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Starting from a forward—backward path integral of a point particle in a bath of harmonic os-
cillators, we derive the Fokker-Planck and Langevin equations with and without inertia. Special
emphasis is placed upon the correct operator order in the time evolution operator. The crucial step
is the evaluation of a Jacobian with a retarded time derivative by analytic regularization.

I. INTRODUCTION

In 1963, Feynman and Vernon [1] set up a path integral for the study of a point particle in a thermal bath of
harmonic oscillators. Stimulated by work of Dekker [3] and Caldeira and Leggett [4], this has led to a large body of
literature on quantum systems with dissipation which are now textbook material. A large number of applications is
reviewed in [5] with many references; the foundations are presented pedagogically in the textbook [6], and we shall
adhere to the same notation in what follows.

If the particle has a mass M, moves in a potential V(z), and is coupled linearly to a large number of oscillators
X;(t) of mass M; and frequency €);, the probability to run from the spacetime point z,t, to xpt, is given by the
forward backward path

|(zotp|zata)|* = /D:p.ﬂ)x_ exp {%/t ' [? (@5 —22) = V(zy) + V(=) — 24 ZciXi +a_ ZciXi] } , (1.1)

where 24 (t) and z_(t) are two fluctuating paths connecting the initial and final points z, and xp, and ¢; are coupling
strengths to be suitably chosen later. The bath oscillators are supposed to be in thermal equilibrium at a temperature
T. This is taken into account by forming the thermal average of the bath oscillators. For a single oscillator, this is
done by considering ¢;x+ as external currents ji coupled to X4, and calculating the Gaussian integral

Zoljerj ] = / Xy dXo (Xo hBIXa0)ar (XotslXata)t (Xyts| Xata)ls ™. (1.2)

where (X, 13| X,0)q is the imaginary-time amplitude

1 [ 1 MQ o,
(Xph 8| X40) = 57 || Snh exp { oh smh A0 (X; + X7) cosh hp) — 2XbXa]} , (1.3)

and (Xl,t1,|Xata)g2 the path integral over the bath oscillator

/DX(t)exp{%/t:b dt [%(XQ - 02X?) +jXH

= e(i/h)ACI’jFQJ(tb,ta). (14)

(Xoto| Xata)dy

with a total classical action

1 MQ
e (X2 + X2) cos Q(ty — ta)—2XpX
Ald =3 S lts — 1) (X + Xo) cos Qs — ta) 20X
1

ty
+ m/t dt[X o sin Oty — 1) + Xpsin Q(t — ta)]§(0), (1.5)

and the fluctuation factor
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XeXp{_hMQsinQ(tbta) /tu dt/tudt sin Q(tp — t) sin Q(¢ —ta)j(t)](t)}. (1.6)

The result of the thermal average in Eq. (1.2) is

Zoljs.i-] = exp{ - % /dt/dt’@(t - (1.7)

<[~ OC G +5)E)+ G~ IO~ 5] |

FQ,j(tb;t )

where ©(t — ') is the completely retarded Heaviside function which is equal to unity for ¢ > ¢’ and vanishes for ¢ < ¢/,
and C(t,t") A(t,t') and C(t,t’) are the thermal expectation values of commutator and anticommutator (A[X ), X(t")])r
and ({X (1), X (t)})r, respectively, in operator language. They are twice the real and imaginary parts of the time-
ordered Green function G(t,t') = (T'X (t), X (t'))r for t > t":

1 A cosh% [RB —i(t — 1))
G(t,t") = 3 [A(t, ') + C(t,t")] = IV — M . t>t (1.8)

which is the analytic continuation of the periodic imaginary-time Green function to 7 = it.
The thermal average of the probability (1.1) is then given by the forward-backward path integral

(@ptlrata)]? = / D (1 / Dr_(1)

X exp {% /tt dt [%(ﬁ @) (Vi) - V)| + %AFV[I+,I}} . (1.9)

where exp{iA¥V[z,,2_]/h} is the Feynman-Vernon influence functional defined by
Zolxy,x ] = exp {Z'AFV[IJHI,]/E} = exp (1AL [x4, 2 ]/ +iAF [14, @ _|/n} (1.10)

- exp{ - % / dt / dt' Ot~ 1) [(24 — 2 )OCH(L ) s+ 22)(E) + (a4 — ) (DA (1) s — 2 )(1)] }

with Cy(t,1") and Ap(t,t’) being commutator and anticommutator functions of the bath at temperature T. The
first and second parts of the exponents have been distinguished as dissipative and fluctuating parts ALY [z, 2] and
AEV[z,, 2] of of the effective influence action A¥Y [z, z_].

The bath functions Cy, (¢, ') and Ay, (¢,t') are sums of correlation functions of the individual oscillators of mass M;
frequency €, each contributing with a weight ¢Z. Thus we may write

Cb(t,t'):Zcf<[)AQ(t),f((')]>T :—h/oo ‘;—“'ab( Nisinw'(t — '),

™
[
/

L I
At t) = cf<{Xi(t),X,- t’ —h/ —ab ) coth 2k:T cosw/(t —t'), (1.11)
[

where oy, (w’) is the spectral density of the bath

2
c?
W' =2n ; 2]\4291' [6(w — Q) — 6(w' + Q)] (1.12)
For a discussion of the properties of the influence functional, we introduce an auxiliary retarded function

, ! /cD dw o (W) -t
=0t —t)— A o) 1.1
V=) =60 -t )M Ceo 2T W ¢ ’ (1.13)



and write
Ot —t")Cy(t,t") = iRMA(t —t') + ihMAw?6(t —t') (1.14)

with

1 Oodw’ab(w’)__iz c?
2t W M S M

%

(1.15)

Inserting the first term in the decomposition (1.14) into (1.11), the dissipative part of the influence functional can be
integrated by parts in ¢’ and becomes

A ey ] =~ t Lt / " (g — 2 ) (Ot — )y + ()
+%/t S (s — 2 YO — ) (s + ) (L), (1.16)

The §-function in (1.14) contributes to ALV [z, 2 ] a term
M o[
Boclosn | = 5 [ dian @t - o)), (1.17)
ta

which may simply be absorbed into the potential terms in the path integral (1.9) renormalizing them to

,%/tbdt Wien(24) — Vien(2 )] (1.18)

a

The odd bath function op(w’) can be expanded in a power series with only odd powers of w’. The lowest approxi-
mation

op (W) ~ 2M /', (1.19)

describes Ohmic dissipation with some friction constant . For frequencies much larger than the atomic relaxation
rates, the friction goes to zero. This behavior is modeled by the Drude form of the spectral function

2
~ “D
Inserting this into Eq. (1.13), we obtain the Drude form of the function ~(t):
vE(t) = O(t) ywpe Pt (1.21)

The superscript emphasizes the retarded nature. This can also be written as a Fourier integral

> dw —iw
wt)= [ Fawe (1.22)
oo 2T
with the Fourier components
Ry 1 iwp
=ry—. 1.23
W) =1 (1.23)

The position of the pole in the lower half-plane ensures the retarded nature of the friction term by producing the
Heaviside function in (1.21).

In the Ohmic limit (1.19), the dissipative part of the influence functional simplifies. Then ~(¢) becomes narrowly
peaked at positive ¢ may be expressed in terms of a right-sided d-function as

() — 7 8% (2), (1.24)

whose superscript R indicates the retarded asymmetry of the d-function, which has the property that



/dt o)sf(t) = 1. (1.25)

With this, (1.16) becomes a local action

FV M o : . \r_M_ 2
A o] ==y [t =) +i0)" - Frlad —a? (k). (1.26)
The right-sided nature of the d-function causes an infinitesimal negative shift in the time argument of the velocities
(4 +&_)(t) with respect to the factor (z4 —x_)(t), indicated by the superscript R. It expresses the causality of the
friction forces and will be seen to be crucial in producing a probability conserving time evolution of the probability
distribution.

The second term changes only the curvature of the effective potential at the initial time, and can be ignored. In
the first term it is important to observe that the retarded nature of the dissipative term and of the function ~(¢) in
(1.13) ensures that the velocity term (&4 4+ @_)(¢) lies before (x4 —x_)(t) in a time-sliced path integral. This ensures
the causality of the friction forces.

It is useful to incorporate the slope information (1.19) also into the bath correlation function Ay (¢,¢') in (1.11),
and factorize it as

Ap(t,t') = 2M~kpTK (t,t'), (1.27)

where

oo d ! L, ,
:/ %K(w’)ew (t=t), (1.28)
with Fourier transform
! ! !
KW)= W) By T (1.29)

2M’y w' 2k‘BT 2k‘BT7

which in the limit of a purely Ohmic dissipation simplifies to

/ /

coth —* (1.30)
T " 2pT '

K(w') — KOhm(w/)
The function K(w’) has the normalization K(0) = 1, giving K (¢ — ¢') a unit temporal area:
o
/ dtK(t—t)=1. (1.31)

In the classical limit A — 0,

, wh
K(W) =" (1.32)
D
and
1 /
K(t — tl) = EeiwD(tit ) (133)

In the limit of Ohmic dissipation, this becomes a §-function. Thus K (¢t —t’) may be viewed as a d-function broadened
by quantum fluctuations and relaxation effects.
With the function K (¢,t’), the fluctuation part of the influence functional in (1.10), (1.11), (1.9) becomes

AV [0y 2] = z%/t Lt /1t at (s — 2 )& K6 ) (2 — 2 )(F). (1.34)

Here we have used the symmetry of the function K (¢,t') to remove the Heaviside function ©(¢t—t') from the integrand,
extending the range of t'-integration to the entire interval (t,,t).



In the Ohmic limit, the probability of the particle to move from x,t, to z,t; is given by the path integral
(@tsfzata) = [ D (t) [ Do_(0)

oxp {% /tt dt {%(ﬁ ) (Vi) — V(x))] }

exp {—i /ttb it %(m Ce) ()@ + )R ()

X

X

AL M [t @ - a0 K0 - 200 (1.5)

This is the closed-time path integral of a particle in contact with a thermal reservoir.

The paths x4 (t), _ (t) may also be associated with a forward and a backward movement of the particle in time. For
this reason, (1.35) is also called a forward-backward path integral. The hyphen is pronounced as minus, to emphasize
the opposite signs in the partial actions.

It is now convenient to change integration variables and go over to average and relative coordinates of the two paths
Ty, T_:

T = (‘T+ +LL'_)/2,
Y=y —x_. (1.36)

Then (1.35) becomes

|(xpty|Tata)® = /Dm(t)/Dy(t) exp{ - %/tb dt [M (—yd +yyi™) +V (’I‘ + g) -V (T — g)}

. 2 2

ty ty
- MVTIZBT / it / dt’y(t)K(t,t')y(t’)}. (1.37)
ta ta

II. FOKKER-PLANCK EQUATION

At high-temperatures, the Fourier transform of the Kernel K (t,t') in Eq. (1.30) tends to unity such that K(¢,t")
becomes a d-function, and the bath correlation function (1.27) becomes approximately

Ap(t, )y mwd(t—t'), (2.1)
where we have introduced the constant proportional to the temperature:
w = 2M~kpT, (2.2)
which is related to the so-called diffusion constant
D =kgT /M~y (2.3)
by
w = 2v*M*D/T. (2.4)

Then the path integral (1.37) for the probability distribution of a particle coupled to a thermal bath simplifies to
P(@sts|tata) = |(wptoleate) = / Da(t) / Dy(t)

i . R / L
xexp{ﬁ/ dty[Mi + M~yi™ + V'(z)] — ﬁ/ dty } (2.5)
ta

ta

The superscript R records the infinitesimal backward shift of the time argument as in Eq. (1.26). The y-variable can
be integrated out, and we obtain



I
P(xzptp|zats) = | Da(t) exp {—2—/ dt [Mi + M~i® + V'(x)]z}. (2.6)
w Jy,
This looks like a euclidean path integral associated with the Lagrangian
1
L.= Z—[M:E+M7j:+v’(x)]2. (2.7)
w

The solution of such path integrals with squares of second time derivatives in the Lagrangian is given in Ref. [9]. The
result will, however, be different, due to time-ordering of the -term.

Apart from this, the Lagrangian is not of the conventional type since it involves a second time derivative. The
action principle A = 0 now yields the Euler-Lagrange equation

L dOL & L _

e dior TaEor (2:8)

This equation can also be derived via the usual Lagrange formalism by considering x and & as independent generalized
coordinates x, v.

III. CANONICAL PATH INTEGRAL FOR PROBABILITY DISTRIBUTION

It is well-known that a path integral satisfies a Schrodinger type of equation. For the path integral (2.6) this is
known as a Fokker-Planck equation. The relation is established (see the textbook [6]) by rewriting the path integral
in canonical form. Treating v = # as an independent dynamical variable, the canonical momenta of z and v are (see
Section 17.3 of the textbook Ref. [10])

L M
p=i2L i MYgs 4 M+ V()]
ot w
M
_ iT’Y[MQ') + M + V'(z)],
oL 1
v = | — — — . .1
Po=iGE = 0P (3.1)

The Hamiltonian is given by the Legendre transform

Hp.po2o0) = el ) = 3 % (3.2
= Lo(0,9) + ipv + ipud, (3.3)

where ¢ has to be eliminated in favor of p, using (3.1). This leads to
Hp,p2,0) = 102 = ipulyw + 22V ()] + . (34

2M? M

The the canonical path integral representation for the probability reads therefore

Dp Dpy
P(mbtb|xata)—/Dx/§ /’Dv/ o
tp

y exp{/ dt [i(pi + pot) — H(p, o, 2,0)] } (3.5)

ta

It is easy to verify that the path integral over p enforces v = &, after which the path integral over p, leads back to
the initial expression (2.6). We may keep the auxiliary variable v(¢) as an independent fluctuating quantity in all
formulas and decompose the probability P(zpts|zats) with respect to the content of v as an integral

o0 o0
P(zptp|zata) :/ dvb/ dvg P(zpopts|Tavata). (3.6)



The more detailed probability on the right-hand side has the path integral representation

D Dp,
P(zyvpty|zavats) = [(xpvpts|Tavata)|? = /Dm /2—71: /Dv 22;
ty
X exp {/ dt [i(pd + py?) — H(p,pv,:p,v)]} , (3.7)
ta

where the end points of v are now kept fixed at vy, = v(tp), Vg = v(ta)-
We now use the relation between a canonical path integral and the Schrodinger equation to conclude that the
probability distribution (3.7) satisfies the Schrodinger-like differential equation:!

H(ﬁaﬁvaxav)P(I/Utb|xa’Uata) = *@P(T/Uﬂ%%ta)- (38)

This is the Fokker-Planck equation in the presence of inertial forces.

At this place we note that when going over from the classical Hamiltonian (3.4) to the Hamiltonian operator in the
differential equation (3.8) there is an operator ordering problem. When writing down Eq. (3.8) we do not know in
which order the momentum p, must stand with respect to v. If we were dealing with an ordinary functional integral
in (2.6) we would know the order. It would be found as in the case of the electromagnetic interaction to by symmetric:
— (P + Bp) /2.

On physical grounds, it is easy to guess the correct order The differential equation (3.8) has to conserve the total
probability f dx dvP(x v tp|xqvat,s) for all times ¢. This is guaranteed if all momenta stand to the left of all coordinates
in the Hamiltonian operator. Indeed, integrating the Fokker-Planck equation (3.8) over z and v, only a left-hand
position of the momentum operators leads to a vanishing integral, and thus to a time independent total probability.
We suspect that this order must be derivable from the retarded nature of the velocity in the term yi® in (2.5). The
proof that this is so is the essential point of this paper, by which it goes beyond an earlier treatment of this subject
in Ref. [11].

IV. SOLVING THE OPERATOR ORDERING PROBLEM

Since the ordering problem in the Hamiltonian operator associated with (3.4) does not involve the potential V' (z),
we study this problem most simply by considering the free Hamiltonian

w

Ho(p, py, x,v) = 2M2pz — iYpyv + ipv. (4.1)
which is associated with the Lagrangian path integral
I
Py(zptp|zata) o< /Dx(t) exp {—2—/ dt [M i +M7¢R]2}. (4.2)
w Jy,

We furthermore may concentrate on the probability with x; = z, = 0, and assume t, — ¢, to be very large. Then the
frequencies of all Fourier decompositions are continuous.

Forgetting for a moment the retarded nature of the velocity &, the Gaussian path integral can immediately be done
and yields

Py(0ty]0tq) ox Det ~1(—02 — vdy)

_ _ * d_ujl 12 _ I
x exp |—(tp — tq) o log(w iyw')| . (4.3)

—00

The integral on the right-hand side diverges. This is a consequence of the fact that we have not used Feynman’s
original time slicing procedure for defining the path integral on a temporal lattice of spacing a. As in the case of an
ordinary harmonic oscillator discussed in detail in [2,6] this would lead to a finite integral in which w’ is replaced by
&' = (2—2cosaw’)/a*:

!See the review paper by S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).



1 [ du' 9y 1 [ do 5 1 [ do 2 2 7
Elmﬁlog[w +vw ]—5/700510@0 +§[w§10g[w +7]—0+€(/)§a (4.4)

where €(y) = /|| is the sign of 7. For a derivation see Egs. (2.319) and (2.346) in Ref. [6]. This finite result can
equally well be obtained without time slicing by regularizing the divergent integral in (4.3) by analytic regularization
according to the rule

1 [ do' w
- 1 12 2 — e 4.
2/,00 o 108(WT W) = ew)g, (45)

Analytic regularization has been introduced by t’Hooft and Veltman [7] into quantum field theory as the only way
to regularize nonabelian gauge theories. Recently it has been shown to be the only way of defining path integrals
perturbatively in such a way that they are invariant under coordinate transformations [8]. It is therefore suggestive
to apply the same procedure also to the path integrals under discussion.

In the present context we need a generalization of the integral (4.5):

° dw’ , w
—_— ) = —_ 4.
/_OO o log(w' +iw) = e(wr) 5 (4.6)

where wr denotes the real part of w. This integral follows directly from a splitting of the logarithm in (4.5) into
log(w’" 4 iw) + log(w’ — iw) and assuming an equal result for each integral. This symmetric assignment is dictated
by the requirement of invariance under canonical transformations. The partition function of the euclidean harmonic
oscillator action [ dr (i? +w?2?)/2 is given by 1//det(—0? + w?), and must be equal to the partition function derived
from the creation-annihilation representation [ dr (—a'a@ — wa'a) which is 1/ det(—9, — w).

Since 0; + w(t) is a first-order differential operator whose eigenfunctions are simple exponentials (a so-called inte-
grating factor), Formula (4.6) can easily be generalized to positive time-dependent frequencies:

Det [0; + w(t)] = exp B /t t dtw(t)] . (4.7)

The derivation of Eq. (4.6) goes by performing the sum over the limit ¢, — ¢, — oo of a proper expression for a
finite time interval t, — ¢4, which is Matsubara-like frequencies w,, = 27n/f

[ee]

th — ta) log{2sinfi(ty —ta)ol}, = e(wR)g- (4.8)

As long as t, — t, is finite, this equation is invariant under v — =y 4 27i/(tp, — t,). In the limit of infinite ¢, — ¢, this
property is lost. In what follows, we therefore assume tacitly that the integral (4.6) is always evaluated at a large but
finite t, — t, as in (4.8), although we shall sloppily write the result in the limiting form, for brevity.

With this convention we obtain for the functional determinant in (4.3):

Det (—02 — 70;) = Det (i9;)Det (i0; — i) = exp [Tr log(id;) + Tr log(id; — i7)]

= exp [(ts — ta)3] (4.9)
and thus
Po(0]0t4) o< exp [—(tb - ta)%] , (4.10)

This corresponds to an energy /2 and an ordering —iv(p,v + vp,)/2 in the Hamilton operator.

We now take the retarded time argument of % into account. Specifically, we replace the term yy# in (4.2) by
[ dtdt' yyE(t — ') z(t) containing the retarded Drude function (1.21) of the friction. The the frequency integral in
(4.3) becomes

oo d / o0 d
[ pzton (@ =) = [ G [hog(e iop) +log (wiwp )] (@)

where we have omitted a vanishing integral over logw’ on account of (4.6). We now use (4.6) to find



*d
/ % [f log(w’ +iwp) + log (wlz +iw'wp — ’YwD)] = 7%3 + e(wm)% + e(wm)%, (4.12)

where —iw; 2 are the solutions of the quadratic equation
w'? +iw'wp — ywp = 0. (4.13)
For a large Drude frequency wp, they are given by
w1 = wp — 7, wy = 7. (4.14)
Inserting these into (4.12) we find a vanishing integral rather than + in (4.10), and thus a functional determinant
Det (—0; —v9]t) = exp [Tr log(—97 — v0f")] = 1, (4.15)

instead of (4.9). The notation y9F symbolizes now the specific retarded functional matrix a la Drude with a large
wp:

Ol (t, 1) = / dt" 5t =)0 8(" —t). (4.16)

With the determinant (4.15), the probability becomes a constant
Py(0t|0t,) = const, (4.17)

This shows that the retarded nature of the friction force has subtracted an energy -y/2 from the energy in (4.10).
With the ordinary path integral corresponding to a Hamilton operator with a symmetrized term —i(p,0 + 9p,)/2, the
subtraction of /2 has changed this to —iyp,0.

Note that the opposite case of an advanced velocity term #4 in (4.2) would be approximated by a Drude function
74 (t) which looks just like v%(t) in (1.23), but with negative wp. The right-hand side of (4.12) becomes now 2y
rather than zero, The corresponding formula for the functional determinant is

Det (—07 —0;*) = exp [Tr log(—07 — 79;{")] = exp[(ts — ta)7], (4.18)

where 797 stands for the advanced version of the functional matrix (4.16) in which wp is replaced by —wp. Thus we
find

PO(O tb‘Ota) X exXp [7(tb - ta)ﬂ/] ) (419)

with an additional energy ~/2 with respect to the ordinary formula (4.10). This corresponds to the opposite (unphys-
ical) operator order —iyvp, in ro, which would violate the probability conservation of time evolution twice as much
as the symmetric order.

The above formulas for the functional determinants can easily be extended to the slightly more general case where
V(zx) is the potential of a harmonic oscillator V(z) = Mwgxz?/2. Then the path integral (2.6) for the probability
becomes

o[
Py(zptp|zata) o< | Dx(t) exp {—2—/ dt [Mi + M~i® +WSCE}2}, (4.20)
w ta
which we evaluate at x = x, = 0, where it is given by the properly retarded expression
Py(0t]0ty) o< Det = (=82 — 79y + w?)

> dw 2 2
x exp |—(tp — ta) glog(w —iyw —wi)| - (4.21)

The logarithm is decomposed into log(w’ 4 iw1) 4 log(w’ + iwz) with

wia = % (1 +4/1— 4w8/72) . (4.22)

Using the analytically regularized formula (4.6), we find



Det (—0? — 70; — wj) = Det (i0; + iw1)Det (i0; + iwa) = exp [Tr log(id; + iw1) + Tr log(i; + iws)]

} = exp [ty 1)2] (4.23)

w1 +w2

= exp (tb - ta)

The wp-independence can be understood immediately by forming the derivative of the logarithm of the functional
determinant in (4.9) with respect to wg, which yields the trace of the associated Green function:

0 9
92 log Det (=07 — 79y — wy) = =5 Tr log(—0f — 0y — wg) = — /dt Op(—0F —y0y — W) (t,1). (4.24)
w§ owg

In Fourier space, the right-hand side turns into the frequency integral

- / d L (4.25)

21 (W 4 iwr ) (W + iwr)

Since the two poles lie below the contour of integration, we may close it in the upper half-plane and obtain zero.
Closing it in the lower half plane would initially lead to two nonzero contributions from the residues of the two poles
which, however, cancel each other.

The derivative with respect to 7,

%TT log 0,(=07 — 70 — wj) = _/dt [0:(=0F =0 — i) (L, 1), (4.26)

can also be calculated by performing the corresponding integral in momentum space:

/ /
i / dw d (4.27)

21 (W' + dwr ) (W + iwy)

If we now close the contour of integration with an infinite semicircle in the upper half plane to obtain a vanishing
integral from the residue theorem, we must subtract the integral over the semicircle i [ dw’/27w’ and obtain 1/2, in
agreement with (4.23).

Formula (4.23) can be generalized further to time-dependent coefficients

Det [02 — 7(£)3, — Q2()] = exp {Tt log [~02 — 73, — Q2(5)]} = exp [ /t ! dt@] . (4.28)
This follows from the factorization
Det [—07 — v(t)9; — Q*(t)] = Det [9; + Q1(t)] Det [0y + Qa(t)] (4.29)
with
Q)+ Q) =~(1),  HQ(t) + Q(t)Q0(t) = Q3(1), (4.30)

using formula (4.7).
The probability of the path integral (2.6) without retardation of the velocity term is therefore

Po(014]0t4) ox exp H(tb - tm] , (431)

as in (4.10).
Let us now introduce retardation of the velocity term by using the w’-dependent Drude expression (1.23) for the
friction coefficient. First we consider again the harmonic path integral (4.20), for which (4.21) becomes

o0

Py(014]0t,) o< exp {(tb — ta)/

—0o0

dw .
o log [w? — ivR(w)w’ — wi] } . (4.32)

For a large Drude frequency wp > 7 the roots are now
2l / 2
wi2 =5 (1 +4/1— 40.)0/7) , w3 =wp — . (4.33)
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Using once more formula (4.6), we see that v and the wy-terms disappear, and we remain with
Py(0t|0t,) = const . (4.34)
This implies a unit functional determinant
Det (07 + 70/t + wg) = 1, (4.35)

in contrast to the unretarded determinant (4.23).
The ~y-independence of (4.35) can also be deduced from a simple heuristic argument by forming the derivative with
respect to :

% log Det (—02 — v — W) = agTr log(—9? — o —wd) = f/dt [OF (02 — 70; — wd) (1, t). (4.36)
Y

Since the retarded derivative carries a retarded Heaviside factor ©(¢t — t') which is zero for ¢t = ¢/, the derivative with
respect to v vanishes identically.
By analogy with (4.29), the general retarded determinant is also independent of (t) and §(¢).

Det [—07 — v(t)0f — Q*(t)] = 1. (4.37)
An advanced time derivative in the determinant (4.35) would, of course, have produced the result
Det (92 4 i702 4 wd) = exp [(ty — ta)7] - (4.38)

which can be understood as being due to the advanced version of the Heaviside function which vanishes for ¢ > ¢’ and
is unity for ¢t > t'.
In the advanced case, the general formula would be

Det [~02 — ~(1)9 — ()] = exp { / dt v(t)] . (4.39)

All three determinants are correct also for finite time intervals, due to the solvability of the first-order differential
equation by means of an integrating factor.

By comparing the functional determinants (4.23) and (4.35) we see that the retardation prescription can be avoided
by a trivial additive change of the Lagrangian (2.7) to

Lo(x, &) = % 4+ M+ V@) - L. (4.40)

From this Lagrangian, the path integral can be calculated in any standard way [6].

V. STRONG DAMPING

For v > V" (x)/M, the dynamics is dominated by dissipation, and the Lagrangian (2.7) takes a more conventional
form in which only x and & appear:

Lz, ) [MAaR + V(@) = [g;«R + MLWV'(x)} , (5.1)

w

where % lies slightly before V'(x(t)). The probability

P(zptp|zats) = /D:c exp [ /ttb dtLe(:c,:'cR)} (5.2)

looks like an ordinary euclidean path integral for the density matrix of a particle of mass M = 1/2D. As such it
obeys a differential equation of the Schrodinger type. Forgetting a moment about the subtleties of the retardation,
we introduce an auxiliary momentum integration and go over to the canonical representation of (5.2):

11



2 1
P(xptp|zats) /Dm /— exp{/ dt [ipj: - 2D% —i—ipM—V'(a:)} } (5.3)
7

This probability distribution satisfies therefore the Schrodinger type of equation
H(ﬁb, :Eb)P(Ibtb|$ata) = —atbP(CI}btb|:L'ata) (5.4)

with the Hamiltonian operator
-9

1
H(p,z) = ZD% —ip—

iV @) (5.5)

In order to conserve probability, the momentum operator has to stand to the left of the potential term. Only then
does the integral over z;, of Eq. (5.4) vanish. Equation (5.4) is the overdamped or ordinary .

Without the retardation on & in (5.2), the path integral would certainly give a symmetrized operator —i[pV’(z) +
V/(x)p]/2 in H. This follows from the fact that the coupling (1/2DM~)iV’(z) looks precisely like the coupling of
a particle to a magnetic field with a “vector potential” A(z) = (1/2DM~)V'(x). In this case we can also perform
immediately the path integral (5.2)

I
Py(zptp|zaty) o< | Dx(t) exp {% / dt [M~i + V/(I)]z} (5.6)
ta
at xp = o, = 0, which is given by
Py(0t|0t,) oc Det " [0, + V' (x)/M~], (5.7)

where from formula (4.7)

Det [0, + V" (2)/M~] = exp { / Qv (@) /2M~/] . (5.8)

The effect of retardation of the velocity in (5.1) is obvious since the trivial retarded determinant (4.37) is independent
of the strength of the damping;:

Det [0F + V" (z)/M~] = 1. (5.9)

In the advanced case one would have
Det [0/ + V" (z)/M~] = exp [/ dt V”(sc)/M’y} . (5.10)

For the differential equation (5.4), the difference between the ordinary and the retarded results (5.8) and (5.9)
implies that the initially symmetric operator order —i[pV’(x)+V’(x)p]/2 in H is changes into —i[pV" (x)+ V" (z)p]/2—
V"(x)/2 —ipV'(z), as necessary for conservation of probability.

As in Eq. (4.40) we can avoid the retardation of the velocity by adding to the Lagrangian (5.1) a term containing
the second derivative of the potential:

Lo(x, ) = — [m + —V’(:p)} : — —V"(z). (5.11)

From this the path integral can be calculated with the same slicing as for the gauge-invariant coupling of a magnetic
vector potential (see Sections 10.6 and 11.3 in the textbook [6])

Po(@yto|zats) /Dx exp [ 5 " it {% [:v + VA}?} - Z;g) H . (5.12)
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VI. LANGEVIN EQUATIONS

For for high 7. the forward—backward path integral (1.37) has only small fluctuations of y, and K (¢,t’) becomes
a d-function. Then we can expand

V((L‘—i—g)—V(x—g)NyV'(x)—l—y—SV”'(x)—i—... (6.1)
2 2 24 '
keeping only the first term. We further introduce an auxiliary quantity n(t) by

n(t) = Mi(t) + Mya™(t) + V' (z(t)). (6.2)

With this, the exponential function in (1.37) becomes after a partial integration of the first term using the endpoint

properties y(ty) = y(ta) = 0:
. tp ty
Z w
e _ dt _— dt 2 t ) 6.3
XP{ h/t yn th/ta y()} 63

a

where w is the constant (2.2). The variable y can obviously be integrated out and we find a probability distribution

Pl exp{—i /tt dtnz(t)}. (6.4)

The defining equation (6.2) for 7(t) may be viewed as a stochastic differential equation to be solved for arbitrary
initial positions z(t,) = x, and velocities &(t,) = v4. The differential equation is driven by a Gaussian random noise
variable n(t) with a correlation function

(")) =wK(t—t), (6.5)

For each noise function 7(t), the the solution of the differential equation yields a path z,(zq4,2s,t,) with a final
position zy, = ) (24, s, tp) and velocity vy = &y (zq, Ts, t), all being functionals of 7(t). From this we can calculate
the distribution P(xpuptp|z4vats) of the final z, and v, by summing over all paths resulting from the noise functions
n(t) with the probability distribution (6.4). The result is of course the same as the distribution (3.7) obtained
previously from the canonical path integral.

It is useful to exhibit clearly the dependence on initial and final velocities by separating the stochastic differential
equation (6.2) into two first-order equations:

Mo(t) + Mol (t) + V' (x(t) = n(t), (6.6)
i(t) = v(t), (6.7)

to be solved for initial values z(t,) = z, and %(t,) = v,. For a given noise function 7(t), the final positions and
velocities have the probability distribution

Py(zvt|zavata) = 0(2y(t) — 24)0(Zy (L) — va)- (6.8)

Given these distributions for all possible noise functions 7(t), we find the final probability P(x,vstp|Tq0ats) from the
path integral over all 7(t) calculated with the noise distribution (6.4). We shall write this in the form

P(zvt|zevatas) = (Py(xzvt|zevata))y, (6.9)

where the expectation value of an arbitrary functional of F[z] is defined by the path integral
(Flz])y, EN/DI Pn|Fz]. (6.10)

The normalization factor A is fixed by the condition (1) = 1, to preserve total probability.
By a change of integration variables from z(t) to n(t), the expectation value (6.10) can be rewritten as a functional
integral

(Flal)y = N / Dy Ply] Flal, (6.11)
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In principle, the integrand contains a factor J~![z], where J[x] is the functional Jacobian
J[z] = Det [0n(t)/d2(t")] = det|MI? + M~OE + V" (x(t))). (6.12)

However, in Eq. (4.37) we have seen that the retarded determinant is unity, thus justifying its omission in (6.11).

From the probability distribution P(zpvpts|Tevats) we find the pure position probability P(xpts|2qts) by integrating
over all initial and final velocities as in Eq. (3.6). Thus we have shown that a solution of the forward-backward path
integral at high temperature (2.6) can be obtained from a solution of the stochastic differential equations (6.2), or
more specifically, from the pair of stochastic differential equations (6.6) and (6.7).

VII. SUPERSYMMETRY

Recalling the origin (5.8) of the extra last term in the exponent of the path integral (5.12), this can be rewritten in
a slightly more implicit but useful way as

V" (z) 1 [ o1 V(z)]?
P ota Da(t) D = — |4
o(Tptp|zat )oc/ x(t) Det [at+ e }exp{ D), dt iD |:£L'+ Mo

(7.1)

In the form (7.1), the time ordering of the velocity term is arbitrary. It may be quantum mechanical, but equally well
retarded or advanced, as long as it appears in the same way in both the Lagrangian and determinant. An interesting
structural observation is possible by generating the determinant with the help of an auxiliary fermion field ¢(¢) from
a path integral over c(t):

detloy + V" (u(0) /1] [ Depeem 0P GO, (7.2)

In quantum field theory, such auxiliary fermionic fields are referred to as ghost fields. With these we can rewrite the
path integral (5.2) for the probability as an ordinary path integral

P(zptp|rats) = /Dm/DcDé exp {—Apsz, ¢, ]} . (7.3)

where Apg is the euclidean action

ty

Aps = oot / K {% M+ V(@) + () [MAdy + V7 (()] c<t>} , (7.4)

first written down by Parisi and Sourlas.? This action has a particular property: If we denote the expression in the
first brackets by
Uy = M~Owx + V' (x), (7.5)

the operator between the Grassmann variables in (7.4) is simply the functional derivative of U,:

0U
Uy = 55 = M0, + V' (0). (7.6)
Thus we may write
Lo o,
dos = 2= /t dt [5UI +o(t) Unye(t)| (7.7)

where U,,c(t) is the usual short notation for the functional matrix multiplication [ dt'Ug,(t,t")c(t’). The relation
between the two terms makes this action supersymmetric. It is invariant under transformations which mix the Fermi

2G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979); Nucl. Phys. B 206, 321 (1982).
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and Bose degrees of freedom. Denoting by ¢ a small anticommuting Grassmann variable, the action is invariant under
the field transformations

Sx(t) = c(t) + (t)e, (7.8)
de(t) = —ely, (7.9)
Sc(t) = Uye. (7.10)

The invariance follows immediately after observing that
0U, = eULyc(t) + c(t)Uygye. (7.11)

Formally, a similar construction is also possible for a particle with inertia in the path integral (2.6), which is an
ordinary path integral involving the Lagrangian (4.40). Here we can write

I
P(aptp|zate) =N | Dx(t) J[z]exp {—2— / dt[Mi + M~i + V'(x)]z}. (7.12)
w Jy,
where J[x] abbreviates the determinant
J[z] = det[MO} + M~0, + V" (z(1))] (7.13)
which is known from formula (4.28). The path integral (7.12) is valid for any ordering of the velocity term, as long

as it is the same in the exponent and the functional determinant.
We may now express the functional determinant as a path integral over fermionic ghost fields

J[z] = det[MO} + M~9, + V" (x(t))] / DeDee J 4eO[MO+MAO+V (@®)]e(t) (7.14)
and rewrite the probability P(apts|2ats) as an ordinary path integral

Playty|zata) / Da(t) / DeDeexp{—ASS [z, 7}, (7.15)

where Az, ,¢] is the euclidean action

ty 1
AXS[z, ] E/ dt{Q—[M:i+M'y:b+V’(x)]2 +e(t) [Af@f—l—ﬂ[v@t—kV”(m(t))] c(t)} .
ta w
(7.16)
This formal expression contains subtleties arising from the boundary conditions when calculating the Jacobian (7.14)
from the functional integral on the right-hand side. It is necessary to factorize the second-order operator in the

functional determinant and express each factor as a determinant as in (7.14). At the end, the action is again
supersymmetric, but there are twice as many auxiliary Fermi fields [12].

VIII. STOCHASTIC QUANTUM LIOUVILLE EQUATION

At lower temperatures, where quantum fluctuations become important, the forward-backward path integral (1.37)
does not allow us to derive a Schrodinger-like differential equation for the probability distribution P(x v t|zqvatt). To
see the obstacle, we go over to the canonical representation of (1.37):

(2sty|zata) 2 = /Dx(t) Dy(t) D;;f) D%(t) exp {%/t "t [pi + pyj — HT]},

where

1 LW
Hy = 52pype +pyy + V(w+y/2) = V(e —y/2) —igyKy (82)
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plays the role of a Hamiltonian. Here K y(t) denotes the product of the functional matrix K (t,t") with the functional
vector y(t') defined by Ky(t) = [dt'K(t,t')y(t'). After omitting the y-integrations at the endpoints, we obtain a
path integral representation for the product of amplitudes

U(xbybtb|mayata) = (xb + yb/2 tb|xa + ya/2 ta)(xb - yb/2 tb|ma - ya/2 ta)*' (83)

This plays the role of a time-evolution amplitude for the quantum statistical density matrix p(x,y;t), satisfying

p(:E, Y; t) = / dzg dyaU(xbybtbmayata)p(xm Ya: ta)- (8'4)

The Fourier transform of p(x, y;t) this with respect to y is the Wigner function

1

o0
Wt =g [ em/ ey (8.5)

When considering the change of U(z y t|zqyata) over a small time interval €, the momentum variables p and p, have
the same effect as differential operators —id,, and —i0,,, respectively. The last term in Hr, however, is nonlocal in
time, thus preventing a derivation of a Schrodinger-like differential equation.

The locality problem can be removed by introducing a noise variable 7(¢) with the correlations function

On(t)y = 5K (¢ 1). (8.6)

Then we can define a temporally local n-dependent Hamilton operator

- 1

By = = (e ) By + V(4 /2) — V(o —5/2) 57

which governs the evolution of 7-dependent versions of the amplitude products (8.3) via the stochastic Schriodinger
equation

iUy (z y t|zeyata) = HyUy(x ytzeyata)- (8.8)

Averaging this equation over n using (8.6) yields for y, = yp = 0 the same probability distribution as the forward
backward path integral (1.37):

[(@ptp|Tata)|? = U(xp 0tp|24 0ts) = (U(xh 0tp|Ta Ya ta))y (8.9)

At high temperatures, the noise averaged stochastic Schrédinger equation (8.8) takes the form
ihoU(zyt|TaYate) = HU(2yt|Ta Yata), (8.10)

where H is the Hamiltonian associated with the Lagrangian in the forward-backward path integral (1.37):

N 1. . . . W
H = <2bybe + by + V(2 +y/2) = V(e —y/2) —igzy® (8.11)

In terms of the separate path positions 4+ = x £+ y/2 where p, = 04 + 0— and p, = (94 — J—)/2, this takes the more
familiar form

= o (3R = 52) + V() = V(e )+ 2oy — 2 )by — ) — ibA(ey — o). (8.12)

In the last term we have introduced a useful quantity, the so-called decoherence rate per square distance

_ w  MykgT

- v _ 8.13
2h2 n2 (8:13)

It is composed of the damping rate v and the squared thermal length

lo(hB3) = \/27h*B/M (8.14)
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as
27y
 12(np)

and controls the rate of decay of interference peaks.>

Note that the order of the operators in the mixed term of the form yp, in Eq. (8.11) is opposite to the mixed
term —ip,v in the differential operator (3.4) of the Fokker-Planck equation. This order is necessary to guarantee the
conservation of probability. Indeed, multiplying the time evolution equation (8.10) by é(y), and integrating both sides
over z and y, the left-hand side vanishes.

The correctness of this order can be verified by calculating the fluctuation determinant of the path integral for the
product of amplitudes (8.3) in the Lagrangian form, which looks just like (1.37), except that the difference between
forward and backward trajectories y(t) = x4 (t) — z_(t) is nonzero at the endpoints. For the fluctuation which vanish
at the end points, this is irrelevant. As explained before, the order is a short-time issue, and we can take t, —t, — 0.
Moreover, since the order is independent of the potential, we may consider only the free case V(z £ y/2) = 0. The
relevant fluctuation determinant was calculated in formula (4.9). In the Hamiltonian operator (8.11), this implies
an additional energy —iv/2 with respect to the symmetrically ordered term v{y, p,}/2, which brings it to yyp,, and
thus the order in (8.12).

A (8.15)

IX. CONCLUSION

With the help of analytic regularization we have shown that the forward—backward path integral of a point particle
in a thermal bath of harmonic oscillators yields, at large temperature, a probability distribution obeying a Fokker-
Planck equation with the correct operator ordering which ensures probability conservation. By the same token, they
yield the correct Langevin equations with and without inertia.
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