives

Each Feynman diagram may be considered as a functional of the quantities in (1)

characterizing the 3eld theory, i.e., of the current J , the kernel G−1, and the interactions

K and L. In this section, we introduce functional derivatives with respect to these,

identify their associated graphical representations, and study 3eld-theoretic relations

between them.

2.1.1. Graphical representation

We start with studying the functional derivative with respect to the current J , whose

basic rule is

�J2

�J1
= �12 : (17)

We represent this graphically by extending the elements of Feynman diagrams by an

open dot with two labelled line ends representing the delta function:

(18)

Thus, we can write di erentiation (17) graphically as

(19)

Di erentiating a cross with respect to the current replaces the cross by the spatial index

of the current.

Since � is a real scalar 3eld, the kernel G−1 is a symmetric functional matrix. This

property has to be taken into account when performing functional derivatives with

respect to the kernel G−1, whose basic rule is [4,5]

�G−1
12

�G−1
34

=
1

2
{�13�42 + �14�32} : (20)
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From identity (11) and the functional chain rule, we 3nd the e ect of this derivative

on the free propagator

− 2
�G12

�G−1
34

= G13G42 + G14G32 : (21)

This has the graphical representation

(22)

Thus, di erentiating a free correlation function with respect to the kernel G−1 amounts

to cutting the associated line into two pieces. The di erentiation rule (20) ensures that

the spatial indices of the kernel are symmetrically attached to the newly created line

ends in the two possible ways. Di erentiating a general Feynman diagram with respect

to G−1, the product rule of functional di erentiation leads to diagrams in each of which

one of the lines of the original Feynman diagram is cut.

We now study the graphical e ect of functional derivatives with respect to the free

propagator G, where the basic di erentiation rule reads

�G12

�G34

=
1

2
{�13�42 + �14�32} : (23)

This can be written graphically as follows:

(24)

Thus di erentiating a line with respect to the free correlation function removes the

line, leaving in a symmetrized way the spatial indices of the free correlation function

on the vertices to which the line was connected.

As the interactions K and L are functional tensors which are symmetric in their

respective indices, their functional derivatives are

�K123

�K456
=

1

6
{�14�25�36 + 5 perm:} ; (25)

�L1234

�L5678
=

1

24
{�15�26�37�48 + 23 perm:} : (26)

They have the graphical representations

(27)

(28)
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Thus, di erentiating a 3- or a 4-vertex with respect to the cubic or the quartic interaction

removes this vertex, leaving in a symmetrized way the spatial indices of the interaction

on the line ends to which the vertex was connected.

2.1.2. Compatibility relations

The functional derivative of the energy functional (1) with respect to the current J1
gives the 3eld �1:

�1 =−
�E[�]

�J1
: (29)

Products of 3elds, on the other hand, can be obtained in various ways from functional

derivatives of the energy functional (1)

�1�2 =
�2E[�]

�J1�J2
= 2

�E[�]

�G−1
12

; (30)

�1�2�3 =−
�3E[�]

�J1�J2�J3
=−2

�2E[�]

�G−1
12 �J3

= 6
�E[�]

�K123
; (31)

�1�2�3�4 =
�4E[�]

�J1�J2�J3�J4
= 2

�3E[�]

�G−1
12 �J3�J4

=−6
�2E[�]

�K123�J4

= 4
�2E[�]

�G−1
12 �G

−1
34

= 24
�E[�]

�L1234
; (32)

as follows from (17), (20), (25) and (26). Applying these rules to the functional

integral of the partition function (6), we obtain for the functional derivatives of the

negative free energy (7) various compatibility relations, for instance

�W

�G−1
12

=−
1

2

{

�2W

�J1�J2
+
�W

�J1

�W

�J2

}

; (33)

�W

�K123
=

1

3

{

�2W

�G−1
12 �J3

+
�W

�G−1
12

�W

�J3

}

; (34)

�W

�L1234
=−

1

6

{

�2W

�G−1
12 �G

−1
34

+
�W

�G−1
12

�W

�G−1
34

}

: (35)

In the following it will turn out that the compatibility relation (34) is crucial for

deriving a single functional di erential equation for W .

2.2. Functional di4erential equation for W = ln Z

We start from the identity
∫

D�
�

��1
{�2e

−E[�]}= 0 ; (36)
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which follows by direct functional integration from the vanishing of the exponential at

in3nite 3elds. Taking into account the explicit form of the energy functional (1), we

perform the functional derivative with respect to the 3eld and obtain

∫

D�

{

�12 + J1�2 −

∫

3

G−1
13 �2�3

−
1

2

∫

34

K134�2�3�4 −
1

6

∫

345

L1345�2�3�4�5

}

e−E[�] = 0 : (37)

Substituting 3eld products by functional derivatives according to (29)–(32), we keep

the number of these derivatives at a minimum and express the resulting equation in

terms of the partition function (6):

�12Z + J1
�Z

�J2
+ 2

∫

3

G−1
13

�Z

�G−1
23

+ 3

∫

34

K134
�Z

�K123
+ 4

∫

345

L1345
�Z

�L2345
= 0 :

(38)

Going over from Z to W = ln Z , we obtain the linear functional di erential equation

�12 + J1
�W

�J2
+ 2

∫

3

G−1
13

�W

�G−1
23

+ 3

∫

34

K134
�W

�K123
+ 4

∫

345

L1345
�W

�L2345
= 0 :

(39)

Applying the compatibility relations (34) and (35), this linear functional di erential

equation turns into the nonlinear one

�12 + J1
�W

�J2
+ 2

∫

3

G−1
13

�W

�G−1
23

= −

∫

34

K134

{

�2W

�G−1
23 �J4

+
�W

�G−1
23

�W

�J4

}

+
2

3

∫

345

L1345

{

�2W

�G−1
23 �G

−1
45

+
�W

�G−1
23

�W

�G−1
45

}

; (40)

which is identical with Eq. (55) in Ref. [5]. In order to eliminate functional derivatives

with respect to the current J , we consider the second identity
∫

D�
�

��1
e−E[�] = 0 ; (41)

which leads to

∫

D�

{

−J1 +

∫

2

G−1
12 �2 +

1

2

∫

23

K123�2�3 +
1

6

∫

234

L1234�2�3�4

}

e−E[�]

=0 : (42)
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Applying again the substitution rules (29)–(31) while keeping the number of functional

derivatives at a minimum, and taking into account the partition function (6), we obtain

for the negative free energy W = ln Z :

�W

�J1
=

∫

2

G12J2 +

∫

234

K234G12

�W

�G−1
34

+

∫

2345

L2345G12

�W

�K345
: (43)

Di erentiatin
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Note that due to (34) the functional derivative with respect to the cubic interaction K

in (43) is compatible with functional derivatives with respect to the current J and the

kernel G−1. Inserting (34) in (43) would lead to Eq. (54) in Ref. [5],

�W

�J1
=

∫

2

G12J2 +

∫

234

K234G12

�W

�G−1
34

+
1

3

∫

2345

L2345G12

{

�2W

�G−1
12 �J3

+
�W

�G−1
12

�W

�J3

}

; (46)

such that functional derivatives with respect to the current J in Eq. (40) can no longer

be eliminated. This line of approach has been pursued in Ref. [5] where the two

coupled nonlinear di erential equations (40) and (46) for the negative free energy are

used for deriving all connected vacuum diagrams.

2.3. Graphical relation

With the help of the functional chain rule, the 3rst and second derivatives with

respect to the kernel G−1 are rewritten as

�

�G−1
12

=−

∫

34

G13G24

�

�G34

(47)

and

�2

�G−1
12 �G

−1
34

=

∫

5678

G15G26G37G48

�2

�G56�G78

+
1

2

∫

56

{G13G25G46 + G14G25G36 + G23G15G46

+G24G15G36}
�

�G56

; (48)

respectively. The functional di erential equation (45) for W takes then the form

�11

∫

1

+

∫

12

G12J1J2 − 2

∫

12

G12

�W

�G12

=

∫

1234

K123G12G34J4

+2

∫

123456

K123G14G25G36J4
�W

�G56

−

∫

12345

L1234G15J5
�W

�K234
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− 2

∫

12345678

K123K456G14G25G37G68

�W

�G78

−

∫

12345678

K123K456G12G34G57G68

�W

�G78

−

∫

123456789I1

K123K456G14G27G38G59G6I1

{

�2W

�G78�G9I1

+
�W

�G78

�W

�G9I1

}

+

∫

1234567

K123L4567G12G34

�W

�K567

+

∫

123456789

K123K4567G14G27G38

{

�2W

�K567�G89

+
�W

�K567

�W

�G89

}

+
4

3

∫

123456

L1234G12G35G46

�W

�G56

+
2

3

∫

12345678

L1234G15G26G37G48

{

�2W

�G56�G78

+
�W

�G56

�W

�G78

}

: (49)

If the cubic and the quartic interactions K and L vanish, Eq. (49) is solved by the

zeroth-order contribution to the negative free energy (14) which has the functional

derivatives

�W (0)

�J1
=

∫

2

G12J2;
�W (0)

�G12

=
1

2
G−1
12 +

1

2
J1J2;

�2W (0)

�G12�G34

=−
1

4

{

G−1
13 G

−1
24 + G−1

14 G
−1
23

}

: (50)

For nonvanishing cubic and quartic interactions K and L, the right-hand side in

Eq. (49) produces corrections to (14) which we shall denote by W (int). Thus, the

negative free energy W decomposes according to

W =W (0) +W (int) : (51)

Inserting this into (49) and using (50), we obtain the following functional di erential

equation for the interaction negative free energy W (int):

∫

12

G12

�W (int)

�G12

=−
1

4

∫

1234

L1234G12G34 +
1

4

∫

123456

K123K456G14G25G36
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+
3

8

∫

123456

K123K456G14G23G56 −

∫

1234

K123G12G34J4

−
1

2

∫

123456

L1234G12G35G46J5J6 +
1

2

∫

12345678

K123K456G14G25G37G68J7J8

+
1

2

∫

12345678

K123K456G12G34G57G68J7J8 −
1

2

∫

123456

K123G14G25G36J4J5J6

−
1

2

∫

12345678

L1234G15G26G37G48J5J6J7J8

+
1

8

∫

123456789I1

K123K456G14G27G38G59G6I1J7J8J9J I1

−

∫

123456

L1234G12G35G46

�W (int)

�G56

+

∫

12345678

K123K456G14G25G37G48

�W (int)

�G78

+

∫

12345678

K123K456G12G34G57G68

�W (int)

�G78

−
3

4

∫

1234567

K123L4567G12G34

�W (int)

�K567

−

∫

123456

K123G14G25G36J4
�W (int)

�G56

+
1

2

∫

12345

L1234G15J5
�W (int)

�K234

+
1

3

∫

12345678

L1234G15G26G37G48J5J6
�W (int)

�G78

+
1

2

∫

123456789I1

K123K456G14G27G38G59G6I1J7J8
�W (int)

�G9I1

−
1

4

∫

123456789

K123L4567G14G27G38J7J8
�W (int)

�K567

−
1

3

∫

12345678

L1234G15G26G37G48

{

�2W (int)

�G56�G78

+
�W (int)

�G56

�W (int)

�G78

}

+
1

2

∫

123456789I1

K123K456G14G27G38G59G6I1

{

�2W (int)

�G78�G9I1

+
�W (int)

�G78

�W (int)

�G9I1

}

−
1

2

∫

123456789

K123L4567G14G27G38

{

�2W (int)

�K567�G89

+
�W (int)

�K567

�W (int)

�G89

}

:

(52)
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With the help of the graphical rules (9), (10), (12), (13), this can be written diagram-

matically as follows:

(53)

The e ect of the term on the left-hand side is to count the number of lines of

each connected vacuum diagram. Indeed, the functional derivative �=�G12 removes

successively the lines which are, subsequently, reinserted by the operation
∫

12
G12. The

right-hand side contains altogether 25 terms, 10 without W (int), 12 linear in W (int) and

3 bilinear in W (int).

2.4. Loopwise recursive graphical solution

Now we show how Eq. (53) is solved graphically for the current-free connected

vacuum diagrams. To this end we expand the interaction negative free energy W (int)

with respect to the loop order l

W (int) =

∞
∑

l=2

W (l) : (54)

With the help of (54) we convert Eq. (53) into a recursive graphical solution for the

current-free expansion coe@cients W (l). For l= 2, Eq. (53) reduces to

(55)
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which is immediately solved by

(56)

as the 3rst vacuum diagram contains 2 and the last two vacuum diagrams 3 lines. For

l ≥ 3 we obtain the graphical recursion relation

(57)

We observe that for either a vanishing cubic or quartic interaction the graphical recur-

sion relation (57) only involves the graphical operation of removing lines. Proceeding

to the loop order l=3, we have to evaluate from the vacuum diagrams (56) a one-line

amputation

(58)

a two-line amputation

(59)

a 3-vertex amputation

(60)
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and the amputation of one line and one 3-vertex

(61)

Then we obtain from Eq. (57) for l= 3:

(62)

which leads to the connected vacuum diagrams listed in Table 1 together with

the subsequent loop order l = 4. In a similar way, the graphical relation (53) can

be recursively iterated to construct the connected vacuum diagrams which involve

currents.

The topology of each connected diagram in Table 1 can be characterized by the 5

component vector (S; D; T; F ;N ). Here S, D, T , F denote the number of self-, double,

triple and fourfold connections, whereas N stands for the number of identical vertex

permutations where the 3- and 4-vertices as well as the currents remain attached to

the lines emerging from them in the same way as before. The proper weights of

the connected vacuum diagrams in the �3–�4-theory are then given by the formula

[4,11,12]

W =
1

2!S+D3!T4!FN
: (63)

For higher orders, it becomes more and more di@cult to identify by inspection the

number N of identical vertex permutations. A mnemonic rule states that the number

N of identical vertex permutations is given by twice the number of symmetry axes,

if the diagram is imagined in a suitable maximally symmetric way in some higher

dimensional space. A more systematic determination of N is possible by introducing a

matrix notation for the diagrams as explained in detail in Refs. [4,12].

3. E�ective energy

In 3eld theory one is often interested in the functional Legendre transform of the

negative free energy W [J; G−1; K; L] with respect to the current J [12–15]. To this end
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Table 1

Connected vacuum diagrams and their weights of the �3–�4-theory without currents up to four loops



386 A. Pelster, H. Kleinert / Physica A 323 (2003) 370–400

Table 1. Continued

Within each loop order l the diagrams are distinguished with respect to the number p of 4-vertices. Each

diagram is characterized by the vector (S; D; T; F ;N ) whose components specify the number of self-, double,

triple, fourfold connections, and of the identical vertex permutations, respectively.

one introduces the new 3eld

�1[J; G
−1; K; L] =

�W [J; G−1; K; L]

�J1

∣

∣

∣

∣

G−1 ; K; L

; (64)

which implicitly de3nes J as a functional of �:

J1 = J1[�;G
−1; K; L] : (65)

From the Eqs. (6) and (7) we read o that � coincides with the 1-point function of

the theory, i.e., the 3eld expectation value of the Euctuations around the background

3eld � in Eq. (4) in the presence of the current J . The functional Legendre transform
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of the negative free energy W [J; G−1; K; L] with respect to the current J results in the

e ective energy

�[�;G−1; K; L]=

∫

1

J1[�;G
−1; K; L]

�W [J [�;G−1; K; L]; G−1; K; L]

�J1[�;G−1; K; L]

∣

∣

∣

∣

G−1 ; K; L

−W [J [�;G−1; K; L]; G−1; K; L] ; (66)

which simpli3es due to (64):

�[�;G−1; K; L] =

∫

1

J1[�;G
−1; K; L]�1 −W [J [�;G−1; K; L]; G−1; K; L] : (67)

Taking into account the functional chain rule, it leads to the equation of state

��[�;G−1; K; L]

��1

∣

∣

∣

∣

G−1 ; K; L

= J1[�;G
−1; K; L] : (68)

Performing a loop expansion, the respective contributions to the e ective energy (67)

may be displayed as one-particle irreducible vacuum diagrams which are constructed

according to the Feynman rules (8), (10), (12), (13). In addition a dot with a wiggled

line represents an integral over the 3eld expectation value

≡

∫

1

�1 : (69)

For instance, if the cubic and the quartic interactions K and L vanish, the zeroth order

contribution to the negative free energy (14) leads with (64) to the 3eld expectation

value

�
(0)
1 [J; G−1; 0; 0] =

∫

2

G12J2 ; (70)

which is inverted as

J 01 [�;G
−1; 0; 0] =

∫

2

G−1
12 �2 (71)

to result in the zeroth-order contribution to the e ective energy

�(0)[�;G−1; 0; 0] = E[0] +
1

2
Tr lnG−1 +

1

2

∫

12

G−1
12 �1�2 : (72)

Its graphical representation reads by de3nition

− �(0) = •+
1

2
©+

1

2
: (73)

In order to 3nd the one-particle irreducible vacuum diagrams of the e ective energy

together with their weights for nonvanishing cubic and quartic interactions K and L,
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we proceed as follows. We start in Section 3.1 with investigating the consequences of

the functional Legendre transform with respect to the current for functional derivatives

and their compatibility relations. With these results we derive in Section 3.2 a single

nonlinear functional di erential equation for the e ective energy which is converted

into a graphical relation in Section 3.3 and recursively solved in Section 3.4.

3.1. Functional Legendre transform

In order to investigate in detail the 3eld-theoretic consequences of the functional

Legendre transform, we start with the e ective energy �[�;G−1; K; L] and introduce the

current J via the equation of state (68). As this implicitly de3nes the 3eld expectation

value as a functional of the current, i.e.,

�1 = �1[J; G
−1; K; L] ; (74)

the negative free energy is recovered according to

W [J; G−1; K; L] =

∫

1

J1�1[J; G
−1; K; L]− �[�[J; G−1; K; L]; G−1; K; L] : (75)

With this we derive useful relations between the functional derivatives of the negative

free energy W and the e ective energy �, respectively.

3.1.1. Functional derivatives

Taking into account the functional chain rule, the 3rst functional derivatives of the

negative free energy W read (64) and

�W [J; G−1; K; L]

�G−1
12

∣

∣

∣

∣

J;K;L

=−
��[�[J; G−1; K; L]; G−1; K; L]

�G−1
12

∣

∣

∣

∣

�;K;L

; (76)

�W [J; G−1; K; L]

�K123

∣

∣

∣

∣

J;G−1 ;L

=−
��[�[J; G−1; K; L]; G−1; K; L]

�K123

∣

∣

∣

∣

�;G−1 ;L

; (77)

�W [J; G−1; K; L]

�L1234

∣

∣

∣

∣

J;G−1 ;K

=−
��[�[J; G−1; K; L]; G−1; K; L]

�L1234

∣

∣

∣

∣

�;G−1 ;K

: (78)

To evaluate second functional derivatives of the negative free energy W is more in-

volved. At 3rst we observe

�2W [J; G−1; K; L]

�J2�J1

∣

∣

∣

∣

G−1 ; K; L

=
��1[J; G

−1; K; L]

�J2

∣

∣

∣

∣

G−1 ; K; L

;

=

(

�J2[�[J; G
−1; K; L]; G−1; K; L]

��1[J; G−1; K; L]

∣

∣

∣

∣

G−1 ; K; L

)

−1

=

(

�2�[�[J; G−1; K; L]; G−1; K; L]

��1[J; G−1; K; L]��2[J; G−1; K; L]

∣

∣

∣

∣

G−1 ; K; L

)

−1

;

(79)
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where we used (64), (68) and the fact that the derivative of a functional equals the

inverse of the derivative of the inverse functional. To precise the meaning of relation

(79), we rederive it from another point of view. To this end we consider the functional

identity

�J1[�[J; G
−1; K; L]; G−1; K; L]

�J2

∣

∣

∣

∣

G−1 ; K; L

= �12 (80)

and apply the functional chain rule together with (64) and (68), so that we result in
∫

3

�2�[�[J; G−1; K; L]; G−1; K; L]

��1[J; G−1; K; L]��3[J; G−1; K; L]

∣

∣

∣

∣

G−1 ; K; L

×
�2W [J; G−1; K; L]

�J3�J2

∣

∣

∣

∣

G−1 ; K; L

= �12 : (81)

Furthermore we obtain from (76) by applying again the functional chain rule and

relation (79)

�

�J3

(

�W [J; G−1; K; L]

�G−1
12

∣

∣

∣

∣

J;K;L

)

G−1 ;K;L

= −

∫

4

(

�2�[�[J; G−1; K; L]; G−1; K; L]

��3[J; G−1; K; L]��4[J; G−1; K; L]

∣

∣

∣

∣

G−1 ; K; L

)

−1

×
�

��4[J; G−1; K; L]

(

��[�[J; G−1; K; L]; G−1; K; L]

�G−1
12

∣

∣

∣

∣

�;K;L

)

G−1 ;K;L

(82)

and, correspondingly,

�2W [J; G−1; K; L]

�G−1
34 �G

−1
12

∣

∣

∣

∣

∣

J;K;L

=−
�2�[�[J; G−1; K; L]; G−1; K; L]

�G−1
34 �G

−1
12

∣

∣

∣

∣

∣

�;K;L

+

∫

56

(

�2�[�[J; G−1; K; L]; G−1; K; L]

��5[J; G−1; K; L]��6[J; G−1; K; L]

∣

∣

∣

∣

G−1 ; K; L

)

−1

×
�

��5[J; G−1; K; L]

(

��[�[J; G−1; K; L]; G−1; K; L]

�G−1
12

∣

∣

∣

∣

�;K;L

)

G−1 ;K;L

×
�

��6[J; G−1; K; L]

(

��[�[J; G−1; K; L]; G−1; K; L]

�G−1
34

∣

∣

∣

∣

∣

�;K;L

)

G−1 ;K;L

:

(83)
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3.1.2. Compatibility relations

Performing the functional Legendre transform with respect to the current, the com-

patibility relation (33) between functional derivatives with respect to the current J and

the kernel G−1, we result in

(

�2�[�;G−1; K; L]

��2��1

∣

∣

∣

∣

G−1 ; K; L

)

−1

= 2
��[�;G−1; K; L]

�G−1
12

∣

∣

∣

∣

�;K;L

− �1�2 (84)

due to (64), (76) and (79). The compatibility relation (34) between functional deriva-

tives with respect to the current J , the kernel G−1 and the 3-vertex K is converted by

using (64), (76), (77) and (82) to

∫

4

�

��4

(

��[�;G−1; K; L]

�G−1
12

∣

∣

∣

∣

�;K;L

)

G−1 ;K;L

(

�2�[�;G−1; K; L]

��3��4

∣

∣

∣

∣

G−1 ; K; L

)

−1

=3
��[�;G−1; K; L]

�K123

∣

∣

∣

∣

�;G−1 ;L

−
��[�;G−1; K; L]

�G−1
12

∣

∣

∣

∣

�;K;L

�3 : (85)

Furthermore we perform the functional Legendre transform of the compatibility relation

(35) between functional derivatives with respect to the kernel G−1 and the 4-vertex L

which leads with (76), (78) and (83) to

∫

56

�

��5

(

��[�;G−1; K; L]

�G−1
12

∣

∣

∣

∣

�;K;L

)

G−1 ;K;L

�

��6

(

��[�;G−1; K; L

�G−1
34

∣

∣

∣

∣

∣

�;K;L

)

G−1 ;K;L

×

(

�2�[�;G−1; K; L]

��5��6

∣

∣

∣

∣

G−1 ; K; L

)

−1

= 6
��[�;G−1; K; L]

�L1234

∣

∣

∣

∣

�;G−1 ;K

+
�2�[�;G−1; K; L]

�G−1
12 �G

−1
34

∣

∣

∣

∣

∣

�;K;L

−
��[�;G−1; K; L]

�G−1
12

∣

∣

∣

∣

�;K;L

��[�;G−1; K; L]

�G−1
34

∣

∣

∣

∣

∣

�;K;L

:

(86)

3.2. Functional di4erential equation for �

Now we aim at deriving a functional di erential equation for the e ective energy �.

To this end we start with the 3rst functional di erential equation (40) for W , which

originates from the identity (36), and perform the functional Legendre transform with

respect to the current J . Inserting (64),(68), (76), (82) and (83) by taking into account

the compatibility relation (84) between functional derivatives with respect to the 3eld
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expectation value � and the kernel G−1, we thus obtain

�12 + �1

��

��2

− 2

∫

3

G−1
13

��

�G−1
23

=

∫

34

K134
��

�G−1
23

�4 +

∫

345

K134
�2�

�G−1
23 ��5

{

2
��

�G−1
45

− �4�5

}

+
2

3

∫

345

L1345

{

−
�2�

�G−1
23 �G

−1
45

+
��

�G−1
23

��

�G−1
45

}

+
2

3

∫

34567

L1345
�2�

�G−1
23 ��6

�2�

�G−1
45 ��7

{

2
��

�G−1
67

− �6�7

}

; (87)

which corresponds to Eq. (109) in Ref. [5]. Then we reduce the number of functional

derivatives by inserting a combination of the two compatibility relations (84) and (85),

i.e.,
∫

4

�2�

�G−1
12 ��4

{

2
��

�G−1
34

− �3�4

}

= 3
��

�K123
−

��

�G−1
12

�3 (88)

in the last term of Eq. (87), so that we result in

�11

∫

1

+

∫

1

�1

��

��1

− 2

∫

12

G−1
12

��

�G−1
12

=

∫

123

K123�3

��

�G−1
12

+

∫

1234

K123
�2�

�G−1
12 ��4

{

2
��

�G−1
34

− �3�4

}

+
2

3

∫

1234

L1234

{

−
�2�

�G−1
12 �G

−1
34

+
��

�G−1
12

��

�G−1
34

}

+
2

3

∫

12345

L1234
�2�

�G−1
12 ��5

{

3
��

�K345
−

��

�G−1
34

�5

}

: (89)

In order to eliminate functional derivatives with respect to the 3eld expectation value

�, we consider the second functional di erential equation (43) for W , which stems

from identity (41). Applying (64), (68), (76) and (77), we obtain

��

��1

=

∫

2

G−1
12 �2 +

∫

23

K123
��

�G−1
23

+

∫

234

L1234
��

�K234
; (90)

which leads to

�2�

�G−1
12 �3

=
1

2
{�13�2 + �23�1}+

∫

45

K345
�2�

�G−1
12 �G

−1
45

+

∫

456

L3456
�2�

�G−1
12 �K456

: (91)
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Thus we can, indeed, eliminate functional derivatives with respect to the 3eld expecta-

tion value � on the right-hand side of Eq. (89). In this way, we end up with a single

nonlinear functional di erential equation for the e ective energy � which involves on

the right-hand side functional derivatives with respect to the kernel G−1 and the cubic

interaction K :

�11

∫

1

+

∫

1

�1

��

��1

− 2

∫

12

G−1
12

��

�G−1
12

=

∫

123456

K123K456
�2�

�G−1
12 �G

−1
45

{

2
��

�G−1
36

− �3�6

}

+3

∫

123

K123�3

��

�G−1
12

−

∫

123

K123�1�2�3

+

∫

1234567

K123L4567
�2�

�G−1
12 �K456

{

2
��

�G−1
37

− �3�7

}

+
2

3

∫

1234

L1234

{

−
�2�

�G−1
12 �G

−1
34

+
��

�G−1
12

��

�G−1
34

}

+2

∫

1234

L1234�4

��

�K123
−

2

3

∫

1234

L1234�3�4

��

�G−1
12

+2

∫

1234567

K123L4567
�2�

�G−1
12 �G

−1
45

��

�K367

−
2

3

∫

1234567

K123L4567�3

�2�

�G−1
12 �G

−1
45

��

�G−1
67

+2

∫

12345678

L1234L5678
�2�

�G−1
12 �K567

��

�K348

−
2

3

∫

12345678

L1234L5678�8

�2�

�G−1
12 �K567

��

�G−1
34

: (92)

Note that applying the compatibility relation (85) between functional derivatives with

respect to the 3eld expectation value �, the kernel G−1 and the 3-vertex K to (90)

would lead to Eq. (108) in Ref. [5],

��

��1

=

∫

2

G−1
12 �2 +

∫

23

K123
��

�G−1
23

+
1

3

∫

234

L1234�4

��

�G−1
23

+
1

3

∫

2345

L1234
�2�

�G−1
23 ��5

{

2
��

�G−1
34

− �3�4

}

; (93)
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so that functional derivatives with respect to the 3eld expectation value � in (87)

could no longer be eliminated. This procedure has been pursued in Ref. [5], where the

two coupled nonlinear functional di erential equations (87) and (93) for the e ective

energy are investigated. Due to the last term in (87) the highest nonlinearity within the

approach of Ref. [5] is cubic, whereas our functional di erential equation (92) contains

at most only quadratic nonlinearities.

3.3. Graphical relation

If the cubic and the quartic interactions K and L vanish, Eq. (92) is solved by

the zeroth-order contribution to the e ective energy (72) which has the functional

derivatives

��(0)

��1

=

∫

2

G−1
12 �2;

��(0)

�G−1
12

=
1

2
{G12 + �1�2} ;

�2�(0)

�G−1
12 �G

−1
34

=−
1

4
{G13G24 + G14G23} : (94)

For non-vanishing cubic and quartic interactions K and L, the right-hand side in

Eq. (92) produces corrections to (72) which we shall denote with �(int). Thus the

e ective energy � decomposes according to

� = �(0) + �(int) : (95)

Inserting this into (92) and using (94), we obtain together with (47) and (48)

the following function di erential equation for the interaction part of the e ective

energy �(int):
∫

1

�1

��(int)

��1

+ 2

∫

12

G12

��(int)

�G12

=
1

2

∫

1234

L1234G12G34 −
1

2

∫

123456

K123K456G14G25G36

+
3

2

∫

123

K123G12�3 +
1

6

∫

1234567

K123L4567G14G25G67�3

+
1

6

∫

1234567

K123L4567G14G25�3�6�7 +
1

2

∫

123

K123�1�2�3

−
1

6

∫

1234

L1234�1�2�3�4 − 2

∫

123456

L1234G12G35G46

��(int)

�G56

−
2

3

∫

12345678

L1234G15G26G37G48

�2�(int)

�G56�G78

+3

∫

12345678

K123K456G14G25G37G68

��(int)

�G78
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−2

∫

123456789I1 I2 I3

K123K456G17G28G59G6I1G3I2G4I3

�2�(int)

�G78�G9I1

��(int)

�G I2 I3

+
4

3

∫

123456789I1 I2

K123L4567�3G16G28G79G4I1G5I2

��(int)

�G89

��(int)

�G I1 I2

+
2

3

∫

123456789I1 I2 I3 I4

K123L4567�3G18G29G6I1G7I2G4I3G5I4

�2�(int)

�G89�G I1 I2

��(int)

�G I3 I4

−
2

3

∫

123456789I1 I2 I3

L1234L5678�5G19G2I1G3I2G4I3

�2�(int)

�K678�G9I1

��(int)

�G I2 I3

: (96)

With the help of the graphical rules (10), (12), (13), (69), this functional di erential

equation can be written diagrammatically as follows:

(97)

The e ect of the left-hand side is to count the number of 3eld expectation values plus

two times the number of lines of each one-particle irreducible vacuum diagram. The
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right-hanIB[ B Td2iC@[W@d2,/HTj]]WCBC]I B Tdid2,/HSSQIVI@CS3 B Te2,/HTCS3 B Tcontai-hanIS S3V@@C]I B Td2,sHWQ[]VSC]I B TaltogethehanIB[ B Td2iC@[W@r2,kHTjC@[B@V]V B T32,QHTj2[QVW3BW B Tdn2,/HTj]]WCBC]I B Ttermsyi7 / Q/
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the loop order l= 3, we have to evaluate from the vacuum diagrams (100) a one-line

amputation

(102)

a two-line amputation

(103)

a 3-vertex amputation

(104)

and the amputation of one line and one 3-vertex

(105)

With this we obtain from Eq. (101) for l= 3

(106)

which leads to the one-particle irreducible vacuum diagrams listed in Table 2 together

with the subsequent loop order l=4. In a similar way, the graphical relation (97) can

be iterated to construct the one-particle irreducible vacuum diagrams which involve

3eld expectation values. Note that Eq. (101) is suitable for an automatized symbolic

computation which can be implemented as in Ref. [4], such that one may proceed to

higher orders without much e ort except for computer time.

4. Summary

In this work we have presented a method for determining the connected and the

one-particle irreducible vacuum diagrams together with their proper weights in the

ordered phase of the euclidean multicomponent scalar �4-theory. Whereas in the dis-

ordered, symmetric phase it is su@cient to deal with even 3eld powers in the energy

functional by using functional derivatives with respect to the free correlation function

[4], the situation is more complicated in the ordered, broken-symmetry phase. Due
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Table 2

One-particle irreducible vacuum diagrams and their weights of the �3–�4-theory without 3eld expectation

values up to four loops

Within each loop order l the diagrams are distinguished with respect to the number p of 4-vertices. Each

diagram is characterized by the vector (S; D; T; F ;N ) whose components specify the number of self-, double,

triple, fourfold connections, and of the identical vertex permutations, respectively.
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to the non-zero 3eld expectation value both odd and even 3eld powers appear in the

energy functional, so it is necessary to extend the symmetric treatment by introducing

a second type of functional derivative.

We have based the construction on functional derivatives with respect to both the

free correlation function and the 3-vertex in contrast to a previous solution of the

same problem in Ref. [5], where functional derivatives with respect to both the free

correlation function and the external current was used. Our approach has turned out

to be conceptually easier, more transparent, and possibly more e@cient than the one

used in Ref. [5] for the following reasons. Whereas we obtain one nonlinear graphical

recursion relation for the connected and the one-particle irreducible vacuum diagrams,

Ref. [5] had to solve two coupled nonlinear graphical recursion relations. In particular,

the determination of the loop contributions to the interacting part of the free energy

W (int) and the e ective energy �(int) necessitates the construction of the diagrams of

one-point functions in an intermediate step, whereas our recursive approach only in-

volves the desired vacuum diagrams. Another advantage of our method is that it only

involves quadratic nonlinearities for the recursive graphical construction of one-particle

irreducible vacuum diagrams, whereas there appears a cubic nonlinearity in the corre-

sponding procedure of Ref. [5].

5. Outlook

Recently, it has been shown that the Schwinger-Dyson equations of QED [16] and

of �4-theory in the disordered phase [17] can be exactly closed in a certain functional

analytic sense. Using functional derivatives with respect to the free propagators and

the interaction allows to derive a closed set of equations for the connected as well as

the one-particle irreducible n-point functions. Their conversion to graphical recursion

relations leads to a systematic graphical generation of all connected and one-particle

irreducible Feynman diagrams. In the future it remains to analyse the closure of the

Schwinger-Dyson equations also for the �4-theory in the broken-symmetry phase.
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