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We set up a forward backward path integral for a point particle in a bath of photons to derive a
master equation for the density matrix which describes electromagnetic dissipation and decoherence.
We also derive the associated Langevin equation. As an application, we recalculate the Wigner-
Weisskoptf formula for the natural line width of an atomic state at zero temperature and find, in
addition, the temperature broadening caused by the decoherence term. Our master equation also
yields the correct Lamb shift of atomic levels. The two equations may have applications to dilute
interstellar gases or to few-particle systems in cavities.

I. INTRODUCTION

The time evolution of a quantum-mechanical density matrix p(x4q,X_q;tq) of a particle coupled to an external
electromagnetic vector potential A(x,t) is determined by a forward—backward path integral [1]

(X+ba tb|X+a7 ta)(X,b, tb|X,a, ta)* = U(X+b7 X—by tb|x+aa X—a ta)

- /wax, exp {% /;b {% (X2 —%2) = V(xy) + Vi(x_) — %5{+A(x+,t) + SXA(x,t)] } : (1.1)

where x4 (t) and x_(t) are two fluctuating paths connecting the initial and final points x4, and x4, and x_, and
X_p, respectively. In terms of this expression, the density matrix p(Xtp, X—p;tp) at a time t; is found from that at an
earlier time t, by the integral

P(X+b7 X—b3 tb) = /dx—i-a dx_q U(x+b7 X—b, tb|x+a; X—a, ta)p(x+a7 X—aj3 ta)- (1-2)

The vector potential A(x,t) appearing in the electromagnetic action Aem = [ d*z(E? —B?)/2c in the radiation gauge
via E=A/c, B=V x A, is a superposition of oscillators Xy (t) of frequency Qx = c|k| in a volume V:

ikx

: e
Ax,t) = ;fk(x)xk(t)a fe(x) = NeGI ? = V/ 2n)? (1.3)

These oscillators are assumed to be in equilibrium at a finite temperature T, where we shall write their time-ordered
correlation functions as G\, (t,t') = (T XL(t), X7, (tl». = 5Ek'i.rGQk(t, t') = S (6 — k'K /k*) Gy (t,t'), the trans-
verse Kronecker symbol resulting from the sum ), ., €'(k, h)e’*(k, h) over the two polarization vectors of the vector
potential A(x,t). For a single oscillator of frequency €2, one has for ¢ > t':

5 cosh% A3 —i(t —t')]
2MQ %

sinh ——
2

Ga(t,t') = % [Aq(t,t') + Ca(t, t')] = , t>t (1.4)

which is the analytic continuation of the periodic imaginary-time Green function to 7 = it. The decompostion into
Aq(t,t') and Cq(t,t') distinguishes real and imaginary parts, which are commutator and anticommutator functions

of the oscillator at temperature T: Cq(t,t') = ([ X(t), X(t)])r and Aq(t, ') = ([X(t), X (¥')])r, respectively. The
thermal average of the evolution kernel (1.1) is then given by the forward-backward path integral
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U(XppsXpy tp| Xty X—a,ta) = /DX+ /Dx
<o {3 / it 508 = 52) = (Vi) = V)| + AV B xc1) (1.5)

where exp{iA¥V[x,,x_]/h} is the Feynman-Vernon influence functional. The inluence action A¥V[x,,x ] is the
sum of a dissipative and a fluctuating part A5V [x;,x_] and ALV [x;,x_], respectively, whose explicit forms are

ie? . . . .

AV xy,x_] = She? /dt/dt' ot —t) [x+Cb(x+ 6,x, )%, — % Cp(xy t,x_ )%

—%_Cy(x_t,x, )%, —%_Cp(x_t,x )% ] (1.6)
and

FV 7:62 / AN !N/ . AN

Ap x4, x| = T /dt/dt Ot —t )|:X+Ab(x+ t,x! )X, — xpAp(xgt,x] t)x
— X Ap(x_ X, )X, + % Ap(x_t,x t’)sc’,]. (1.7)
where x4, x/; are short for x4 (¢), x4 (#'), and Cp(x_t,x"_ '), Ap(x_t,x"_t') are 3 x 3 commutator and anticom-
mutator functions of the bath of photons. They are sums of correlation functions over the bath of the oscillators of

frequency |, each contributing with a weight fio(x)f_k(x') = e**=x) /20 V' [the normalization following from
the action [ d*z(E? — B?)/2¢]. Thus we may write

ij (4] . 2 du' d*F; 7 sigtr_ik(x—=x") _: ’ ’
CY (xt,x"t") E Fi( <[X k(t), X5 (t )]>T = —ic’h Wak(w )oi € sinw'(t —t'), (1.8)
Qi dw'd®k ” ho' ,
ij % J (4! — 2 1\ gij tr ’ ik (x—=x") Yy )
Al (xt,x' 1)) § ' foklx <{X (),Xk(t)}>T c h/ Gyt kBT coth 3= e cosw/(t—t)), (1.9)

where ok (w’) is the spectral density contributed by the oscillator of momentum k:

2

5, O = ) = 8(' + )] (1.10)

ak(w') —

At zero temperature, we recognize in (1.8) and (1.9) twice the imaginary and real parts of the Feynman propagator
of a massless particle for ¢ > t/, which in four-vector notation with £ = (w/¢c, k) and z = (ct, x) reads

) = 2 (A’ / / dod’h 0D ifu(e—t) ) / @k ina-aty 1N
— A ; — |w X—X — IR(T—X . 1‘11
Gz = 3 @ 2) + Ola, )] @0t W2 - +in" “J) o EETTE

where 7 is an infinitesimally small number > 0.
We shall now focus attention upon systems which are so small that the effects of retardation can be neglected.
Then we can ignore the x-dependence in (1.8) and (1.9) and find

G xt, %' 1)~ O (1, 1) = 15 2690,6(1 — 1), (1.12)

Inserting this into (1.6) and integrating by parts, we obtain two contributions. The first is a diverging term

AM
Adjocls x / at (3 —2)(0), (1.13)
where
e? [ dw'd®k on (W) i e? e
AM = —— O st — ——/ dk. 1.14
c? (2m)t W Kk 3m2e3 Jo (1.14)

diverges linearly. This simply renormalizes the kinetic terms in the path integral (1.5), renormalizing them to



i b ]\/[ren . .
ﬁ/ta dt == (5 —%2). (1.15)

By identifying M with Mg, this renormalization may be ignored.
The second term has the form

A e x ) = g [t G )0 +50)"0), (1.16)

a

with the friction constant

e> 2 «

= = - 1.17
67TC3M 3u}]\47 ( )

v

where o = e?/hic ~ 1/137 is the fine-structure constant and wy = Mc?/h the Compton frequency associated with
the mass M. In contrast to the ordinary friction constant, this has the dimension 1/frequency.

Note that the retardation enforced by the Heaviside function in the exponent of (1.6) removes the left-hand half of the
O-function. It expresses the causality of the dissipation forces, which is crucial for producing a probability conserving
time evolution of the probability distribution [2]. The superscript R in (1.16) accounts for this by indicating that the
acceleration (X4 + %X_)(t) is slightly shifted with respect to the velocity factor (X — %_)(¢) towards an earlier time.

We now turn to the anticommutator function. Inserting (1.10) and the friction constant ~ from (1.17), it becomes

2

e
c—QAb(xt,X' t') ~ 29vkpTK (t,t), (1.18)
where
/ / < do' N —iw’ (t—t)
Kitth=Kt-t)= o K(w')e , (1.19)
oo 2m
with a Fourier transform
hw' hw'

Kw') = Y coth —— (1.20)

2kpT 2kpT’

whose high-temperature expansion starts out like

KW)~ KT (W) =14 & (2 2 (1.21)
- — T3\ 2kpT) '

The function K (w’) has the normalization K(0) = 1, giving K (¢ — ¢’) a unit time integral:
o
/ dtK(t—t)=1. (1.22)

Thus K (t — t') may be viewed as a d-function broadened by quantum fluctuations, which are negligible at high T'.
With the function K (t,t’), the fluctuation part of the influence functional in (1.7)—(1.5) becomes

AV x, x| = z% /tab dt /tab dt’ (%, — %)) K(t, 1) (xp — % )(t). (1.23)

Here we have used the symmetry of the function K (¢,t') to remove the Heaviside function O(¢t—t') from the integrand,
extending the range of t'-integration to the entire interval (¢,,t,). We also have introduced the constant

w = 2MkpT, (1.24)

for brevity.
At very high temperatures, the time evolution amplitude for the density matrix is given by the path integral

Ui stiiasate) = [Dectt) [Dx- ) e {1 [ i |56 &) - (e - Ve )

. ty ty
X exp {—;—hMy/ dt (k. —%_)(%, +%_)F — 2%2/ dt (%4 — x_)2} . (1.25)
ta

ta



where the last term has become local for high temperatures, since K(t,t') — 6(t —t’). This is the closed-time path
integral of a particle in contact with a thermal reservoir. For moderately high temperature, we should include also
the first correction term in (1.21) which adds to the exponent an additional term

_m /tab dt (k4 —%_)% (1.26)

In the classical limit, the last term in (1.26) squeezes the forward and backward paths together. The density matrix
(1.25) becomes diagonal, and in ~-term describes classical radiation damping.

II. MASTER EQUATION FOR TIME EVOLUTION OF DENSITY MATRIX

We now derive a Schrdinger-like differential equation describing the evolution of the density matrix p(zta,2—q;ta)
in Eq. (1.2). In the standard derivation of such an equation [3] one first makes the last term local via a quadratic
completion involving a fluctuating noise variable 7(t). Then one goes over to a canonical formulation of the path
integral (1.25), by rewriting it as a path integral

Un (X6, X toX 0, X0, ta) :/DX+(t)/DX(t)/g%;3/%
X eXp{%/tb dt [pyx; —p-%x_ — H,,(p+,p,x+,x)]} ) (2.1)

ta

Then Uy (X4, X—b, tp|X+a, X—q, ta) satisfies the differential equation
ihO Uy (X,  tXas Yar ta) = Hy Up(X, ¥ tXa, Yas ta)- (2.2)

The same equation is obeyed by the density matrix p(xy,x_;t,).

At high temperatures where the action in the path integral (1.25) is local, we can set up directly a Hamiltonian
without the noise-averaging procedure. However, the standard procedure of going to a canonical formulation is not
applicable because of the high time derivatives of x(¢) in the action of (1.25). They can be transformed into canonical
momentum variables only by introducing several auxiliary independent variables v = %, b = X, ... [4,5]. For small
dissipation, which we shall consider, it is preferable to proceed in another way by going first to a canonical formulation
of the quantum system without electromagnetism, and include the effect of the latter recursively. For simplicity, we
shall treat only the local limiting form of the last term in (1.25). In this limit, we define a Hamilton-like operator as
follows:

]- A2 M’YA ~ ~ A~ w o~ N

H= 5o (07 = D7) + V ki) = Vixo) + = (op = %) Gy + %) i (e = %)% (2.3)

Here x, % are abbreviations for the commutators

5151[7:{,5(], X =

- [H,x%]. (2.4)

A direct differentiation of Eq. (1.25) with respect to the final time leads to the conclusion that the density matrix
p(x4,x_;t,) satisfies the time evolution equation

hop(ay, o sta) = Hp(wy, o ;ta). (2.5)
At moderately high temperatures, we also include a term coming from (1.26)

wh A A
Hi=i——— (%4 —x_)2. 2.6
1 l24(/€BT)2 (X+ X ) ( )
For systems with friction caused by a conventional heat bath of harmonic oscillators as discussed by Caldeira and
Leggett [6], the analogous extra term was shown by Diosi [7] to bring the Master equation to the general Lindblad
form [8] which ensures positivity of the probabilities resulting from the solutions of (2.5).



It is useful to re-express (2.5) in the standard quantum-mechanical operator form where the density matrix has a
bra ket representation p(t) =Y, ppm(t)|m)(n|. Let us denote the initial Hamilton operator of the system in (1.1)

by H = p?/2M + V, then Eq. (2.5) with the term (2.6) takes the operator form

M"/ N A0 2 N L0 W xo wh
(367 — e + 52— %) — G2 B B l) = |

The operator order in the terms in parentheses need explanation. It is fixed by the retardation of Xy with respect to
X in (2.3), which implies that the associated operator X(¢) has a time argument which lies slightly before that of X,
thus acting upon p before the operator of velocity %. This puts it to the right of f{, i.e., next to p. On the right-hand
side of p, the time runs in the opposite direction such that x must lie to the left of x, again next to p. In this way we
obtain an operator order which ensures that Eq.(2.7) conserves the total probability.

This property and the positivity of p are guaranteed by the observation, that Eq. (2.7) can be written in the
extended Lindblad form [8]

ihdyp = Hp=[H,p|+ X, [%, 7). (2.7)

) o Lo oo 1o oi o0
Op=—2[H.pl =) (—LnLLp +5PLnL}, — Llan> : (2:8)

R . . V3w [ ; h o
leik, L E—()’(i ) (2.9)
Note that the operator order prevents the term %}Eﬁ from being a pure divergence. If we rewrite it as a sum of a
commutator and an anticommutator, [X,%]|/2+ {X,%}/2, then the latter term is a pure divergence, and we can think
of the first two -terms in (2.7) as being due to an additional antihermitian term in the Hamilton operator H, the
dissipation operator

r\/M

H:
4

[%,%]. (2.10)

For a free particle with V(x) = 0 and [ﬁ,f)] = 0, one has x4 = P+ /M to all orders in 7, such that the time
evolution equation (2.7) becomes
In the momentum representation of the density matrix p = pr, ppp’ | P)(P'], the last term simplifies to —iI' =
—iw(p — p')%/2M 272 multiplying p, which shows that a free particle does not dissipate energy by radiation, and that
the off-diagonal matrix elements decay with the rate I'. X

In general, Eq. (2.3) is an implicit equation for the Hamilton operator H. For small e? it can be solved approximately
in a single iteration step, inserting x ~ p/M and x ~ —VV/M in Eq. (2.7).

The validity of this iterative procedure is most easily proven in the time-sliced path integral. The final slice of
infinitesimal width e reads

U (X Xy o[ X Xy By — €) = / dg;()t;) / dgw()t;)ei{p+(tb>[x+<tb>x+<tbe)JpxH(m}/h_ (2.12)

Consider ] now a
term of the generic form F. (x4 (¢))F_(x_(t)) in H(t). When differentiating U (X+p,X_p, tp|X+q,X—a,tp — €) with
respect to the final time , the integrand receives a factor —H(tp). At ty, the term F. (x(t))F_(x_(t)) in H(t) has
the explicit form e 1 [Fy (x4 (tp)) — Fy (x4 (ty — €))] F—(x—(t))- It can be taken out of the integral, yielding

LR (s (6))U — U (x4 (8 — )] - (x_ (1), (2.13)

In operator language, the amplitude U is associated with U/ =~ 1 — i€H/h, such the term F, (x4 (t))F_ (x_(t)) in H(t)
yields a Schrodinger operator

LI P (2.14)

in the time evolution equation (2.7).
For functions of the second derivative X we have to split off the last two time slices and convert the two intermediate
integrals over x into operator expressions, which obviously leads to the repeated commutator of H with %, and so on.



III. LINE WIDTH

Let us apply the master equation (2.7) to atoms, where V(x) is the Coulomb potential, assuming it to be initially
in an eigenstate |i) of H, with a density matrix p(0) = |i)(i|. Since atoms decay rather slowly, we may treat the
~-term in (2.7) perturbatively. It leads to a time derivative of the density matrix

DAY = — 1 Gl D1 H(O)]i) = = > wrilplAN L) = —My S ey sl (3.1)
f#i f

where hw;y = E; — Ef, and xy; = (f|x[i) are the matrix elements of the dipole operator.
An extra width, which we have not seen discussed in the literature so far, comes from the last two terms in (2.7):

2
h wizf

w T
12(kpT)?

F(ilp(t)]1) = Ve (ilp?|i) — W(NPQW = —wy Wi Ixsil. (3.2)

This time dependence is caused by spontaneous emission and induced emission and absorption. To identify the
different contributions, we rewrite the spectral decompositions (1.8) and (1.9) in the x-independent approximation as

!

47 /dw'd3l<: T
3

hw
/ A -
Cy(t,t") + Ap(t,t') = —N m)1 206 {1+coth

QkBT} (0w’ — Q) — 3w’ + )] e ), (3.3)

as

2

4 dw'd®k T
; / ; P {Q‘WQ“”W[‘S(W'—Qk)wwmk)}}e’““”.

ol + (-89 = | o ot

(3.4)
Following Einstein’s intuitive interpretation, the first term in curly brackets is due to spontaneous emission, the other

two terms accompanied by the Bose occupation function account for induced emission and absorption. For high and
intermediate temperatures, (3.4) has the expansion

Ar, [ dw'd®k @ ) 2%kpT 1 A , , T

The first term in curly brackets is due to the spontaneous emission. It contributes a term —2M~y3_;_; wiy [xgil* to
the rate of change 0;(i|p(¢)|é). This differs from the right-hand side of Eq. (3.1) in two important respects. First,
the sum is restricted to the lower states f < ¢ with w;y > 0, since the é-function allows only for decays. Second,
there is an extra factor 2. Indeed, by comparing (3.3) with (3.5) we see that the spontaneous emission receives equal
contributions from the 1 and the coth(hw’/2kgT) in the curly brackets of (3.3), i.e., from dissipation and fluctuation
terms Cy,(¢,t') and Ap(t,t').

Thus our master equation yields for the natural line width of atomic levels the equation

D =2M7y ) w|xsil, (3.6)

f<i

which is the historic Wigner- Weisskopf formula.
In terms of T', the rate (3.1) can therefore be written as

ilpOli) = T + My S w Ixpal? + My S lwns P Il (3.7)
f<i f>i

The second and third terms do not contribute to the total rate of change of (i|4(¢)|¢) since they are canceled by the
induced emission and absorption terms associated with the —1 in the big parentheses of the fluctuation part of (3.5).
The finite lifetime changes the time dependence of the state |i,t) from |i,t) = |i,0)e *F* to |i, 0)e *Et-Tt/2,

Note that due to the restriction to f < 4 in (3.6), there is no operator local in time whose expectation value is T'.
Only the combination of spontaneous and induced emissions and absorptions in (3.7) can be obtained from a local
operator, which is in fact the dissipation operator (2.10).

For all temperatures, the spontanous and induced transitions together lead to the rate of change of (i|p(¢)|i):



. 1
i (ilp(t)]i) = —2M~ waJrszfW x5l (38)
f<i

For a state with principal quantum number n, the temperature effects become detectable only if T" becomes larger
than —1/(n+1)? 4+ 1/n? ~ 2/n® times the Rydberg temperature Try = 157886.601K. Thus we must go to n 2, 20 to
have observable effects at room temperature.

IV. LAMB SHIFT

For atoms, the Feynman influence functional (1.5) allows us to calculate the celebrated Lamb shift. Being interested
in the time behav1or of the pure-state density matrix p = |i)(i|, we may calculate the effect of the actions (1.6) and
(1.7) perturbatively as follows: Consider the action (1.6), and in it the first term involving x4 (¢) and x4 (¢'), and
integrate the external positions in the path integral (1.5) over the initial wave functions, forming

Uii,tb;ii,ta :/dX+b dX_b/dX+a dX_a<i|X+b><i|X_b>U(X+b,X_b,tb‘x_;,_a,X_a,ta)<X+b‘i><X_b|’L'>. (41)

To lowest order in v, the effect of the Cp-term in (1.6) can be evaluated in the local approximation (1.12) as follows.
We take the linear approximation to the exponential exp[ [ dtdt'O(t,t')] ~ 1+ [ dtdt’O(t,t') and propagate the initial
state with the help of the amplitude Uj; 4.41,¢, to the first time ¢’, then with Ug; 5+ to the later time ¢, and finally
with Uy ¢,.ii¢ to the final time ¢,. The intermediate state between the times ¢ and ' are arbitrary and must be
summed. Details on how to do such a perturbation expansion are given in Section 3.10 of the textbook [3]. Thus we
find

ACU” yiii,te ™ / dtdt Z/dX+/dX+ ii ta77‘27t< |X+>X+<X+|f>

[8t8,be(t t )]Ufz t;fit <f|X+>X+<X+| > Qi,t 500, tg (42)

Inserting Uy; 4, .41 = e "Fi(ta=8/T etc. this becomes

2 ty
AcUiityiiit, = —%/ dtdt’ (i|%(t) (0,00 Cy(t, 1)) X(t)]4)
=g 3 OGO O 43

Expressing C’,ij(t, t") of Eq. (1.12) in the form
iq h 2 .. dw ; ’
i n v 2 had —iw(t—t") 4.4
(et = 525 /Zﬂ_we , (4.4)

the integration over ¢t and ' yields

AcUsi i —iig/tbdt/d Z \ 2 (4.5)
CVit,tys0i,ta — Anhed 3 . 2 W — wif — Xfil - .

The same treatment is applied to the A}, in the action (1.7), where the first term involving x4 (¢) and x4 (¢') changes
(4.6) to

ty fiw .
AUsj; 4,4 1 th —— | |x4|% 4.6
pthithta = 47rhc3 3 / / Z w—wif +1in ( oo 2k T) [%sil (46)

The w-integral is conveniently split into a zero-temperature part and a finite-temperature correction

dw
ifs 4.7
I(wis,0 / Zw eyt (4.7)



and

*° dw w 1
Al i, T) =2 — . 4.8
T(wlf5 ) ‘/0 T Zf:w_wif+inehw/k3T_1 ( )

Decomposing as usual 1/(wif —w +1in) = P/(w — w;ip) — imd(w;f — w), the imaginary part of the w-integral yields
half of the natural line width in (3.1). The other half comes from the part of the integral (1.6) involving x_ (%)
and x_(t’). The principal-value part of the zero-temperature integral diverges linearly, the divergence yielding again
the mass renormalization (1.13). Subtracting this divergence from I(w;f,0), the remaining integral has the same
form as I(w;f,0), but with w in the numerator replaced by w;y = 0. This integral diverges logarithmically like
(wif/m)1og[(A — wif)/|wif|], where A is Bethe’s cutoff [9]. For A >> |w;f|, the result (4.6) implies an energy shift of
the atomic level [i):

AE; = 2 > wd[xsil log A (4.9)
4med 3m 7 if |wig]

which is the Lamb shift. Usually, the weakly varying logarithm is approximated by a weighted average L =
log[A/(|wif])] over energy levels and taken out of the integral [10]. Then the energy (4.9) can be attributed to
an extra term

L M"/ oA

Hyg~ — [, X] (4.10)

iZ

T
in the Hamiltonian (2.7). In this form, the Lamb shift appears as a hermitian logarithmically divergent correction to
the operator (2.10) governing the spontaneous emission of photons.

To lowest order in 7, the commutator becomes, for V(x) = —fica/r, equal to —i[p,p]/M? = V3V (x)/M? =
(h%c o/ M?) 476®) (x), leading to AFE; = (4a2h>L/3M?c)(i]0®® (x)|i). For hydrogen with principal quantum number
n one has (n|6® (x)|n) = a®M3c3 /hPmn3.

At finite temerature, (4.9) changes to

ez 2 A kgT 2 hw;
AE; = ——— Y Wi [xpil [log — J( 2 4.11
4med 3w szf‘xf " |log |wi £ * (hwi-) kgT )|’ (4.11)
f f J
where J(z) denotes the integral
o P Z/
J(2) EZ/O dz ———— (4.12)
which has the low-temperature (large-z) expansion J(z) = —72/6—2((3)/z+. .. , and goes to zero for high temperature

(small z) like —zlog z, as shown in Fig. 1.

z = hw;; /kgT
10 20 30 40 50

FIG. 1. Behavior of function 6.J(z)/7>.

V. LANGEVIN EQUATIONS

For high 7T, the last term in the forward-backward path integral (1.25) makes the size of the fluctuations in the
difference between the paths y(t) = x4 (t) — x_(¢t) very small. It is then convenient to introduce the average of the
two paths as x(t) = [x4 () +x_(t)] /2, and expand



AT R U 3
V(X+2> V(x 2) y-VV(x)+O®y°)... (5.1)
keeping only the first term. We further introduce an auxiliary quantity n(t) by

n(t) = Mx(t) — My%X(t) + VV(x(t)). (5.2)

With this, the exponential function in (1.25) becomes

i (" w o [P 9
exp |-~ [ atyn - L[ aryr@)], 5.3
Xp[h/ta yn 2hg/ta y()} (5.3)
where w is the constant (1.24).

Consider now the diagonal part of the amplitude (1.25) with x4, =x_p = xp and X, = X_4 = X4, implying that
Yy =Y. = 0. It represents a probability distribution

P(xptp|Xata) = |(xb,tb|xa,ta)|2 = U(xp, Xp, tb|Xas Xa ta)- (5.4)

Now the variable y can simply be integrated out in (5.3), and we find the probability distribution

Pln] o exp {—i /t t it nQ(t)} . (5.5)

The expectation value of an arbitrary functional of F[z] can be calculated from the path integral

(P}, = A [ DxPlalF (), (5.6)

where the normalization factor A is fixed by the condition (1) = 1. By a change of integration variables from z(¢)
to n(t), the expectation value (5.6) can be rewritten as a functional integral

@MMEN/%WWFM, (5.7)

Note that the probability distribution (5.5) is fi-independent. Hence in the approximation (5.1) we obtain the classical
Langevin equation. In principle, the integrand contains a factor J~![z], where J[] is the functional Jacobian

J[x] = Det [0n'(t)/627 (t')] = det[(MO} — MO} 8:; + V,V;V (x(t))]. (5.8)

It can be shown that the determinant is unity, due to the retardation of the friction term [2], thus justifying its
omission in (5.7).

The path integral (5.7) may be interpreted as an expectation value with respect to the solutions of a stochastic
differential equation (5.2) driven by a Gaussian random noise variable n(t) with a correlation function

" (")) = 89wt —t). (5.9)

Since the dissipation carries a third time derivative, the treatment of the initial conditions is nontrivial and will be
discussed elsewhere. In most physical applications « leads to slow decay rates. In this case the simplest procedure to
solve (5.2) is to write the stochastic equation as

Mx(t) + VV(x(t)) = 0(t) + My%(t), (5.10)

and solve it iteratively, first without the y-term, inserting the solution on the right-hand side, and such a procedure
is equivalent to a perturbative expansion in v in Eq. (1.25).

Note that the lowest iteration of Eq. (5.10) with n = 0 can be multipled by % and leads to the equation for the
energy change of the particle

d [M
= 758 +V(x) — Mykk| = —M~yx>. (5.11)

The right-hand side is the classical electromagmetic power radiate by an accelerated particle. The extra term in the
brackets is known as Schott term [11].



VI. CONCLUSION

We have calculated the master equation for the time evolution of the quantum mechanical density matrix describing
dissipation and decoherence of a point particle interacting with the electromagnetic field. The Hamilton-like evolution
operator was specified recursively. To lowest order in the electromagnetic coupling strength, we have recovered the
known Lamb shift and natural line width of atomic levels. In addition, we have calculated the additional broadening
caused by the coupling of the photons to the thermal bath.

Our equation may have applications to dilute interstellar gases or, after a reformulation in a finite volume, to
few-particle systems contained in cavities. So far, a master equation has been set up only for a finite number of modes
[12].

Let us finally point out that results similar to those in Sections III and IV have been derived with conventional
quantum-mechanical methods by many authors [13]. There has also been a discussion closer in spirit to ours by Diosi
[15], Landau [16], who consider, however, only the zero-temperature case and do not find a Lindblad form for the
master equation. There is further a paper by Anastopoulos and Zoupas [17], who study the behavior of electron fields
in a photon bath.

In a sequel paper we shall present a similar treatment of a particle in a thermal bath of gravitons [18].
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