On the Helicity-Flip Property of the A₂NN Coupling.

H. KLEINERT

Frie Universität - Berlin

P. H. Weisz

CERN - Geneva

(ricevuto l'8 Luglio 1971)

Evidence is piling up in favour of the hypothesis that the more important meson Regge trajectories P, f, ω and ρ , A_2 couple to nucleons predominantly to s-channel helicity-nonflip (1-3) and helicity-flip amplitudes (2), respectively. The interesting point about this hypothesis is that the on-mass-shell coupling constants of the particles lying on these trajectories appear to possess the same properties, indicating a surprisingly smooth behaviour of the flip to nonflip ratio when continuing t from the forward direction to the meson mass.

Consider $\pi \mathcal{N}$ scattering. There the assumption of the absence of the P and f trajectory in the helicity-flip amplitude has the consequence that both invariant amplitudes $A^{(+)}$ and $B^{(+)}$ obey unsubtracted dispersion relations in the forward direction. Then using the additional information on the values of $A^{(+)}$ and $B^{(+)}$ at threshold supplied by an unsubtracted backward dispersion relation, Engels and Höhler (4) have derived the estimates for the coupling of f to nucleons (*)

(1)
$$\frac{G_{t,N,N}^{(1)\,2}}{4\pi} = 53 \pm 10 , \qquad \frac{G_{t,N,N}^{(2)\,2}}{4\pi} = 3 \pm 7 ,$$

compatible with pure nonflip amplitude (**). It is interesting to note that this prop-

$$\mathscr{L} = \left[\frac{G_{t,\mathcal{N},\mathcal{N}}^{(1)}}{m} \frac{i}{4} \ \overline{\psi} (\overrightarrow{\partial_{\mu}} \, \gamma_{\nu} + \overrightarrow{\partial_{\nu}} \, \gamma_{\mu}) \, \psi + \frac{G_{t,\mathcal{N},\mathcal{N}}^{(2)}}{m^{3}} \ \partial_{\mu} \ \overline{\psi} \, \partial_{\nu} \, \psi \right] f^{\mu\nu}$$

(where $m=m_N$ is used here and in the rest of the paper). Then the helicity flip to nonflip ratio in πN scattering is given for $r \to \infty$ close to the f pole by

$$f_{+-}/f_{++} \approx \frac{\sqrt{-t}}{2m} G_{t,N,N}^{(2)}/G_{t,N,N}^{(1+2)}$$
.

⁽¹⁾ G. HÖHLER and R. STRAUSS: Fortschr. Phys., 232, 205 (1970).

⁽²⁾ F. J. GILMAN, J. PUMPLIN, A. SCHWIMMER and L. STODOLSKY: Phys. Lett., 31 B, 387 (1970);

H. HARARI and Y. ZARMI: Phys. Lett., 32 B, 291 (1970).

⁽³⁾ R. ODORICO, A. GARCIA and C. A. GARCIA CANAL: Phys. Lett., **32** B, 375 (1970); C. MICHAEL and R. ODORICO: Phys. Lett., **34** B, 422 (1971).

⁽⁴⁾ J. ENGELS and G. HÖHLER: Karlsruhe preprint (1970).

^(*) Note also that H. Schaile (Karlsruhe Thesis, 1970) using fixed-u dispersion relations and R. Strauss (Karlsruhe Thesis, 1970) using fixed-angle dispersion relations have obtained similar values for these coupling constants; however, they quote larger errors.

^(**) For f as well as A2 couplings to protons we use the Lagrangian

erty allows the second of the gravitational form factors of the nucleon to be dominated by an f-meson via an unsubtracted dispersion relation (*).

Similarly, ω does not flip the nucleon spin on its mass shell since $x^s = -0.06$ and the flip to nonflip ratio is, for large ν and close to the ω pole,

$$f_{+-}/f_{++} pprox rac{\sqrt{-\ t}}{2m} \left(rac{A+mB}{A+
u B}
ight) pprox -rac{\sqrt{-\ t}}{2m} \, 2x^s \; .$$

For ρ the same argument shows that on shell ρ mostly flips the nucleon spin (since $2x^{\nu} = 3.7$).

No such direct on-shell argument has, until now, been presented for the coupling of A_2 to nucleons. We shall show in this note that, indeed, the A_2 -meson couples on shell predominantly to the helicity-flip amplitude.

Consider the standard CGLN (6) basis of photoproduction. The amplitudes $(1/s-u)A^{(-)}$ and $(1/s-u)D^{(-)}$ are even functions in s-u. They behave for large energy in the forward direction according to $s^{\alpha}_{\Lambda_2}{}^{(0)-2}$ and therefore certainly obey unsubtracted dispersion relations (since $\alpha_{\Lambda_2}(0) \approx 0.5$). At large energy in the backward direction they are dominated by

$$s^{\alpha_{\Delta^{(0)}-\frac{3}{2}}} \approx (-t)^{\alpha_{\Delta^{(0)}-\frac{3}{2}}}$$
.

Since $\alpha_{\Delta}(0) \approx 0.2$, we can write also here an unsubtracted dispersion relation. Equating both relations at threshold we obtain two sum rules. The nucleon Born term does not contribute to either one of them (**). Due to the strong fall-off for large energies these sum rules should saturate extremely quickly and we can be content with inserting only the lowest resonances which can contribute (***): Δ in the s-channel and A_2 in the t-channel. In this way we find from $(1/s - u) A^{(-)}$ and $(1/s - u) D^{(-)}$, respectively (**),

$$g*\frac{m}{m_{\pi}}[m^{2}(C_{4}+C_{5})+mC_{3}]=\frac{3}{2}G_{\mathbf{A_{2}}N\mathcal{N}}^{(2)}g_{\mathbf{A_{2}}\pi\gamma}\frac{m_{\Delta}^{2}}{m_{\mathbf{A_{3}}}^{2}},$$

(3)
$$g^* \frac{m}{m_{\pi}} m^2 (C_4 + C_5) = 6G_{\mathbf{A}_2, \mathcal{N}, \mathcal{N}}^{(1+2)} g_{\mathbf{A}_2 \pi_{\Upsilon}} \frac{m_{\Delta}^2 m^2}{m_{\mathbf{A}_2}^4}.$$

- (*) If $\langle p' | \theta_{\mu\nu} | p \rangle \equiv \overline{u}(p') [(\gamma_{\mu} P_{\nu} + \gamma_{\nu} P_{\mu}) F_1(t)/4 + P_{\mu} P_{\nu} F_2(t)/4m + (q_{\mu} q_{\nu} t g_{\mu\nu}) F_3(t)] u(p)$, mass and spin normalization determine $F_1(0) = 1$ and $F_2(0) = 0$, respectively. If dominance of F_2 gives $F_2(t) \propto G_{f,N,N}^{(2)} \cdot (m_f^2 t)^{-1}$, hence $G_{f,N,N}^{(2)} = 0$. Note, however, that a similar f-dominance assumption for F_1 gives $G_{f,N,N}^{(1)} = 0$ about $\frac{1}{2}$ in magnitude of that given in (1), see ref. (5).
- (5) G. F. Chew, M. L. Goldberger, F. E. Low and Y. Nambu: Phys. Rev., 106, 1345 (1957).
- (6) J. ENGELS, G. HÖHLER and B. PETERSSON: Nucl. Phys., 15 B, 365 (1970).
- (**) Nor does the Roper (or other $J^p = \frac{1}{2}^+$ baryons) contribute.
- (***) The error arising by neglecting higher meson resonances is hard to estimate; the error introduced by leaving out higher baryon resonances can be shown to be small. A more complete treatment will be given in a future publication.
- $(*_*)$ Here g^* is defined by

$$\mathscr{L}_{\Delta\mathcal{N}\pi} = rac{g^*}{m_\pi} \; \overline{A}_{\mu\,,\,a} N \, \partial^\mu \, \pi_a$$
 ,

such that from

$$F_{\Delta N \pi} = rac{1}{2} rac{{g^*}^2}{4 \, \pi} \; p^3 rac{E^* + m}{M^* \, m_\pi^2} \, , \quad g^{*2} / 4 \, \pi pprox \, 0.37 \; .$$

Taking finite width into account, one estimates $g^{*\,*}/4\pi \approx 0.26$ (7). The Gourdin-Salin (8.9) coupling con-

Therefore, we find for the ratio of flip to nonflip couplings

(4)
$$G_{\mathbf{A_2}NN}^{(1+2)}/G_{\mathbf{A_2}NN}^{(2)} = \frac{1}{4} \frac{m_{\mathbf{A_2}}^2}{m^2} \frac{x}{1+x} \approx 0.44 \frac{x}{1+x}$$

with

(5)
$$x \equiv m(C_4 + C_5)/C_3$$
.

The ratio x can be taken from experiment by relating it to the ratio of electric-quadrupole and magnetic-dipole amplitudes E_{1+}/M_{1+} of CGLN at the Δ -resonance. One finds

$$(6) \hspace{1cm} -E_{1+}/M_{1+} = \left(1-\frac{m_{\Delta}}{m}x\right) \bigg/ \left(\frac{3m_{\Delta}+m}{m_{\Delta}-m}-\frac{m_{\Delta}}{m}x\right) \approx \ 6.5(1-1.32x) \,\% \ .$$

Experimentally, one has

and we take $C_3 m \approx 2$ (13), giving $x \approx 0.2$ close to the original value of Gourdin and Salin (8) of $x \approx 0.16$. This corresponds to (*)

(7)
$$G_{\mathbf{A}_2 \mathcal{N} \mathcal{N}}^{(1+2)} / G_{\mathbf{A}_2 \mathcal{N} \mathcal{N}}^{(2)} \approx 0.07$$
,

such that A₂ indeed couples more strongly to nucleon s-channel helicity-flip than to nonflip amplitudes. We would here also like to remark that by applying similar

stants C_3 , C_4 , C_5 are defined at t=0 by

$$\langle \varDelta(p')|j^{\mu}|N(p)\rangle \equiv \bar{u}_{\nu}(p')\gamma_{5}\left[C_{3}((\gamma \cdot k)g^{\mu\nu}-k^{\nu}\gamma^{\mu})+C_{4}(kp'g^{\mu\nu}-k^{\nu}p'^{\mu})+C_{5}(kpg^{\mu\nu}-k^{\nu}p'^{\mu})\right]u(p).$$

The $A_2\pi\gamma$ coupling we use is

$$\langle \pi(q) | j_{\mu\tau}^{\Lambda_2} | \gamma(k) \rangle \; \equiv \; i e \frac{g_{\Lambda_2 \pi \Upsilon}}{2 m_{\Lambda_2}^2} \left[\, \epsilon_{\mu\nu \, \lambda \varkappa} q_\tau q^\nu (\epsilon^\varkappa k^{\,\lambda} - \epsilon^{\,\lambda} k^\varkappa) + (\mu \longleftrightarrow \tau) \right] \, . \label{eq:piperson}$$

- (7) B. RENNER: Phys. Lett., 33 B, 599 (1971).
- (8) M. GOURDIN and Ph. Salin: Nuovo Cimento, 27, 193, 309 (1963); 32, 521 (1964).
- (9) J. BAACKE and H. KLEINERT: Phys. Lett., 35 B, 159 (1970).
- $\binom{*}{*}$ We neglect corrections to the equations of order m_{π}/m .
- (10) R. L. WALKER: Phys. Rev., 182, 1729 (1969).
- (11) KIM-KONG TAILE: Diplomarbeit, Bonn (1968).
- (12) W. Pfeil and D. Schwela: Springer Tracts of Modern Physics, Vol. 55 (1970), p. 213.
- (12) J. MATHEWS: *Phys. Rev.*, **137**, B 444 (1965); A. J. DUFNER and Y. S. TSAI: *Phys. Rev.*, **168**, 1801 (1967).
- (*) Note that this corresponds to a ratio $(A'/\nu B)_{t=m_{A_2}^2} \approx -0.1$ for the t-channel I=1 on amplitudes of kaon-nucleon scattering at the A_2 pole at high energies. This ratio is of the same magnitude but differing in sign to the ratio of the corresponding A_2 -meson Regge residue functions at t=0 obtained in Regge fits (14). We also remark that the same ratio at the ρ pole is estimated by

$$(A'/\nu B)_{t=m_{oldsymbol{
ho}}^2}pproxrac{1}{1+2arkappa^{
u}}pprox0.2$$
 .

(14) G. V. DASS and C. MICHAEL; Phys. Rev., 175, 1774 (1968).

techniques to the amplitudes of Compton scattering on nucleons, one arrives at the same conclusion (15). For completeness we use eq. (2) to estimate

(8)
$$G_{\mathbf{A}_{\mathbf{z}}\mathcal{N}\mathcal{N}}^{(2)}g_{\mathbf{A}_{\mathbf{z}}\mathcal{N}\mathcal{N}}\approx 20.$$

If we take an estimate on the $A_2\pi\gamma$ coupling coming from vector-meson dominance and $A_2 \to \pi\rho$ decay (*)

$$g_{\rm A_2\pi\gamma}^2 \approx 10.6 \; , \qquad$$

we find

(10)
$$\frac{G_{{\tt A_2}N'N}^{(1)2}}{4\pi} \approx \frac{G_{{\tt A_2}N'N}^{(2)2}}{4\pi} = 3 \; .$$

In conclusion we see that the simple technique of subtracting forward and backward dispersion relations from each other at threshold provides a powerful tool ($^{8.15,21}$) for the determination of on-shell coupling constants of particles exchanged in the t-channel. We hope that a combination of this method with Regge fits of high-energy scattering will supply us with direct information on the structure of Regge residues when continued from the forward direction to the particle poles.

* * *

We are grateful to G. Dass, M. Jacob, C. Michael, R. Odorico and V. Ruuska-Nen for helpful discussions.

$$\gamma_{
m p}^{2}/4\,\pi = 2.5 \qquad {
m and} \qquad \Gamma_{
m A_2\pi p} = rac{4}{5}\,rac{p_{
m c.m.}^2}{m_{
m A_2}^4}\,rac{g_{
m A_2\pi p}^2}{4\,\pi} = 85~{
m MeV}$$
 ,

where we have used the total Λ_2 width ≈ 100 MeV and branching ratio to $\rho\pi \approx 85$ % (16) (note that a slightly larger total Λ_2 width ≈ 125 MeV is obtained from ref. (17)). $g_{\Lambda_2\pi\rho}$ is defined analogously to $g_{\Lambda_3\pi\gamma}$ in footnote (**) on p. 460. Equation (9) corresponds to

$$\varGamma_{\rm A_2\pi\gamma} = \frac{2}{5} \, \alpha \, \frac{p_{\rm c,m.}^6}{m_{\rm A_2}^4} \, g_{\rm A_2\pi\gamma}^2 \approx 0.113 \, g_{\rm A_2\pi\gamma}^8 \, {\rm MeV} = 1.2 \; {\rm MeV} \; , \label{eq:factorization}$$

agreeing with «old» estimates using vector-meson dominance (18). This value of the $A_2\pi\gamma$ width is much larger than estimates obtained from pion Compton-scattering sum rules (18), combined with the Cabibbo-Radicati (18) sum rule; in this way, Harari (18) estimated $\Gamma_{A_2\to\pi\gamma}=(0.3\pm0.3)\,\mathrm{MeV}$; Singh (19) estimated $\Gamma_{A_2\to\pi\gamma}=0.4\,\mathrm{MeV}$ and Sarker (28) estimated $\Gamma_{A_2\to\pi\gamma}=(0.3\pm0.1)\,\mathrm{MeV}$. These values of the widths would of course increase the estimates of the coupling constants $G_{A_2\to\pi\gamma}^{(4)2}=(0.3\pm0.1)\,\mathrm{MeV}$. The eq. (10) by a factor ≈ 3 .

- (18) M. Alston-Garnjost, A. Barbaro-Galtieri, W. F. Buhl, S. E. Derenzo, L. D. Epperson, S. M: Flatté, J. H. Friedman, G. R. Lynch, R. L. Ott, S. D. Protopopescu, M. S. Rabin and F. T. Solmitz. *Phys. Lett.*, 33 B, 607 (1970).
- (17) G. Grayer, B. Hyams, C. J. Jones, P. Schelin, W. Blum, H. Dietl, W. Koch, H. Lippmann, E. Lorenz, G. Lütjens, W. Männer, J. Meissburger, U. Stierlin and P. Weilhammer: *Phys. Lett.*, **34** B, 333 (1970).
- (18) H. PAGELS: Phys. Rev. Lett., 18, 316 (1967); H. HARARI: Phys. Rev. Lett., 18, 319 (1967).
- (19) N. CABIBBO and L. A. RADICATI: Phys. Lett., 19, 697 (1966); V. SINGH: Phys. Rev. Lett., 19, 730 (1967)
- (20) A. Q. SARKER: Phys. Rev. Lett., 25, 1527 (1970).
- (21) J. BAACKE and H. KLEINERT: Berlin preprint (1971).

⁽¹⁵⁾ J. BAACKE, T. Y. CHANG and H. KLEINERT: to be published.

^(*) We use