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Abstract: We use the Ward identities for the 9“,, Vp V) vertex and the assumptions
of f and ¢ meson dominance of the stress energy momentum tensor 8, and of
vector meson dominance of the electromagnetic currents Vp to present estimates
for the electromagnetic couplings of the f and ¢ mesons, A comparison is made
with results obtained by other methods.

1L INTRODUCTION

Recently, considerable effort has been devoted to investigations of the
physical consequences of broken dilatation symmetry [1]. The underlying
ideas of all methods used so far are abstracted from free or simple inter-
acting field theories [2-4]. In particular, such motivated assumptions on
the chiral dimensional structure of the Hamiltonian density [2, 3] and
dimensional properties of the weak and electromagnetic currents J, [2]
lead to Ward identities involving the hadron stress energy momentum
tensor qu and the currents J. These can be used to study independently
both the high and low energy behavior of various amplitudes, these regions
being then related by dispersion relations. In this paper, we will be mainly
interested in the applications of these Ward identities specifically to give
information on the electromagnetic couplings of the f and ¢ mesons.

The situation concerning f meson dominance of the traceless part of the
stress tensor has been discussed most thoroughly recently by Renner [5, 6].
The results obtained by making the simplest dispersive f dominance as-
sumptions are in general in agreement with results obtained by Wess and
Zumino [7] using an effective Lagrangian appropriately constructed so that

* Supported in part by the Deutsche Forschung Gemeinschaft under Grant No.KL 256,
** NATO Fellow,
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the { mison couples universally to all hadrons "containing” no strange
quarks *, in the form Lo £, , 67, Remarkably this coupling may proyide
the basis for an explanation {5, 6, 8, 9] of the experimentally observed
channel helicity conservation at high energies in various diffractive pro-
cesses. However, there is a disturbingly large discrepancy between this
theory and that of Engels and Hohler's [10] (;f)resent experlmental estimate

for the ratio R() = (ggI)N)/( ) in fact R ~ 3. Here, at least

two comments are relevant:

(1) the experimental value [10] for g%ll\I)N as determined from an analysis
of 7N backward scattering is probably subject to much larger uncertainties
than the uoted 10% error

(2) R or could be brought into agreement with present experiment by

1ntroducmg subtractions for certain form factors without disturbing the
s -channel helicity conservation result; however, this would rather spoil
the simplicity of the present theoretical picture

One should perhaps reserve judgement until the value for Rg}gp is better
known. Renner [6] has also made maximal smoothness assumptions to
obtain estimates for the radiative decays of the f meson: he obtains
Tf-py ®1.3 MeV; TI'f > = 7 KeV. The latter result on the two-photon
coupling will hopefully be confronted with experimental data from electron
electron scattering.

Although the ¢ meson is experimentally by no means well established,
we will assume it to exist with a large mass and width » ;= 700 MeV,
I'; = 400 MeV and to dominate the trace of the energy momentum tensor
6 = Qﬁ. In this case, standard assumptions on the nature of chiral and

{ Here it is assumed, as it will be in the rest of this paper that the f' meson does
not couple appreciably to hadrons "containing” no strange quarks,
i See refs. [1-4] of ref, [8].
HE In fact, H. C.Schaile (Karlsruhe Thesis, 1970) using fixed u dispersion relations
and R. Strauss (Karlsruhe The 1s 1970) using fixed angle dispersion relations
obtain similar estimates for ngN but the error quoted are larger, ~ 50%.

# Crewther [11] has suggested that scale breaking effects might show up in a sub-
traction for the tensor form factor F'; defined in the matrix element

(m(P+%a) |6 ()| 1(P-3a) = @PL Py-dy 1 (@)/6) F1@?) +Jpp(@) Fa(a?)

using collinear dispersion relations saturated with o and 7 poles alone together
with other assumptions (whose validities are just as questionable as assuming
that F; is in fact of unsubtracted form) he obtains estimates

2 2
m +m -1 o

oy~ ( ' Eorr Yo © (1_ T) .
" Ay ”"Al'ma) " a1

Assuming then a once subtraced form for F1 but the same unsubtractedness

assumptions for the stress tensor form factors of the nucleon RO and RO
) exp theor

would now agree well; however, Rgxp and Rt(lfl)eor would now differ by a factor
~10.
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dilatational symmetry breaking force a subtractioni in the pion matrix
element {7 () !9(0) |7T(p')>, although matrix elements

(T($)|8(0) | T(")(spin average) for other targets T can in principle be un-
subtracted [12, 13]. Again there is a discrepancy between the experimental
[10] estimate # and the simplest theoretical estimate™ for R()

(o)

= (gyNN)/ (8yqp); here Rgg{)p/R theor © 2. Note, however, that since R

exp
and Refxp which we have taken come from the same analysis [10] of 7N
scattering the present discrepancies with Rtgeor and Riyoop are cor-

related T; one may, however, be too optimistic in hoping that after future
analyses the experimental values for R\% and R 1) will ve brought into
simultaneous agreement with the corresponding theoretical values. On the
other hand, making definite assumptions on the nature of chiral and dimen-
sional breaking contained in the energy density, and’absolute prediction

for gygy is obtained [12, 13]; in particular the assumptions of (3, 3*)+ (3*, 3)
breaking (with ¢ given by either of the favourite values ¢ ~ -1.25[15] or

¢ =~ -0.25[16]) and only a ¢ number 5[17] are consistent with a large

T'; ~ 400 MeV. The couplings oAr and 0AA have also been considered [18]
using the familiar hard meson methods [19], however, here the estimate
for ggaq depends critically on what one considers the natural smoothness
assumption to makel! .

In this paper our primary aim-is to augment the list of estimates for
couplings obtained by making smoothness assumptions on the 0Vp Vx
vertex. In order to give a more coherent analysis in sect. 2, we also con-
sider the 0, V V) vertex and discuss the associated f couplings. We
show that a certain set of smoothness assumptions reproduce the vertex of
Renner [6]. However, it is noteworthy that this vertex does not coincide
with that obtained from the effective Lagrangian of Wess and Zumino [7]
containing minimal f coupling. Nevertheless the two vertices reproduce
the same onshell electromagnetic coupling constants gfy,, and g¢,., and
have the same properties with respect to s-channel helicity conservation

[6].

¥ This subtraction should not a priori be thought of as being necessary to repro-
duce a specific high energy behaviour. They merely serve as an approximation
to the tails of the higher resonances as seen in the low energy region.

I For another estimate for R(glp
H See, however, footnote # on the previous page.
As Renner [5] has remarked, a destructive interference between ¢ and f poles
is needed in order to reproduce the structure of the data, and the fit may not be
stable against addition of further contributions.
The simplest set of smoothness assumptions including the assumption of absence
of a d wave OGAA coupling (which corresponds to the structure of the simplest
effective Lagrangian [7] lead to ggaq < (dg -3), (when dg =1 the ratio
goAn/ oy 18 the same as that given by Gilman and Harari [20]). On the other
hand, allowing possible non-smooth behaviour but requiring the Fy form factor
defined in {o| A r‘ir) to be unsubtracted one obtains (independently of dg) approxi-
mately the Gilman-Harari value for go-A,T/ng provided that one assumes that
F,(t) is at most once subtracted and F'}(0) << 1 mz2 [18].

agreeing more with R‘E%Zaor’ see ref, [14].
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The results obtained for the ¢ couplings by making maximal smoothness
assumptions are very simply stated. They are: (1) the s wave ogVV coupling
is proportional to (dg- 1) where dg is the dimension of the spatial compo-
nents of the electromagnetic current; (2) the d wave gVV coupling vanishes;'
(3) govy =0, and (4) goyy = 0. We refer the reader to sect. 4 for a discus-
sion of the consequences of the results and their comparison with results
obtained by other methods.

2. WARD IDENTITIES AND f MESON COUPLINGS

The relevant object for our study is a covariantization T;E:Vph of the
three-point function

B =[P gz (0)ve Vim0, (1)
where Vg(x) are the conserved vector currents a = 3 or 8. The most
elegant way to obtain the Ward identities is by considering the variation of
the transition amplitude with respect to variations of external electromag-
netic and gravitational fields. This has been done by Wess and Zumino [7];
here we just state the results and refer the reader to ref. [7] for a full
derivation.

First define the reduced vertex [for a particular SU(3) index a which we
drop in the following],

-2

(pB =8 DA BT (b Ry @)

,uvph uup?x
where A(p) is defined in terms of the conserved propagator

-ipx
AP (P = A ()= -if e |V (0¥, 0]0). )
Here ka denotes the spin one projection

with

The factor "W in (2) denotes the coupling strength of the dominant vector
meson to V, i

m_% = lim - AT(p). (5)

2
Olv, @[v.p.nmy)= e (0, nmy/ry



H.Kleinevt et al., Electromagnetic couplings 91

Then the properties of I' ;5 are the following 1o
(A) T LVPA has no pseudotensor components
(B) Symmetry ruup?\(p k) = y.u_ph(pa
(C) Crossing symmetry: I‘uypA(P k) = Tyy (k D)
(D)} Gauge invariance: ppl“‘“u a(p, k) =0= 1"“ \ (D, R)RA
(E) Covariance: I'y;;p) satisfies the Ward iden 1tY (g = P+k)

2 U ool -
Yy 4 th(p,k) (gwk -ghkv)Jup(p)A

TRV -1
-(g VP -g pu)JM(k)A (p) .

The properties (A) to (D) leave P,uu (P, k) expressible in terms of 13
form factors of definite crossing propertles and the Ward identity (E)
supplies six relations between these. To obtain estimates for the couplings
of the f meson, it is necessary to invoke smoothness assumptions, Maximal
smoothness assumptions directly on the vertex FH p?\ lead to Renner's
relations [6] (Z = p- &, 6“ 0, eHV =€Vl gle =0, €p =€k =0):

[IR%
. e MY WA
lim , [(1-¢q /m (@) €"(p) e (B)T |, op (2 B)]
¢ mf
— 1 MY p |)t
=-3z€ (Q')E (p)E (k) {EJ'J- EVgph_Z}J. Vpp?t v upp
gy>t kot Z, 8k, -2k g 8\ +8, 8 )}, (6)

where no arbitrary parameters appear. The full analysis involves much
tedious algebra and is outlined in the appendix.

The relatlon (6) leads to a fVV coupling given by the effective Lagrangian
Ly = -ve mf f“,,V“PV (where V ,=23,V,-3,V,) which differs from
the universal coupling 7]

_ - Ly -1 BV 2 oV

’QfVV L fuvev yfmf uv(v Vp mVV V) (7)
The different couplings, however, have the same property of conserving
s-channel helicity [6]. In addition both relation (6) and the Lagrangian of
Wess and Zumino [7] yield the same estimates for the radiative decay
widths

{ There should be no anomalies [21} in eqgs. (D) and (E) since the invariance form
which they follow must be exact,

H One can reproduce Renner's vertex within the effective Lagrangian approach
[7], however, this would involve the addition of non-minimal interaction terms
for the f meson.
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andI
2 2 2
7y Y
Tfopy™—g (1+5) 43 kev, ()
Yo Yw

where yf is defined in the coupling of the f meson to the energy momentum
tensor

olo, O, a0 €, (07 m . (10

With y; estimated from the f width and the universal coupling
B -1 Ly -1 TR ‘
‘Bfmr_yfmf fp.u 917 =Yg My fuva mem, (1)
one obtains H, [5]
v2/4m =108 . (12

Then using (yg/47r) = 2.5 and (7%/477) = 22.5 one obtains the following esti-
mates for the widths I'f . 5, = 1.3 MeV and I'f ., = TkeV. The latter
result agrees well with an estimate of I'¢ _,,, = 5.7 MeV from finite energy
sum rules [22]; with this coupling the f can be produced in e-e~ collisions
with a cross section of approximately 5.10-34 cm?2 at Vs = 6 GeV. Hope-
fully these estimates will soon be confronted with experiment.

I We have included only w, p contributions and have approximated mp & My

- -1 Lo gV
'er‘y—engymf f,u.VV 0
gives
2 3 -
| - 1ge? (_V) ( 17y l_V)
Loy ™ 508" U-—3) Wy 5454/
m m wi
f f f
and
~ 1,2 -1 wp v
TP L PN fWF F
gives
22
Dimyy =25 (@ T8pyy ) -
H 2 .5
yfzkw
tomm “dnE 4 = 150 MeV
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3. TRACE IDENTITY_AND MAXIMAL SMOOTHNESS ASSUMPTIONS
The relevant object for a study of the electromagnetic couplings of the o
meson is the conserved covariantization T;)\(p, k) of the three-point function
Ton(D, &) = [ T PHEY) (0| T6(0)V (%) T, () [0) . (13)

It has been shown [7] that T4 (P, B) is indeed simply related to the con-
x PA ; g
served covariantization 7 Mvph( b, k) by the trace identity+:

* *“'
BB =T h (5 R (14)
One can now deduce, for the reduced vertex
r (0,8 =8 oAt (6, BvE (15)
o) pA v
the low energy theorem
7y Ton (5= 9) = 20, (08" 25 870 (16)

by using the Ward identity (E) and the trace identity (15).
Now expressing I‘ph(p, k) in terms of its two independent form factorsn:

W,
- 2 M
\'
we have
2 2 p 2 .2 2.2 3 -1
W, 0, 5%, p°)- L5 W, 0, p%, b7 = 277 p° % a7 () (18)
1 2 72 \% 2
which gives the rigorous result
W4(0,0,0) = 0. (19)
To obtain estimates for the o couplings one now has to make smoothness

assumptions.

(1) The most naive smoothness assumption would now be to take
Wi(O, pz,kz) as constants for small pz, k2. This would only be consistent
in so far as A(p) is vector meson pole dominated

1 7’% 2 2
ATT(p) =—2(P - mV) . : (20)
My

Then making a ¢ pole dominance assumption one would obtain

1 Eq. (14) could have anomalies [2], however, we ignore this possibility.
i Note that W; = W;(g2, p2, k2) = W;(g2, k2, p2).
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w, =0,

2, 2 2
Wo = 2mg/(q - mg) X (21)
(2) On the other hand, one may prefer to recover the results of effective
Lagrangian models incorporating vector meson dominance of the electro-
magnetic currents and o dominance of 8 and where the dimension of the
spatial component of the electromagnetic current has a fixed dimension dsI

i[[f a3xxk 6,00, Vi0)ly oy, = 00 +dg) Vi) . (22)

In this case smoothness assumptions must be made not for the gauge
invariant covariantization 'TBA but rather for the covariantization Tp’i which
has the same spatial components as oy defined in (13). The two covarianti-
zation differ by sea-gulls containing only single poles

Aok * * *
TP R =T (0 R)-g  Ap @)+ (@ -3)[A (p)+A ] (k)-Sg ] (@)
where S(v) is the operator appearing in the commutatorm;
. ¢ 3
iV ), Vh(y)]xo%’o =S5 g;, 2,0 (x-y), (24)
Apsla) = -i [ e~%@% {]T6(x) s(0)0), (25)
S =(0|5(0)]0) . (26)
The covariantization ‘T ( p, k) satisfies the Ward identity
p * %k k N p * % 27
and the low energy theorem T
* Kk * K .
T {p,-p)= (2d -4-p ) (p), (28)

pA op” pA

where A;;(p) is the non-conserved propagator

I One can also prove [23]
0@, Vo)l = (3-d) V3, 6°(x-y)

+ higher order S.T. vanishing on integration over X,

I For a derivation of this relation, see ref. [18].
In cases where the equal time commutator is divergent we consider the deriva-
tion as formal only,

T Since we expect the high energy behaviour of the propagator to be determmed by
dg, we expect that one can make arguments for the neglection of ‘T ([J -p)in
(28) for high spacelike p
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A** A*

In the following we consider dominance of matrix elements of V3 and V8 by
one vector meson in each case although a similar analysis can be carried

(p)-Sg (29)

out for the case of two resonances. We first define the vertex 1“;,’;( b, k) by
2
(k) = A (DY AL () T b, ) s (30)
T = —
px e’ pX AT X7 2_ 2 . 2°
q° - m my
Then assuming in the low energy region 1
Agg(0) m2
(i) Bpgle) = - ol
q°-mg
2 2
* % m p p - g
(i) 2" (p) -~ PP TV Ep
g v Pomy

(iii) that F;;(p, k) is well approximated by a tensor containing only up to
quadratic terms in the momenta, we find the result, expressed in terms of
W, Wa

W, =0,

2 2 2 2
Wy =12m - q¢"(3-d)}/(¢"-m) . (31)
Eq. (31) implies that Tpx( 2, #) is smoothest when dg = 3 and in this case
the result agrees with (21). The result (31) is that obtained first by Wess
and Zumino [7] in the framework of effective Lagrangians.

4. RESULTS AND CONSEQUENCES FOR ¢ COUPLINGS

In this section we discuss the consequences of the results (19), (21) and
(31), and make a comparison with results obtained by other methods.

(A) Independently of any assumption on A(p), the result (19) implies that
in any Lagrangian model satisfying the trace identity [14] and in which 8 is
a good interpolating field for o, the contribution of the o exchange Feynman
diagram to the invariant amplitudes of Compton scattering on any target
vanishes in the forward direction.

(B) 6VV couplings: the on-shell coupling constants defined by the effec-
tive Lagrangian

1
"QO'VV = %go.vvmv oVt VU- +hoyy %Ga’u Vy aVV'u_ (32)
are given by

I Note Agg(0) = dg -1)S.
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hoyy =0 (33)
for both cases (21) or (31); and by
My
govy = (1-dg) i Yo (34a)
o
or
"y
gO.VV =-2 m—‘}/o. (34b)
o

for (21) and (31) respectively where v, defines the streungth of the o meson
to 6
g

-1
- _1
(le, @lola) = -5y "m 7 (@) (35)

We recall that by making the standard assumption that the chiral breaker
in &g is a Lorentz scalar [15] of dimension d¥ and assuming also maximal
smoothness of the 63 A3 A vertex one obtains ¥, [12, 13]

m
Eonm = Yo [1+(d—2)%] . (36)
Mme

Note that the results (34a) and (34b) agree for dg = 3. There is in fact now
quite an accumulation of indirect evidence supporting the quark model
value dg = 3, these being (i} the phenomenon of scaling in deep inelastic
lepton scattering and its explanation using operator product expansions on
the light cone [24]; (ii) accepting naive arguments [25] the total electron
positron annihilation cross-section should go as s!/2@ds-5); the preliminary
data [26] favour dg = 3 (although it is by no means clear that the asymptotic
region has been reached); (iii) the longitudinal to transverse ratio in deep
inelastic electron proton scattering favours quark model commutators [27];
(iv) present data is consistent with these being only a c-number 6 in g
[17] - dg # 3 would require the presence of a g-number 4.

(C) oVy coupling: defining the on-shell oVy coupling constant 8oVy by

I Hopefully d can eventually be measured in deep inelastic lepton scattering. See,
e.g., Fritzsch and Gell-Mann [1].

B 2
21 2, _38mm , _
Lonm =27 8eqn O lgoqpTd 4 Py 400 MeV
with
Mg = 400 MeV
gives

m
~ ag

'}/O- RJ"g‘(_)-\ﬂ'»]-r \/:‘Z—fwmyp'
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B -1 Ly
,ngy—eggvy m oFqu , (37)

we see from (21) and/or (31) that maximal smoothness implies

gO’V’}/ =0 ’ (38)

as was first observed by Ellis [12] using a Lagrangian model. This would
then imply that o production in ete~ collisions is not enhanced by going to
a pole ¢ = m¢; as was hoped for by Creutz and Einhorn ¥ [28].

(D) oyy coupling: defining the on-shell oy coupling constant by the
effective Lagrangian

2 1 -1 nv
oy e g@w 2 M OFHVF , (39)
one obtains, again from the smoothness results {21) and/or (31)
=0. (40)

Eoyy
Note that both the results (39) and (40) differ considerably from those
obtained by a naive application of vector meson dominance in the frame of
the decaying o to (34) T [unless dg = 1 in case (34a)].
The result (40) also differs from the estimate of £ gy Obtained by
Schrempp, Schrempp and Walsh [22] using finite energy sum rules for
pion Compton scattering, which is equivalent to

2 2
g g ~ 4 (41)

crr S oyy ~
The estimate (41) has also been elsewhere in the literature, albeit on the
basis of quite dubious assumptions T,

A non-vanishing coupling constant g can in principle be obtained in
the Ward identity approach. To do this we have to admit, however, non-
maximal smoothness behaviour for the I‘ILT; vertex. The simplest thing
that can be done perhaps is to make the same pole dominance assumptions
as before but now allow general fourth order momentum dependence in
FETJ Then one still has W9 as given in (31) but an arbitrary parameter
appears in Wy

I Creutz and Einhorn in fact proposed going to the ¢ pole (so that the ¢ would be
emitted with sufficiently high momentum); however, as these authors noted in
their original paper one might have an independent suppression in this case if o
does not couple to particle containing no non-strange quarks,

" em g2
T _ g 7ovy
ayy 4 47

fif One would in fact obtain Eoyy ~ (1/‘;’,%) Yol - dg). This agrees well with (41) for
ds = 3, however, this agreément is probably coincidental and we cannot easily
justify the naive vector meson dominance assumption within our Ward identity
approach,

t Footnote: see next page.
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2
Wy =%§’ (42)
q2-m3

allowing a non-vanishing g,y and gg,,

hd

o

EoyV = z——Ey , (43)
v
and including just w, p contributions:
1 1
Eoyy ™ %Yc(7 Ept—5 Ew) . (44)
Yp YW
If we make in addition a quark model type of assumption £y =£ for allV,

we obtain the rough estimates (neglecting mixing effects and Yo With
respect to yﬁz)

v
EgV = 5= oy - (45)
oYV vy SovY
Then the Schrempp et al. estimate (41) for Egyy would give, together with
(45) and U.Sing gG’lT‘fT ~ '}/p

Eoryv -2 Bora/ YV - (46)

This gives the same order of magnitude for the coupling constant gogy as
assumed by Creutz and Einhorn [28].

The simplest way to distinguish between the two results (40) and {41) is
to observe the cross section of Compton scattering on pions when the two
pions are in the neighbourhood of the ¢ mass. According to the maximal
result (40) o should not be produced at all. On the other hand the large
estimate for the opy coupling (41) should suffice to lift the o out of the
background,

At present there are two feasible experiments which can measure

Ty —m°

T There has been an attempt by Sarker [29] to estimate gy 8y by using a
superconvergent sum rule for the helicity flip amplitude M, _j for pion Compton
scattering, Apart from a mistake in the A9 graph (which should read

2,2

M B AgTy 3(S—u)2+4st o

1,-1~ "~ 32 PR
A2

and which in turn drastically changes his bound onm Eryy < -1 % 0.3 obtained
by saturating the sum rule with gand higher resonances’to Eanm Loy S -234£7)
we do not consider the assumption of superconvergence of M -1 jus¥iﬂed.
Brodsky et al. [30] point out two similar ways of reproducing the estimate (41)
both equally unconvincing, The first is to saturate Sarker's sum rule with the ¢
alone; and the second is to require that the forward differential cross section
for vy — nt 7 falls faster at high energy than either the pion Born term contri-
bution or the ¢ contribution alone.
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(1) collisions of e~e~ at small angles producing two pions 1;
(2) photoproduction of two pions on a high Z nucleas ar small momentum

transfer.

5. CONLCUSION

The theoretical situation concerning the coupling constants ggv, and
Eoyy is by no means clear. The most natural assumption of maximal
smoothness within the Ward identity approach leads to a vanishing of these
coupling constants - in which case ¢ will be absent in most electromagnetic
reactions where one could hope best to see it. It remains for experiment
to decide how good the maximal smoothness assumption for the 0V V)
vertex really is.

We wish to thank J. S. Bell, J. Ellis, B.Renner, T.¥F.Walsh and
B. Zumino for helpful discussions. We especially wish to thank J. Wess and
B. Zumino for informing us of their results before publication.

APPENDIX

The vertex L'y,

The vertex Fuvw(p, k) satisfying properties (A) to (D) is given in terms
of 13 form factors of definite crossing properties which we first write in
such a form that each form factor multiplies a gauge invariant quantity

P

02
Fuvpr (B F) = 1,5 (2 R)(6 guv+n?,p“pv+%g Euky]
T 2
+JpT(P)JA(k)g“V 93/?%V
1 64 T 54 T
+§[{;€ b, J,, (PVF Hﬁ(p,knm—% k,J &) 0 H (k)
0 0
5 b
+;%_qu(p)ﬂv)\(p’k)+m_% Juk(k)Hpu(p’k)
8 g8
6 7
m2 P VA m% pu 123

98 T 8 T
+m——‘2/ PV(PH ng-PTgp“)Jl(kav—% kV(kugAT_kTgAH)JD(p)

+09(e 0k Pv—gvpk“ph—gmpvkp+kz>gmgyp)}
+{p v}, (A.1)

1 A width FO'}/')/ = 20 keV leads to a cross section Oae —eeg = 2.7 X 10733 em2 at
Vs = 6GeV.
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where _
0; = 8;(q2, p2, k2) , §;(q2, p2, k2) = 0;(q2, k2, p2)
8,=6; for i=1,3,6,7,9. (A.2)
Define
+ _ _]__ -~
67 = 2(% £ 6). (A.3)

The VZard identity can now ne shown to give six independent relations among
the 67 .
Now consider the quantity I'y pypx eP(p) e”‘(k) and decompose it in a form

such that only six form factors (G;, i =1,.. ., 6)¥ remain non-zero when
pz = kz = m%
epe‘th €'y T L G eke'pZ T
(L VP 1 [T m‘z] 2 uov

)

1 Y et
-G3(€k[€uzv+€vzu] € p[€u2v+€v2u

1 t 1 1 2 1 1
+G4(€k[€ q,+€' g |+e p[eu q, +€, q“]-zeke pguv-q [e € +e €'

[T VA V] pveovou
1
+G.ee'd (q)- —= Gp.eke'pJ (q)
5] 7 2 6 v
U mg [

+G7(€k[€uzv+€uzlu]+€ p[euEV+EVZ“])
+ G8(ek [ehqv+e;} q“]—e‘p[euqv+eu q“])

L] 2 A\ Ty 1 2
+G9eke pguu+G10mV(€u€V+€v€u)+G11€€ gw}m , (A.4)

only G5 and Gg have o poles. The G; can be of course expressed in terms
of the 8%. A particularly important result of the Ward identity (E) is that
one has at g2 = 0

1

-6,(0, 0%, p%) = G40, p%, p%) = B2 e i), @l
ap

\'
giving in particular

2

- G (0) mv’

1
as noted by Renner [6].
Now follow the smoothness assumptions required to produce Renner's
result.
Smoothness ansatz (1):

2, 2, .
mv) - G3(Oy m mV) -2 (A'G)

1*These correspond to the form factors defined by Renner [6].
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Suppose
PP 9

. q
lim (1 - MZ) Fu VO
2 2 Mg
g-—my

is well approximated by tensors involving only fourth order in the momenta
p, k. Then defining the residues

g2
RE(p%, K% (1-55) 65”02, 1%, (A.T)
q _’mf f
2
r (6, B = um (1-L) e (d b2 P (4.8)
g2 —m?2 my
f

one has

RZ’R R5,R R7, R8 ,
are constants and Ry, Rg are linear in (p2 +k2).

Using the Ward identities it can now be shown that the »; can be ex-
pressed in terms of three free parameters

2
s =% :—%ﬂR-l-
1’5 278"
my
1 + +
’)"2 = 4(R5—R8)5
mi
v —1—(R +R)
3 8 2 5 g’
my
mfz 1 2 2
vy =45 ByRD+—5 (07 +kDIERY,
v,=-1(2R, -R.+R))
6 4 6 "5 "8’
1 2 .2
y, = —— (p°-*) (R -RD),
(P 8
\"
rg=—g (b2 -1 (B4R},
8m
\'
Yy . =7 =0,
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1 .2 .22,  +

v.o=-——(p°- K°)° (RL-R}),
10 8m% 5 8
1 2 2 +
sy BP-RP RS, v = to PR Ry (A9)
11 4m% 8 12 4mV 8
Now defining
2 2 .2 2 2 .2 2\-1
Gz(q ;p ] k ) ZTZ.(Q' ,p y k )(1'%) ’ (A.].O)
mg

we now make the second unsubtvactedness ansatz (II):
is independent of qz for ¢ =1, 3. Then we have

1

~r1=r3 =z, (A.11)

and hence R8, R5 are determined from (A.9)

2
2m
+ _V ot
R8 = mfz —R5 . (A.12)
2 2

It now follows that all the residues at ¢~ =my} of all the six form facto'rs
Gi, 1 =1, 2,3, 4,7, 10) which remain on contraction with the polarization
tensor €,u,v(‘1) are well determined and we obtain Renner's [6] result (6).
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