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Lvidence is piling up in favour of the hypothesis that the more important meson
Regge trajectories P, f, @ and g, A, couple to nucleons predominantly to s-chan-
nel helicity-nonflip (*-3) and helicity-flip amplitudes (?), respectively. The interesting
point about this hypothesis ig that the on-mass-shell coupling constants of the particles
lying on these trajectories appear to possess the same properties, indicating a sur-
prisingly smooth behaviour of the flip to nonflip ratio when continuing ¢ from the for-
ward direetion to the meson mass.

Cousider 7N’ scattering. There the assumption of the absence of the P and f tra-
jectory in the helicity-flip amplitude has the consequence that both invariant am-
plitudes 4 and B obey unsubtracted dispersion relations in the forward direction.
Then using the additional information on the values of A and B at threshold
gupplied by an unsubtracted backward dispersion relation, ENGELs and HOULER (%)
have derived the estimates for the coupling of £ to nucleons (*)
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compatible with pure nonflip amplitude (**). It is interesting to note that this prop-

(*) G. HOHLER and R. STrAUSS: Forischr. Phys., 232, 205 (1970).
() T. J. GiLMAN, J. PoMmpLIN, A. ScHWIMMER and L. STopoirsKy: Phys. Letf., 31 B, 387 (1970);
H. HARARI and Y. ZArMI: Phys. Letf., 32 B, 291 (1970).
(3 R. Oporico, A. Garcia and C. A. GarcrA CanNaL: Phys. Lett., 32 B, 375 (1970); C. MicHAEL and
RR. Onorico: Phys. Lett., 34 B, 422 (1971).
(*y J. Exenis and (. HOHLER: Karlsruhe preprint (1970).
(*) Note also that H. ScaALk (Karlsruhe Thesis, 1970) using fixed-« dispersion rclations and R.
STrRATSS (Karlsruhe Thesis, 1970) using fixed-angle dispersion relations have obtained similar values
for these coupling constants; however, they quote larger errors.
("*) Tor f as well as A, couplings to protons we use the Lagrangian
1y, ()
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(where m = m )y is used here and in the rest of the paper). Then the helicity flip te nonflip ratio
in m.N scattering is given for » — co close to the f pole by.
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erty allows the second of the gravitational form factors of the nucleon to be demi-
nated by an f-meson via an unsubtracted dispersion relation (*).

Similarly, o does not flip the nucleon spin on its mass shell since as= — 0.06 and
the flip to nonflip ratio is, for large » and close to the « pole,
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For o the same argument shows that on shell ¢ mostly flips the nucleon spin (since
2pr = 3.7).

No such direct on-shell argument has, until now, been presented for the coupling
of A, to nucleons. We shall show in this note that, indced, the A,-mcson couples on
shell predominantly to the helicity-flip amplitude.

Consider the standard CGLN (¢) basis of photoproduction. The amplitudes
(/s —u)A“ and (1/s —u)D are even functions in s-u. They behave for large
energy in the forward direction aecording to s*4,“% and therefore certainly obey
unsubtracted dispersion relations (since «, (0) ~ 0.5). At large energy in the backward
direction they are dominated by

S“A(U)—% A (_ t)aA(ll)—g .

Since wp(0) ~ 0.2, we can write alse here an unsubtracted dispersion relation. Equat-
ing both relations at threshold we obtain two sum rules. The nueleon Born term does
not contribute to either one of them (*). Due to the strong fall-off for large energies
these sum rules should saturate extremely quickly and we can be content with inserting
only the lowest resonances which can contribute (***): A in the s-channel and A, iu the
t-channel. In this way we find from (1/s —u) A= and (1/s — u) D=, respectively (,*,} (*,%),

*
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@) P [0y 4 O5) + m03] = 2 Gllvwgagmy m’
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(3) g% —m(C, |- Cy) = BN ey i
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") I P'1Oule> =ulp ) (v, Py + 9, P FAB)[4 + Py Py Fo(t) [4m + (4,0, —t0u,) Fa(D)]ulp), mass andzspin
normalization determine F;(0)= 1 and F.(0)==0, respectively. £ dominance of ¥, gives F({)cc G(f,r:;,v-
-(m’f — 17", hence G;K*;\p = 0. Note, howovcer, that a similar f-dominanee assumption for F, gives G;,l\)y\*
about % in magnitude of that given in (1), see ref. (°).
(*) G. F. CHEwW, M. L. GOLDBERGER, F. E. Low and Y. NaMBU: Phys. Rev., 106, 1345 (1957).
(*y J. ENGELS, G, HOHLER and B. PETERSSON: Nucl, Phys., 13 B, 365 (1970).
("*) Nor does the Roper (or other J? = 1" baryons) contribute.
(***) The error arising by neglecting higher meson resonances is hard to estimate; the error introduced
by leaving out higher baryon resonances can be shown to be small. A more complete treatment will be
given in a future publication.
(»".) Here ¢g* is defined by
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Taking finite width into account, one estimates g*?/47 ~ 0.26 ("). The Gourdin-Salin (*'*) coupling con-
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Therefore, we find for the ratio of flip to nonflip couplings

1 m? x
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with
() x=m(C, + C5)/C;.

The ratio x can be taken from experiment by relating it to the ratio of electrie-quadru-
pole and magnetic-dipole amplitudes #,./M,; of CGLN at the A-resonance. One finds

(6) BT 1Jr:(l_-m—’ﬁ )/(M*%w) ~ 6.5(1— 1.322)% .

n mp— M m

Experimentally, one has
4,69 (0,
— B /M.~y 3.1% (Y,

5.99, (12),

and we take COym ~ 2 (%), giving x ~ 0.2 close to the original value of GourDIN and
SALIN (8) of x & 0.16. This corresponds to (*)

(7) GG e ~ 007,

such that A, indeed eouples more strongly to nueleon s-channel helicity-flip than to
nonflip amplitudes. We would here also like to remark that by applying simiiar

stants ¢, C;, C; are defined at {=0 by
AN Y =0y (@") v [Co((rR)g™ — K" v*) + Citkp'g** — & p'™) + Ocllepg®” — &Y p*)]u(n)
The A,;my coupling we use is
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of kaon-nucleon scattering at the A, pole at high encrgies. This ratio is of the same magnitude but dif-
foring in gign to the ratio of the corresponding A, meson Regge residue functions at { = ¢ obtained in
Regge fits ('), We also remark that the same ratio at the p pole is estimated by
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(%) G. V. Dass and C, MicHAEL: Phys. Rev,, 173, 1774 (1968).
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techniques to the amplitudes of Compton scattering on nucleons, one arrives at the
same conclusion (18). For completeness we use eq. (2) to estimate

(8) Ginvygann =~ 20.

If we take an estimate on the A,my coupling coming from vector-meson dominance
and A, > mp deecay (*)

(9) Jany ~ 10.6,
we find
G(I)E G(2)2
(10) AN . A NN —3.
47 47

In conclusion we see that the simple technique of subtracting forward and
backward dispersion relations from each other at threshold provides a powerful
tool (8:15:21) for the determination of on-shell coupling constants of particles exchanged
in the t-channel. We hope that a combination of this method with Regge fits of high-
energy scattering will supply us with direct information on the structure of Regge
residues when continued from the forward direction to the particle poles.
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We are grateful to G. Dass, M. Jacos, C. Micuarr, R. Oporico and V. Ruuska-
NEN for helpful discussions.

(3*) J. BAACKE, T. Y. CHANG and H. KLEINERT: to be published.
*) We use

y;//in: 2.5 and T, o=
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.m. 2T
S e =85 eV,

oy 4

r2

where we have used the total A, width = 100 MeV and branching ratio to em ~ 85 % (*°) (note that
a slightly larger total A, width = 125 MeV is obtained from ref. (17)). IA,mo js defined analogously
to gamy in footnote (,",) on p. 460. Equation (9) corresponds to '
r —zcxim' : A 0.113 g% n-, MeV = 1.2 MeV
Azrcy—*5 e Jamy =V ga,my Mev = 1. eV,
Ag

agrecing with «old » estimates using vector-meson dominance (**). This value of the A.my width is much
larger than estimates obtained from pion Compton-scattering sum rules (**), combined with the Cabibbo-
Radicati (**) sum rule; in this way, HARARI (**) estimated I's,_»my = {0.3 £ 0.3) MeV; SixGH (%) estimated
Iy, smy = 0.4 MeV and SARKER (?°) estimated Iy, oqy =1(0.3+ 0.1)MeV. These values of the widths would

of course increase the estimates of the coupling constants G:’z) Jim in eq. (10) by a factor ~3.
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