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We introduce a two-dimensional classical stochastic differential equation for a field u(x;t) con-
structed from all possible deterministic trajectories of a point particle in two dimensions, and show
that its components define real and imaginary parts of a complex field satisfying the Schrédinger
equation in any desired potential. In this way we can derive arbitrary quantum-mechanical spectra

from classical dynamics.

1. In a recent analysis of quantum mechanics from the
point of view of information processing, it was s pointed
out [1] that decoherence will become an insurmountable
obstacle for the practical construction of quantum com-
puters. It was suggested that instead of relying on quan-
tum behavior of microparticles it seems more promising
to simulate quantum behavior with the help of fast clas-
sical systems. As a step towards such a goal we construct
a simple classical model which allows us to simulate the
quantum behavior of a harmonic oscillator. In partic-
ular we show that the discrete energy spectrum with a
definite ground state energy can be obtained in a classi-
cal model. In the latter respect we go beyond an earlier
model in Ref. [2] whose spectrum had the defect of being
unbounded from below. In a second step, our construc-
tion is generalized to an arbitrary potential.

2. Let u(x) = (u'(x),u*(x)) be a time-independent
field in two dimensions to be called mother field. The
reparametrization freedom of the spatial coordinates is
fixed by choosing harmonic coordinates in which

V2u(x) = 0, (1)

where V? is the Laplace operator. Equivalently, we may
require the components u!(x) and u2(x) to satisfy the
Cauchy-Riemann equations

(v,y...=1,2), (2)

where €, is the antisymmetric Levi-Civita pseudoten-
sor. The metric is §,,, so that indices can be sub- or
superscripts.

Consider now a point particle in contact with a heat
bath of “temperature” fi. Its classical orbit x(¢) is as-
sumed to follow a stochastic differential equation con-
sisting of a fixed rotation and a random translation in
the diagonal direction n = (1,1)/v/2:

Ouu” = €, " ;0,u”,

x(t) = w x x(t) + nn(t), (3)

where w is the rotation vector of length w pointing or-
thogonal to the plane, and 7(t) a white-noise variable
with zero expectation and the correlation function

(n®n(t) = ho(t —1t). (4)

For a particle whose trajectory ends at a point x(t) = x,
the position x(#') at an earlier time ' is a function of
x and a functional of the the noise variable n(t”) for
t<t’ <t

x(t') = Xy [t, x; ). (5)

To simplify the notation we indicate the ¢’-dependence of
functionals of i by a subscript ¢'.

‘We now use the orbits ending at all possible final points
x = x(t) to define a time-dependent field u(x;¢) which is
equal to u(x) at ¢t =0, and evolves with time as follows:

u(x;t) = usp ) = u(Xolt, 1)) (6)
where the notation us[x; 7] indicates the variables as in
(5)-

As a consequence of the dynamic equation (3), the
change of the field u(x;t) in a small time interval from

t = 0 to t = At has the expansion

Auglx; 7] = At [w x x] - V ug[x; 7]
At
+ /0 dt' (') (n- V) uolx: 1] (7)

1 At At 9
* 5/ dtl/ dt” n(t")n(t") (m- V) uolx;n] + ... ..
0 0

The omitted terms are of order At3/2.
We now perform a noise average in Eq. (7), defining
the average field

u(x;t) = (ugx;n)). (8)
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Using the vanishing average of n(t) and the correlation
function (4), we obtain in the limit A¢ — 0 the time
derivative

dti(x;t) = Hua(x;t), at t=0. (9)

with the time evolution operator

. h
’Hz[wxx]-V+§(n-V)2.. (10)
The average field u(x; t) at an arbitrary time ¢ is obtained
by the operation

a(x;t) = U(H)a(x; 0) = eMta(x; 0). (11)

Note that the average over n has made the operator H
time-independent: HU(t) = U(t)H. Moreover, the op-
erator H commutes with the Laplace operator V2, thus
ensuring that the harmonic property (1) of u(x) remains
true for all times, i.e.,

V3a(x,t) =0 (12)

3. We now show that Eq. (9) describes the quantum me-
chanics of a harmonic oscillator. Let us restrict our at-
tention to the line with arbitrary 1 = x and z2 = 0. Ap-
plying the Cauchy-Riemann equations (2), we can rewrite
Eq. (9) in the pure z-form

h
Oy = wxr Opily — 585 a3, (13)

h
iy = —w 1 Dty + §8§ . (14)

Now we introduce a complex field
P(x;t) = o—wa”/2h [ﬂl (z,t) + iu? (sc,t)] , (15)

where we have written @ (z) for @}’ (x) |z,=z,2,—0. This
satisfies the differential equation

2
wo 2

2
i (a;t) = <—%a§ + 5t - %w) Y(z;t),  (16)

which is the Schrodinger equation of a harmonic oscillator
with the discrete energy spectrum E,, = (n+1/2)fiw, n =
0,1,2,... . The exponential prefactor in the wave func-
tion (15) is the ground state wave function of the oscil-
lator. We have no a priori physical interpretation for
its presence except that it is needed to arrive at the
Schrodinger equation (16).

4. The method can easily be generalized to an arbitrary
potential. We simply replace (3) by

H(t) = =025 (x(t)) +n' n(2),
2(t) = =1 ST (x(t)) + n?n(t), (17)

z
z

where S(x) shares with u(x) the harmonic property (1):
V3S(x) =0, (18)

i.e., the functions S*(x) with p = 1,2 fulfill Cauchy-
Riemann equations like u#(x) in (2). Repeating the
above steps we find, instead of the operator (10),

N h

= —(025")01 — (018")0> + 5 (n- V)2, (19)

and Egs. (13) and (14) become:

1 a2 oo oo
Oy = (0,57)0u; — 582 Uy, (20)
I3

Opu? = —(0,8%) O ut + §8§ . (21)
This time evolution preserves the harmonic nature of
u(x). Indeed, using the harmonic property V*S(x) = 0

we can easily derive the following time dependence of the
Cauchy-Riemann combinations in Eq. (2):

¢ (01uy — Daug) = H(O1ug — Oauz)
— 828151(81u1 — Oaus) + 6351(821“ + Drua),

)

(

at(azul + 81U2) = ﬂ(agul + O1ug
- 828151(82U1 + 81’&2) - 8351 81u1 — aQUQ). (22)

Thus 0yu; — dauz and Oauy + O1us which are zero at any
time remain zero at all times.
On account of Egs. (21), the combination

P(x;t) = e~ S @)/n [a' (z;t) + iu® (2;t)] . (23)

satisfies the Schrédinger equation
hz
i) = | o2+ V(@) w0, (2)

where the potential is related to S!(z) by the Riccati
differential equation

V(e) = 0.5 (@) — 2528 (x). (25)

The harmonic oscillator is recovered for the pair of
functions S*(x) +i9%(x) = w(z! + ix?)?/2.

5. The noise 7(t) in the stochastic differential equation
Eq. (17) can also be replaced by a source composed of

deterministic classical oscillators qx(t), k = 1,2,... with
the equations of motion
Gk =Dr,  Dr = —Witk, (26)

as

() = dk(t), (27)
%



The initial positions g;(0) and momenta py(0) are as-
sumed to be randomly distributed with a Boltzmann fac-
tor e AHose/N guch that

(ar(0)ax (0)) = 1/,
Using the equation of motion
G (t) = wiqr (0) sin wit + pg(0) sin wyt, (29)
we find the correlation function
(qk (t)qk (t/)> = w,% COS wit cos wkt’(qk (O)Qk (0))
+ sinwyt sinwit(pk (0)pr (0))
= coswg(t —t'). (30)

(r£(0)pr(0)) = h. (28)

We may now assume that the oscillators g (t) are the
Fourier components of a massless field, for instance the
gravitational field whose frequencies are w; = k, and
whose random intial conditions are caused by the big
bang. If the sum over k is simply a momentum integral
JZ5_ dk. then (30) yields a white-noise correlation func-
tion (4) for n(t).

6. We have shown that it is possible to simulate the
quantum-mechanical wave functions v (z,t) and the en-
ergy spectrum of an arbitrary potential problem by clas-
sical stochastic equations of motion, or by deterministic
equations with random initial conditions.

It remains to solve the open problem of finding a classi-
cal origin of the second important ingredient of quantum
theory: the theory of quantum measurement associated
with a stochastically evolving wave function ¥ (x,t) [3].
Only then shall we understand how God throws his dice
[4].

Acknowledgement:
The authors thank Gerard 't Hooft for many useful dis-
cussions.

[1] G. t'Hooft, hep-th/9903088, hep-th/003005.

[2] G. t'Hooft, Found. Phys. Lett. 10, 105 (1997) (quant-
ph/9612018).

[3] See also the discussions in G. C. Ghirardi, A. Rimini, and
T. Weber Phys. Rev. D 34, 470 (1986).

[4] G. t'Hooft, in Fluctuating Paths and Fields, ed. by W.
Janke, A. Pelster, H.-J.-Schmidt, and M. Bachmann,
Festschrift on the occasion of H. Kleinert’s birthday, World
Scientific, 2001.



