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I. INTRODUCTION

Following Pareto’s observation in the 19th century [1], Mandelbrot emphasized in the 1960s that the
logarithms of assets prices in financial markets do not fluctuate with Gaussian distributions, but possess
much larger tails which may be approximated by various other distributions, most prominently the
truncated Lévy distributions [2–4]. This has the consequence that the associated stochastic differential
equations cannot be treated with the popular Itô calculus. The purpose of this paper is to develop the
appropriate calculus to replace it. In Section II we briefly recapitulate the Gaussian approximation and
set the stage for the generalization in Section III.

II. GAUSSIAN APPROXIMATION TO FLUCTUATION PROPERTIES OF STOCK PRICES

Let S(t) denote the price of some stock. Over long time spans, the average over many stock prices
has a time behavior which can be approximated by pieces of exponentials. This is why they are usually
plotted on a logarithmic scale. For an illustration see the Dow-Jones industrial index over 60 years in
Fig. 1.
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For a liquid market with many particiapants, the price fluctuations seem to be driven by a stochastic
noise with a white spectrum, as illustrated on Fig. 2.
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Over longer time spans, the volatility changes stochastically, as illustrated by the data of the S&P500
index over the years 1984-1997 shown in Fig. 3. In particular, there are strong increases short before
market crashes.
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The distribution of the logarithms is Fig. 4. The theory to be developed here will ignore these fluctu-
ations and assume a constamt volatility. For recent work taking them into account see [7].
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An individual stock will in general have larger volatility than an averaged market index, especially
when the company small and the number of traded stocks per day is small.

In lowest approximation, the stockprice S(t) satisfies the simplest stochastic differential equation for
exponential growth

Ṡ(t)

S(t)
= rS + η(t), (1)

where where rS is the average slope in the logarithmic plot of the type (1), and η(t) is a white noise of
unit strength with the correlation functions

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = σ2δ(t− t′). (2)

The standard deviation σ enters into the volatility of the stock price, which is measured by the expectation
value 〈 [

Ṡ(t)

S(t)

]2 〉
= σ2. (3)

The logarithm of the stockprice

x(t) = logS(t) (4)

does not simply satisfy the differential equation x(t) = Ṡ(t)/S(t) = rS + ση(t). There is a correction due
the stochastic nature of x(t) and S(t). Recall that according to Itô’s rule we may expand

ẋ(t) =
dx

dS
Ṡ(t) +

1

2

d2x

dS2
Ṡ2(t) dt+ . . .

=
Ṡ(t)

S(t)
− 1

2

[
Ṡ(t)

S(t)

]2

dt+ . . . , (5)

and replace the last term by its expectation value (3):

ẋ(t) =
Ṡ(t)

S(t)
− 1

2

〈 [
Ṡ(t)

S(t)

]2 〉
dt

=
Ṡ(t)

S(t)
− 1

2
σ2 + . . . . (6)

Inserting here Eq. (1), we obtain

ẋ(t) = rx + η(t), (7)

where linear growth rate rx is related to the exponential growth rate rS in (1) by

rx = rS − 1

2
σ2. (8)

In praxis, this relation implies that if we fit a straight line through a plot of the logaritms of stock prices,
the forward extrapolation of the average stock price is given by

〈S(t)〉 = S(0) erSt = S(0) e(rx+σ2/2)t. (9)

A typical set of solutions of the stochasic differential equation (7) is shown in Fig. 5.
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III. LÉVY DISTRIBUTIONS

The description of the fluctuations of the logarithms of the stock prices around the linear trend by a
Gaussian distribution of a fixed width is only a rough approximation to the real stock prices. As explained
before, these have volatilities depending on time. More severely, they have distributions in which rare
events have a much higher relative probability than in Gaussian distributions. They can be fitted much
better with the help of Lévy distributions [2]. These distributions are defined by the Fourier transform

L̃µ
σ2(x) ≡

∫ ∞

∞

dp

2π
Lµ

σ2(p) e
ipx, (10)

with

Lµ
σ2(p) ≡ exp

[
−(σ2p2)µ/2/2

]
. (11)

It reduces to the Gaussian distribution for µ = 2, where the exponential reduces to an ordinary kinetic
energy with a mass M = 1/σ2. The characteristic property of the Lévy distributions is that they behave
for large x like a power of x:

L̃µ
σ2(x) → Aµ

σ2

µ

|x|1+µ
. (12)

These power falloffs are refered to as paretian tails of the distributions. The amplitude of the tails is
found by approximating the integral (10) for large x, where only small momenta contribute, by

L̃µ
σ2(x) ≈

∫ ∞

−∞

dp

2π

[
1 − 1

2
(σ2p2)µ/2

]
eipx →

x→∞Aµ
σ2

µ

|x|1+µ
, (13)

with

Aµ
σ2 = −σ

µ

2µ

∫ ∞

0

dp′

π
p′µ cos p′ =

σµ

2πµ
sin(πµ/2) Γ(1 + µ). (14)

The stock market data are fitted best with µ between 1.2 and 1.5, and we shall use µ = 3/2 most of
the time for simplicity, where one has

A
3/2
σ2 =

1

4

σ3/2

√
2π
. (15)

The full Taylor expansion of the Fourier transform (11) yields the asymptotic expansion

L̃µ
σ2(x) =

∞∑
n=0

(−1)n

n!

∫ ∞

0

dp

π

σµnpµn

2n
cos px =

∞∑
n=0

(−1)n+1

n!

σµn

2nπ
Γ(1 + nµ) sin(πµ/2)

1

|x|1+µ
. (16)

This expansion is not useful for practical calculations since being a large-x expansion, it fails to reproduce
the exponential tails of the distribution. In particular, it does not reduce to the Gaussian distribution in
the limit µ→ 2.
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A. Truncated Lévy Distributions

An undesirable property of the Lévy distributions which is incompatible with financial data is that
they have an infinite fluctuation width for µ < 2, since

σ2 = 〈x2〉 ≡
∫ ∞

−∞
dxx2 L̃µ

σ2(x) = − d2

dp2
Lµ

σ2(p)

∣∣∣∣
p=0

. (17)

In contrast, real stock prices do have a finite width. To account for both parentian tails and finite width
one introduces the so-called truncated Lévy distributions. They are defined by

L̃
(µ,α)
σ2 (x) ≡

∫ ∞

∞

dp

2π
L

(µ,α)
σ2 (p) eipx, (18)

with a Fourier transform L
(µ,α)
σ2 (p) which generalizes the function (11). It will be convenient to write it

as an exponential [5]

L
(µ,α)
σ2 (p) ≡ e−H(p), (19)

with a “Hamiltonian function”

H(p) ≡ σ2

2

α2−µ

µ(1 − µ)
[(α+ ip)µ + (α− ip)µ − 2αµ]

= σ2 (α2 + p2)µ/2 cos[µ arctan(p/α)] − αµ

αµ−2µ(1 − µ)
. (20)

The asymptotic behavior of the truncated Lévy distributions differs from the power behavior of the
Lévy distribution in Eq. (13) by an exponential factor e−αx which guarantees the finiteness of the width
σ and of all higher moments. The leading term is again obtained from the Fourier transform

L̃
(µ,α)
σ2 (x) ≈

∫ ∞

−∞

dp

2π

{
1 − σ2

2

α2−µ

µ(1 − µ)
[(α+ ip)µ + (α− ip)µ − 2αµ]

}
eipx

→
x→∞σ2Γ(1 + µ)

sin(πµ)

2π

α2−µ

µ(1 − µ)

e−α|x|

|x|1+µ
. (21)

This follows directly from the integral formulas [8]

∫ ∞

−∞

dp

2π
(α + ip)µeipx =

Θ(x)

Γ(−µ)

e−αx

x1+µ
,

∫ ∞

−∞

dp

2π
(α− ip)µeipx =

Θ(−x)
Γ(−µ)

e−α|x|

|x|1+µ
, (22)

and the identity for Gamma functions 1/Γ(−z) = −Γ(1 + z) sin(πz)/π. The full expansion is integrated
with the help of the formula [9]∫ ∞

−∞

dp

2π
(α+ ip)µ(α− ip)νeipx

= (2α)µ/2+ν/2 1

|x|1+µ/2+ν/2




1

Γ(−µ)
W(ν−µ)/2,(1+µ+ν)/2(2αx)

1

Γ(−ν)W(µ−ν)/2,(1+µ+ν)/2(2αx)

for
x > 0,

x < 0,

(23)

where the Whittaker functions W(ν−µ)/2,(1+µ+ν)/2(2αx) can be expressed in terms of Kummer’s confluent
hypergeometric function 1F1(a; b; z) as

Wλ,κ(z) =
Γ(−2κ)

Γ(1/2 − κ− λ)
zκ+1/2e−z/2

1F1(1/2 + κ− λ; 2κ+ 1; z)

+
Γ(2κ)

Γ(1/2 + κ− λ)
z−κ+1/2e−z/2

1F1(1/2 − κ− λ;−2κ+ 1; z). (24)
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For ν = 0, only x > 0 gives a nonzero integral (23), which reduces with W−µ/2,1/2+µ/2(z) = z−µ/2e−z/2

properly to the left equation in (22). Setting µ = ν we find∫ ∞

−∞

dp

2π
(α2 + p2)νeipx = (2α)ν/2 1

|x|1+ν

1

Γ(−ν)W0,1/2+ν(2α|x|). (25)

Inserting

W0,1/2+ν(z) =

√
2z

π
K1/2+ν(z/2), (26)

this becomes ∫ ∞

−∞

dp

2π
(α2 + p2)νeipx =

(
2α

|x|
)1/2+ν

1√
πΓ(−ν)K1/2+ν(α|x|). (27)

For ν = −1 where K−1/2(z) = K1/2(z) =
√
π/2ze−z, this reduces to

∫ ∞

−∞

dp

2π

1

α2 + p2
eipx =

1

2α
e−α|x|. (28)

In contrast to a Gaussian distribution, which are characterized completely by the width σ, the truncated
Lévy distributions contain three parameters σ2, µ, and α. Best fits to two types of fluctuating market
prices are shown in Fig. 6, in which we plot the cumulative probabilities

P<(δx) =

∫ δx

−∞
dx L̃

(µ,α)
σ2 (x), P>(δx) =

∫ ∞

δx

dx L̃
(µ,α)
σ2 (x) = 1 − P<(δx). (29)

For negative price fluctuations δx, the plot shows P<(δx), for positive price fluctuations P>(δx). By
definition, P<(−∞) = 0, P<(0) = 1/2, P<(∞) = 1 and P>(−∞) = 1, P>(0) = 1/2, P>(∞) = 0. To fit
the general shape, one chooses an appropriate parameter µ which turns out to be rather universal, close
to µ = 3/2. The remaining two parameters fix all expansion coefficients of Hamiltonian (20):

H(p) =
1

2
c2 p

2 − 1

4!
c4 p

4 +
1

6!
c6 p

6 − 1

8!
c8 p

8 + . . . . (30)

The numbers cn are refered to as the cumulants of the truncated Lévy distribution. They are equal to

c2 = σ2,

c4 = σ2(2 − µ)(3 − µ)α−2,

c6 = σ2(2 − µ)(3 − µ)(4 − µ)(5 − µ)α−4,

...

c2n = σ2 Γ(2n− µ)

Γ(2 − µ)
α2−2n, (31)
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The first determines the quadratic fluctuation width

〈x2〉 ≡
∫ ∞

−∞
dxx2 L̃

(µ,α)
σ2 (x) = − d2

dp2
L

(µ,α)
σ2 (p)

∣∣∣∣
p=0

= c2 = σ2, (32)

the second the fourth-order expectation

〈x4〉 ≡
∫ ∞

−∞
dxx4 L̃

(µ,α)
σ2 (x) =

d4

dp4
L

(µ,α)
σ2 (p)

∣∣∣∣
p=0

= c4 + 3c22, (33)

and so on:

〈x6〉 = c6 + 15c4c2 + 15c32, 〈x8〉 = c8 + 28c6c2 + 35c24 + 210c4c
2
2 + 105c42, . . . . (34)

In analyzing the data, one usually defines the so-called kurtosis , which is the normalized fourth-order
cumulant

κ ≡ c̄4 ≡ c4
c22

=
〈x4〉
〈x2〉2 − 3. (35)

It depends on the parameters σ2, µ, α as follows

κ =
(2 − µ)(3 − µ)

σ2α2
. (36)

Given the volatility σ and the kurtosis κ, we extract the Lévy parameter α from the equation

α =
1

σ

√
(2 − µ)(3 − µ)

κ
. (37)

In terms of κ and σ2, the expansion coefficients are

7



c̄4 = κ, c̄6 = κ2 (5 − µ)(4 − µ)

(3 − µ)(2 − µ)
, c̄8 = κ2 (7 − µ)(6 − µ)(5 − µ)(4 − µ)

(3 − µ)2(2 − µ)2
,

...

c̄n = κn/2−1 Γ(n− µ)/Γ(4 − µ)

(3 − µ)n/2−2(2 − µ)n/2−2
. (38)

For µ = 3/2, the second equation in (37) becomes simply

α =
1

2

√
3

σ2κ
, (39)

and the coefficients (40):

c̄4 = κ, c̄6 =
5 · 7
3

κ2, c̄8 = 5 · 7 · 11 κ2,

...

c̄n =
Γ(n− 3/2)/Γ(5/2)

3n/2−2/2n−4
κn/2−1. (40)

For zero kurtosis, the truncated Lévy distribution reduces to a Gaussian distribution of width σ. For a
study of the approach see Refs. [3,4]. The change in shape for a fixed width and increasing kurtosis is
shown in Fig. 7.

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

���� @� D�	��� 
� ��	�� �� �����	��� >G��& �
���
���
��� �� �
��� � B � �
�� 
����	�
�� !������� � B %
2�	���
	�( ��

� �����3( �	 , 	 5	 �%�

From the S&P and DM/US$ data with time intervals ∆t = 15min one extracts σ2 = 0.280 and 0.0163,
and the kurtoses κ = 12.7 and 20.5, respectively. This implies M ≈ 3.57 and M ≈ 61.35, and α ≈ 0.46
and α ≈ 1.50, respectively.

The other normalized cumulants (c̄6, c̄8) are then all determined to be (1881.72, 788627.46, 6.51012×
108) and (−4902.92, 3.3168 × 106 , 4.4197 × 109), repectively. The cumulants increase rapidly showing
that the expansion needs resummation.

From the data, the other normalized cumulants are found by evaluating the ratios of expectation values

c̄6 =
〈x6〉
〈x2〉3 − 15

〈x4〉
〈x2〉2 + 30,

c̄8 =
〈x8〉
〈x2〉4 − 28

〈x6〉
〈x2〉3 − 35

〈x4〉2
〈x2〉4 + 420

〈x4〉
〈x2〉2 − 630, . . . . (41)

Note that for a truncated Lévy distribution, the expectation value of an exponential is given by

〈ePx〉 ≡
∫
dx L̃

(µ,α)
σ2 (x)ePx =

∫
dx

∫
dp

2π
e−H(p)eipx+Px = e−H(−iP ). (42)
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B. Path Integral for Truncated Lévy Distribution

It is easy to calculate the properties of the simplest process whose fluctuations are distributed according
to a truncated Lévy distribution. The associated stochastic differential equation reads

ẋ(t) = η(t), (43)

and the probability distribution of the endpoints of paths starting at a certain initial point is given by
the path integral

(xbtb|xata) =

∫
Dη exp

[
−

∫ tb

ta

dt H̃(η(t))

]
δ[ẋ− η], (44)

with the initial condition x(ta) = xa. The final point is, of course, xb = x(tb). The function H̃(η) is
defined by the negative logarithm of the truncated Lévy distribution, such that

e−H̃(x) ≡ L̃
(µ,α)
σ2 (x). (45)

The lowest two correlation functions of the noise in the path integral (44) are given by a straightforward
functional generalization of formulas (32)–(34):

〈η(t1)η(t2)〉 ≡ Z−1

∫
Dη η(t1)η(t2) exp

[
−

∫ tb

ta

dt H̃(η(t))

]
= c2δ(t1 − t2) = σ2δ(t1 − t2), (46)

〈η(t1)η(t2)η(t3)η(t4)〉 ≡ Z−1

∫
Dη η(t1)η(t2)η(t3)η(t4) exp

[
−

∫ tb

ta

dt H̃(η(t))

]
= c4δ(t1−t2)δ(t1−t3)δ(t1−t4)
+ c32

[
δ(t1−t2)δ(t3−t4) + δ(t1−t3)δ(t2−t4) + δ(t1−t4)δ(t2−t3)

]
, (47)

where Z is the normalization integral

Z ≡
∫

Dη exp

[
−

∫ tb

ta

dt H̃(η(t))

]
. (48)

The higher correlation functions are obvious generalizations of (34). All odd correlation functions vanish
trivially.

The two different contributions on the right-hand side of Eq. (33) are now distinguishable by their
connectedness structure.

An important property of the probability (44) is that it satisfies the semigroup property path integrals

(xctc|xata) =

∫
dxb (xctc|xbtb)(xbtb|xata). (49)

Let us check that the experimental asset distributions satisfy this property. This is shown in Fig. 8. Apart
from the far ends of the tails, the semigroup property (49) is reasonably well satisfied (from Ref. [5]).
The discrepancy manifests itself also at another place: After Eq. (53) we shall see that the solution of the
path integral has a kurtosis decreasing inversely proportional to the time. The data in Fig. 8, however,
show only an inverse square-root falloff. This can be accounted for in the theory by including fluctuations
of the width σ, which are certainly present as was illustrated before in Figs. 3 and 4. For calculations
of this type with Gaussian distributions see Ref. [7]. If the semigroup property was satisfied perfectly,
the Lévy parameter α would be time independent as we can see from Eq. (37) with σ2 ∝ (tb − ta) and

κ ∝ 1/(tb − ta). With the slower falloff of κ ∝ 1/
√

(tb − ta), however, α decreases like 1/
√

(tb − ta). This
is, incidentally, a severe obstacle to finding a Black-Scholes type of price formula for options.
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C. Fokker-Planck-Type Equation

The δ-functional may be represented by a Fourier integral leading to

(xbtb|xata) =

∫
Dη

∫ Dp
2π

exp

{∫ tb

ta

dt
[
ip(t)ẋ(t) − ip(t)η(t) − H̃(η(t))

]}
. (50)

Integrating out the noise variable η(t) amounts to performing the inverse Fourier tranform (18) at each
instant of time and we obtain

(xbtb|xata) =

∫ Dp
2π

exp

{∫ tb

ta

dt [ip(t)ẋ(t) −H(p(t))]

}
. (51)

Integrating over all x(t) with fixed end points enforces a constant momentum along the path, and we
remain with a single integral

(xbtb|xata) =

∫
dp

2π
exp [−(tb − ta)H(p) + ip(xb − xa)] . (52)

The Fourier integral can now be performed and we obtain

(xbtb|xata) = L̃
(µ,α)
σ2(tb−ta)(xb − xa). (53)

The result is therefore a truncated Lévy distribution of increasing width. All expansion coefficients cn of
H(p) in Eq. (30) receive the same factor tb − ta, which has the consequence that the kurtosis κ = c4/c

2
2

decrases inversely proportional to tb−ta. The distribution becomes increasingly Gaussian with increasing
time, as a manifestation of the central limiting theoremcentral+limiting+theorem of statistical mechanics.
This is in contrast to the pure Lévy distribution which has no finite width and therefore maintains its
power falloff at large distances.

From the Fourier representation (52) it is easy to verify that this probability satisfies a Fokker-Planck-
type equation

∂t(xbtb|xata) = −H(−i∂x)(xbtb|xata). (54)

The general solution ψ(x, t) of this differential equation with the initial condition ψ(x, 0) is given by the
path integral generalizing (44)

10



ψ(x, t) =

∫
Dη exp

[
−

∫ tb

ta

dt H̃(η(t))

]
ψ

(
x−

∫ t

ta

dt′η(t′)
)
. (55)

To verify that this satisfies indeed the Fokker-Planck-type equation (54) we consider ψ(x, t) at a slightly
later time t+ ε and expand

ψ(x, t + ε)=

∫
Dη exp

[
−

∫ tb

ta

dt H̃(η(t))

]
ψ

(
x−

∫ t

ta

dt′η(t′) −
∫ t+ε

t

dt′η(t′)
)
.

=

∫
Dη exp

[
−

∫ tb

ta

dt H̃(η(t))

] {
ψ

(
x−

∫ t

ta

dt′η(t′)
)

− ψ′
(
x−

∫ t

ta

dt′η(t′)
) ∫ t+ε

t

dt′η(t′)

+
1

2
ψ′′

(
x−

∫ t

ta

dt′η(t′)
) ∫ t+ε

t

dt1dt2 η(t1)η(t2) (56)

− 1

3!
ψ′′′

(
x−

∫ t

ta

dt′η(t′)
) ∫ t+ε

t

dt1dt2dt3 η(t1)η(t2)η(t3)

+
1

4!
ψ(4)

(
x−

∫ t

ta

dt′η(t′)
) ∫ t+ε

t

dt1dt2dt3dt4 η(t1)η(t2)η(t3)η(t4) + . . .

}
.

Inserting here correlation functions (47) and dropping the vanishing odd expansion terms we obtain

ψ(x, t + ε) =

∫
Dη exp

[
−

∫ tb

ta

dt H̃(η(t))

]
ψ

(
x−

∫ t

ta

dt′η(t′) −
∫ t+ε

t

dt′η(t′)
)
.

=

∫
Dη exp

[
−

∫ tb

ta

dt H̃(η(t))

]

×
[
1 + εc2

1

2
∂2

x + (εc4 + ε2c22)
1

4!
∂4

x + . . .

]
ψ

(
x−

∫ t

ta

dt′η(t′)
)
.

The differential operators in the brackets can be pulled out of the integral and we obtain

ψ(x, t+ ε) =

∫
Dη exp

[
−

∫ tb

ta

dt H̃(η(t))

]
ψ

(
x−

∫ t

ta

dt′η(t′) −
∫ t+ε

t

dt′η(t′)
)
.

=

[
1 + εc2

1

2
∂2

x + (εc4 + ε2c22)
1

4!
∂4

x + . . .

]
ψ (x, t) . (57)

In the limit ε→ 0, only the linear terms in ε contribute, and we find the differential equation

∂tψ(x, t) =

[
c2

1

2
∂2

x + c4
1

4!
∂4

x + . . .

]
ψ (x, t) . (58)

To lowest order in ε, only the connected parts of the correlation functions of η(t) contribute. Comparison
with the expansion (30) of the Hamiltonian (20) shows that the differential operators in brackets is
precisely the Hamiltonian operator −H(−i∂x), and we find

∂tψ(x, t) = −H(−i∂x)ψ (x, t) . (59)

As an important side result of this calculation we note that the time derivative of an arbitrary function
of the fluctuating variable x(t) satisfying the stochastic differential equation (43) can be treated by the
following generalization of Itô’s rule

ḟ(x) = f ′(x)ẋ +

[
1

2
c2∂

2
x +

1

4!
∂4

x + . . .

]
f(x) = −H(−i∂x)f(x). (60)

For a function f(x) = ePx, this becomes simply
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d

dt
ePx = ePxẋ−H(−iP )ex, (61)

a result closely related to (42).
The above formalism is trivially generalized to processes with an average linear growth (7):

ẋ(t) = rx + η(t). (62)

Because of Eq. (60), however, the rate rS with which the stock price S(t) = ex(t) grows is now related to
rx

rx = rS +H(−i), (63)

instead of the simple Itô relation rx = rS − σ2/2 of Eq. (8). The forward price of a stock must therefore
be calculated with the generalization of formula (9):

〈S(t)〉 = S(0) erSt = S(0) e[rx−H(−i)]t. (64)

IV. CONCLUSION

The new stochastic calculus developed in this paper will be useful for estimating financial risks of a
variety of investments. In particular, it will help developing a more realistic theory of fair option prices
than available at present.

Acknowledgement
The author is grateful to Marc Potters for useful discussions. He also thanks Axel Pelster and Falvio

Nogueira for useful comments.

4�6 A� �	����( ���
� 	��������� ���������( �<;$( ����
���� 
� 	� ��
�
�� �� �
� ����
��� ���!� 2A�
 ���3 ��
��
	��	��� ����� ��� �
�
� �
��� ��
 �� ���
�� 	� �� 
����
������ 	� �� 
�������( �
�� >
��	
�
� .��H( �����	( �;$5
2����)**,�7�7;��,%��=$)<,%%*���H*�/��� 3�

4,6 F�F� /	���
����( �
������ ��	 ������� �� �������( #��
����( F��

�( �;;@�
476 C�J� /	�����	 	�� K�L� #�	�
�&( ���������� �
����� ���� ���
����� �����
����� �� � ��������� ��� �
������	

 ���
 !���� ( ��&�� C��� >���� 73( ,;=$ 2�;;=3�
4=6 �� M������( "���
��� ���
���� �� ��� �
����� �# �����
����� �# �
������	  ���
 !����� ����
	� ��� ��������

���������� �
�����( ��&�� C��� L 52( ��;@���;; 2�;;53�
456 :��� F����	�� 	�� /� �������( ����

 �# ��������� $����( �
�� ����������� %�
���� �� $��� ���������� (

D	���
��� "�
�� �����( ,%%%�
4$6 �� D
H�	�( N� >
� /� /�&�� D��M� ���� K�L� #�	�
�&( &��������
 	���
������� �� ��� �'%()) ����� *�	�+ (

��&�
�	 I 245( ==� 2�;;@3 2������	�*;@%<�=73�
4@6 F�L� F		-�
�( " %��� *����
�� "��
���� �� ,����� %
����� ���� ���������� &��������
� ���� -+��� $������(

:� �� ��&�
-�� � 7( �@77 2�;;@3 2������	�*;@%<�@<3�
F�L� F		-�
�( >�D� M��!( 	�� /� #�
!	��( ���������� �# ���������� &��������
 ����� %��� *����
������ ������
��	 �
����( ������	�*%%%<7,@

4<6 ��#� ��	�����&� 	�� ��/� C&H�
!( ��� �
��( �����
	� 7�7<,�$ 	�� 7�7<,�@�
4;6 
�
��( ��� �
��( �����
	 7�,<=�@�

4�%6 C� D���( ������� ��	 ��

������� �� ��������� .���( 2������	�*;@%5%@53�
4��6 
�
��( ��� �
��( �����
	 7�=$,�7�
4�,6 ��#� ��	�����&� 	�� ��/� C&H�
!( 
�
��( ��� �
��( �����
	 ;�,=$�
4�76 
�
��( ��� �
��( �����
	 ;�,=<�,�
4�=6 I�:� /�M	��( K�D� >��!��!( 	�� I�:� F�	&( %��� �����
��� ��	 ���/��
��� �
�������0 *0 ����
�� #�
������(

��&�� C��� I 41( $== 2�;;%3O
I�J� .��H��� 	�� :�:� F��&( "���
��� ���� �����
�� 
��
����������� �# ��� �����
/%����� �������� ���� �

12



�����
 
�#�
���� �
����� �����
����� ���	
 �# ��

��� ����
���( ��&�� C��� L 57( �=$ 2�;;<3O
A� >
����!&( ��� %��� *����
�� "��
���� �� ��������� ��	����� ��	 ,������ %
����� ( D�����	�
��	
 L���
���
�� 11 �,; 2�;;@3O
L��� �	�	( -Æ����� ������� ��
����( :����	
 �� �
�	��� 25( 7<7 2�;@%3�
I� �	�	�( ��� -�������
��� �# ��������� ��
����( :����	
 �� L��
�
�	
 �
�	��� 3( �5 2�;;$3�
D�P�:� ��	����( Q�R� .
��( ��
��1�	 ����� �� ��� �����
�� .���
������� %
���
���� �# .���
 .��� #
������/
������� ��
����( "�
����
�& �� #	� .
��� �����
��( �;;=�

13


