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Flashing Dark Matter

—

Gamma-Ray Bursts from Relativistic Detonations

of Electro-Dilaton Stars

V. Folomeev, V. Gurovich∗, H. Kleinert† and H.-J. Schmidt‡

Abstract

We speculate that the universe is filled with stars composed of electromag-

netic and dilaton fields which are the sources of the powerful gamma-ray bursts

impinging upon us from all directions of the universe. We calculate soliton-

like solutions of these fields and show that their energy can be converted into

a relativistic plasma in an explosive way. As in classical detonation theory

the conversion proceeds by a relativistic self-similar solution for a spherical

detonation wave which extracts the energy from the scalar field via a plasma

in the wave front in the atmosphere of the star.

1 Introduction

Many modern theories of the universe assume the existence of various types of scalar

fields. Such fields could explain the recently discovered acceleration of the expansion

of the universe (see e.g. Ref. [1]), or the formation of clustered systems leading to
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gravitational walls for galaxies and galaxy clusters. If such fields really exist, the

universe could contain many compact star-like configurations of large total mass,

called scalar stars.

Among the many possible scalar fields, the dilaton field has a special theoreti-

cal appeal. It couples in a unique minimal way to electromagnetism to make the

Maxwell action dimensionless. This coupling leads to star-like objects which are

composed of scalar and electromagnetic fields. That such objects can exist was

pointed out by many authors [2, 3, 4]. We argue that such electro-dilaton stars may

be responsible for the strong gamma-ray bursts observed in the universe.

At present there exists no simple conventional explanation for the origin of these

events reaching us isotropically from all directions of the universe. For an compre-

hensive discussion of the subject, in particular for the failures of most theories, see

the article by Ruffini [5]. At the same time, there exist models for the early uni-

verse where an initial state of large volume of relativistic plasma quickly expands

as a spherical wave, like a critical bubble in an overheated liquid, causing a decay

of a false vacuum, and creating the universe from such a bubble [6]. The electro-

dilaton stars can supply such an explanation. We assume that the dark matter in

the universe contains a multitude of such objects, whose total mass exceeds by far

the total mass of luminous matter and is responsible for the large-scale structure of

the universe. The luminous matter concentrates in the gravitational potential wells

of the scalar fields.

Let us imagine that collision of relativistic particles produce a fireball of critical

size. Such bubbles have been investigated as possible triggers of phase transitions

in the early universe [6]. In the context of gamma-ray bursts, similar assumptions

have been made in Ref. [7]. The critical bubble forms the seed for transferring

effectively scalar fields into pairs of elementary particles and their antiparticles. The

transfer may be initiated by fast oscillation of a field on the outer boundary of the

fireball. The process causes a relativistic detonation. In a conventional detonation,

chemical energy is converted into kinetic energy. In a relativistic detonation of

an electro-dilaton star, it is the energy of the electric and scalar fields which is

rapidly converted in particle-antiparticle pairs. The resulting fireball expands with
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relativistic velocity and will therefore not depend on the weak gravitational fields of

a Newtonian configuration. We may thus study the process within special relativity.

2 Relativistic Detonation

We begin by deducing the self-similar solutions for a spherical relativistic detonation

which goes over to the well-known Zeldovich solution in the limit of small veloci-

ties [8]. The set of equations of relativistic hydrodynamics is conveniently described

in a spherical coordinate system r,Θ, φ. If v denotes the radial velocity of the plasma

in three-dimensions [8, 9] and ε is energy density, p - pressure, the equation of motion

reads
1

γ2

(

∂v

∂τ
+ v

∂v

∂r

)

+
1

W

(

∂p

∂r
+ v

∂p

∂τ

)

= 0 (1)

while energy conservation requires that

1

W

[

∂ε

∂τ
+ v

∂ε

∂r

]

+
1

γ2

(

∂v

∂r
+ v

∂v

∂τ

)

+
2v

r
= 0, (2)

where γ2 ≡ 1− v2, W = ε+ p, and c = 1. As in the nonrelativistic case, the motion

of the plasma behind the detonation front is considered as isentropic, such that (1)

and (2) are the only relevant equations.

The pairs of relativistic particles and antiparticles created behind the wave front

generate a high-temperature plasma with the equation of state:

p = c2s ε; c2s =

(

∂p

∂ε

)

S

=
1

3
, (3)

where cs is the sound velocity. As in an ordinary spherical detonation problem, we

search for a solution depending on the self-similar variable

ξ = r/τ, (4)

in which the differential equations (1) and (2) reduce to ordinary differential equa-

tions, which can be combined to the equation for v:

dv

dξ





1

c2s

(

v − ξ

1 − vξ

)2

− 1



 =
2v

ξ

γ2

1 − vξ
. (5)

In the nonrelativistic limit where v(ξ), ξ ≪ 1, this equation reduces to a textbook

equation [8]. The qualitative analysis of the relativistic equation (5) is similar to
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the one in the textbook: The solutions for v and ε have a diverging derivative at

the wave front. Such singularity of a derivative is defined by the following: the

expression in parentheses is velocity of current of plasma in relation to the wave

front. According to the theory of detonation, this velocity is equal to sound velocity

cs. Therefore, at approaching to the wave front the expression in brackets tends to

zero. The coordinate of the wave front ξ = vd (where vd is a velocity of detonation

wave in central frame) and the velocity of gas behind the wave in laboratory frame

vg is uniquely determined from conservation laws at the wave front.
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Figure 1: Dependence of the energy density ε and velocity v of plasma on the

self-similar variable ξ behind the front of detonation wave.

The discussion of possible mechanisms of “recycling” of the field behind the wave

front into relativistic plasma is considered below. Let us specify here the following

estimates of the value of vd and energy density behind the detonation wave. Consider

a scalar field in the simplest form, with an energy-momentum tensor

T ki = ϕ,iϕ
,k − δki

[

1

2
ϕ,µϕ

,µ − V (ϕ)
]

, V (ϕ) = m2ϕ2/2. (6)

In the “scalaron” regime where it undergoes fast oscillations of frequency m, i.e.

where ϕ(r, t) = a(r) sinmt, the spatial gradients of the field can be ignored and the

energy density in the laboratory frame) is

εf ≈ m2a2/2. (7)
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The expression for vd and the energy density of the plasma behind the wave front

are determined from the conservation laws T 1
0 (field) = T 1

0 (plasma) and T 1
1 (field) =

T 1
1 (plasma) for an observer moving with the wave front. Recall that the plasma is

emitted from the wave front with the velocity cs. Hence

vg = cs; vd =
2cs

1 + c2s
; εp =

2

1 − c2s
εf . (8)

Since a relativistic plasma has cs = 1/
√

3, we find vd =
√

3/2 and εp = 3 εf . The

self-similar solutions for this case are presented in Fig. 1.

We now turn to the mechanism of transition of the field energy into a relativistic

plasma.

3 Electro-Dilaton Wave

So far, the description of the conversion of the energy of a scalar field into relativistic

plasma at the front of “detonation” wave is purely phenomenological. The physical

properties of the front of the detonation wave are completely determined by the

conservation laws for a general energy-momentum tensor T ki .

One specific mechanism of such a conversion was considered in [12] based on an

analogy with a laser. Here we shall consider an alternative possibility where the

relativistic plasma and radiation are obtained from the energy of a dilaton field.

The star-like configurations for such field with strong and weak (Newtonian)

gravitational field have been considered before [13, 14, 15, 16]. As in Section 2, we

shall discuss only the case of a weak gravitational field and treat the problem within

special relativity.

The Lagrangian density of a system of dilaton and electromagnetic fields is [14,

15]:

L = 2Φ,iΦ
,i − ζ(FlmF

lm)e−2αΦ. (9)

The parameter ζ can have the values ±11 as will be explained below. The normaliza-

tion of the fields is the same as in [14, 15]. The unique interaction of the scalar field

Φ with an electromagnetic field required by scale invariance allows for a nontrivial

1our choice is ζ = −1
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combined electro-dilaton configuration. In the front of the detonation wave, the

electromagnetic field reduces the dilaton field strength by dissipation. Depending

on the intensity of the electric field, the dissipation may be due to the creation of

pairs of particles and antiparticles and to a heating of the plasma. The combined

process—generation of an electromagnetic field and its subsequent dissipation—

supplies the energy to the front of the detonation wave. Let us study the process

in a simple plane-wave configuration. The equations for Φ and Fik following from

Lagrangian (9) are

[

e−2αΦF ik
]

;k
= 0, (10)

Φ;i
;i = −αζ

2
e−2αΦ(FlmF

lm). (11)

The system is supplemented by the missing Maxwell equations (electromagnetic

versions of the Bianchi identities):

eiklmFkl,m = 0. (12)

The total energy-momentum tensor associated with the Lagrange density (9) is

T ki = 2Φ,iΦ
,k − 2ζe−2αΦFilF

lk − 1

2
δki [2(Φ,lΦ

,l) − ζe−2αΦ(FlmF
lm)]. (13)

4 Longitudinal Electro-Dilaton Wave

We now show that there exist plane electro-dilaton waves travelling along the x-axis

in which the electric field has a component F 10 = Ex with all other components

vanishing. Whereas Eq. (12) is fulfilled trivially, Eq. (10) yields

(e−2αΦEx),τ = 0; (e−2αΦEx),x = 0. (14)

Thus we find a constant of motion

e−2αΦEx = E0 = const. (15)

The quadratic field combination

I = FlmF
lm = −2E2

x (16)
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has the same negative value in all systems of special relativity. For this reason we

follow Ref. [14] in choosing the parameter ζ = −1 in (9).

The other field equation (11) becomes

∂Φ

∂τ 2
− ∂Φ

∂x2
= αE2

0e
2αΦ. (17)

or, introducing new variables 2αE0x → x, 2αE0τ → τ and function ψ = 2αΦ, we

have
∂ψ

∂τ 2
− ∂ψ

∂x2
= eψ/2. (18)

This is one of form of Liouville equation [17]. Its possesses a steady-state wave

solution which, after the redefinition of the variables

ξ = x− uτ, η = ξ/
√

1 − u2, (19)

takes the form
d2ψ

dη2
= −1

2
eψ. (20)

The first integral of this equation leads to the differential equation

(

dψ

dη

)2

= 1 − eψ (21)

whose solution

ψ = −2 ln cosh(η/2), Ex = E0/ cosh2(η/2) (22)

describes a soliton. Though the potential of dilaton field ψ diverges at |η| → ∞,

where Φ ≈ −η, the derivatives Φ,i remain finite, thus ensuring a finite energy density

of the field for all η. Note that in contrast to a charged plane in electrostatics, the

electric field of this solution has a zero flux Ex at infinity. Asymptotically, no electric

field is detectable.

There exists a general class of solutions of the Liouville equation (18) containing

two arbitrary functions f1(x−τ), f2(x+τ). Setting ψ∗ ≡ 2αΦ+lnαE2
0 , the solution

of eq. (17) is

ψ∗ = ln

[

16f
′

1(x− τ)f
′

2(x+ τ)

cosh2[f1(x− τ) + f2(x+ τ)]

]

(23)
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The primes denote derivatives. Especially simple solutions are obtained for the

linear functions

f1(x− τ) = γ (x− τ), γ ≡ 1 + u

4
√

1 − u2
, (24)

f2(x+ τ) = β (x+ τ), β ≡ 1 − u

4
√

1 − u2
. (25)

where u is velocity of soliton in Eq.(19).

The following solutions are of special interest:

a ) Localized solution for Ex with a fixed asymptotic energy density ε(|x| →
∞) = ε0, where Ex goes over into the previous soliton solution (22). In these

solutions, the functions f1 and f2 in (23) and their derivatives are regular.

Singular solutions of Liouville equation are also known [18]. They may lead

to a local catastrophic growth of electric field, and require special attention.

b ) The main purpose of this section is to show that at different values of the

energy of electro-dilaton wave before and behind the electric layer the electro-

magnetic energy may increase in time. A similar distributions of the energy

may be created by gravitational configuration.

Let us specify the arbitrary functions in Liouville solution as

f1 = γ(x− τ) + F, F = − ln tanhµ(x− τ), (26)

f2 = β(x+ τ), (27)

where γ, β are determined by the initial velocity of the wave from (24) and

(25), and µ is an arbitrary constant. Now the profile of the electric field looks

like
Ex
E0

=
16β[γ + µ tanhµ(τ − x)]

cosh2[(γ + β)x− (γ − β)τ + ln coshµ(τ − x)]
(28)

The profile of such a wave is shown on Fig. 2. Let us assume that the numerator

of Eq. (28) slowly changes in comparison with the denominator. In that case,

at given τ the maximum of electric soliton concentrates about a zero point of

argument of cosh. As we see from Eq. (24), this region moves with velocity
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Figure 2: Growth of electrical soliton in wave with different asymptotic values of

energy both before and behind wave. Solutions (28) with u = 1/
√

3 and µ = γ

are shown for increasing times τ . The energy density in units of E2
0 is equal to 7.4

behind and 0.2 in front of the wave front. For large τ the solution gives stationary

soliton with smaller value of energy.

u < 1, so that the argument of tanh is always positive in this region. The

numerator and thus the electric field increase with time. This increase comes

to an end as tanh[µ(τ−x)] reaches its asymptotical value 1. This is illustrated

in Fig. 2. If instead of tanh[µ(τ − x)] in (26) a function is chosen which grows

without bounds, then also the electric field will keep growing.

The growth of the energy of the electric field will be consumed by dissipation.

Its influence on the electro-dilaton wave will be considered in Section 6.

5 Wave of Transverse-Magnetic Type

Let us use the above results to study a wave with a transverse magnetic wave. In

this case the Maxwell equations (12) are not fulfilled identically but yield a relation

between transverse components Fik. Let us select for consideration the following

nonzero components F 20 = Ey, F
21 = Hz. Then the complete set of the equations

is

∂

∂τ
(e−2αΦEy) +

∂

∂x
(e−2αΦHz) = 0, (29)

9



∂Ey
∂x

+
∂Hz

∂τ
= 0. (30)

A travelling wave has the field components

Ey = uHz(ξ); Hz = H0e
2αΦ; I = 2H2

0(1 − u2)e4αΦ. (31)

Since u < 1 and I > 0, the field is transverse magnetic. It dictates in (10) the choice

of the sign ζ = 1. Further, using similar variables as in (19)

ξ = x− uτ, ψ = 2αΦ, η = 2αξ|H0|, (32)

we obtain the solutions for dilaton and electromagnetic fields similar to (22)

ψ = −2 ln cosh(η/2); Ey = uHz = uH0/ cosh2(η/2). (33)

The principal difference with respect to (22) is the absence of a relativistic factor
√

1 − u2 in the argument η.

The transverse magnetic wave is focused in a band of width △x ∼ 1/α|H0|.
Outside of this, the energy density lies mainly in the gradient part of the dilaton

field. From Eq. (33) it follows that energy flux density is independent of ξ:

T 0
0 = H2

0 (1 + u2); T 1
0 = 2H2

0u. (34)

This can be interpreted as follows: the conversion of the energy of the dilaton field

from the gradient to the potential part implies a conversion of the gradient energy

of the dilaton field to the energy of electromagnetic field. Certainly, this conversion

is completely reversible.

6 Dissipation

The above electro-dilaton soliton appears at the front of the detonation wave. If we

use the plasma behind the front as a frame of reference, then this soliton will be

move with a velocity u = cs = 1/
√

3 in the positive x-direction. Such a movement

generates heat in the plasma and creates of pairs of particles and antiparticles in

high concentration. This reduces the E and H fields. In the simplest description,
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the decay wave can be taken into account in a travelling-wave approximation by

replacing Eqs. (29) by

(1 − u2)
d

dξ
(e−2αΦHz) = fe−2αΦHz; (e−2αΦHz) = H0 exp[fξ/(1− u2)], (35)

where f is the friction constant with the dimension of a reverse length. While moving

though the plasma with ξ < 0, the electromagnetic wave decays. The equation for

the dilaton field with ζ = 1 becomes

d2Φ

dξ2
= −α

2
H2
z e

−2αΦ. (36)

Substitution here (35) and using the redefinitions (32), we obtain

Hz = H0h(η)e
βη, with β = f/2αH0, (37)

d2ψ

dη2
= −1

2
h2(η)e−ψ = −1

2
eψ+2βη. (38)

After a change of the variable ψ + 2βη → ψ, this equation reduces to the Liouville

form (21). Then subject to dissipation we have the following solution:

ψd = −2[βη + ln cosh(η/2)]; Hd(η) = H0e
−βη/ cosh2(η/2). (39)

Here, the subscript d denotes a solution with dissipation. Thus electro-dilaton soli-

tons with dissipation become asymmetric with a steeper front part. The creation of

particles and heat of plasma happens at decreasing of the energy density of dilaton

field. For |η| → ∞ the energy of the system is concentrated only in the gradient

part of dilaton field (see (13),(19))

T 0
0 = (1 + u2)H2

0 (ψd,η)
2.

In the limit |η| → ∞, the equations (39) becomes

T 0
0 (∞) = (1 + u2)H2

0 (1 + 2β)2; T 0
0 (−∞) = (1 + u2)H2

0 (1 − 2β)2.

It is clear from here that the energy density of dilaton field before the wave is more

than the energy density behind the wave (β > 0). The limiting value for β in

this example is β → 0.5. This implies that the whole energy of the dilaton field

transforms to the heat energy of plasma.
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7 Induced Current

Consider now the dissipation of energy by the induced fields at the wave front. For

this purpose we substitute a current on the right hand side of Eq. (29)

jy = σEy = σuHz(ξ),

where σ is specific conductivity of the medium. Then we find the following system

of dimensionless equations:

2
d2ψ

dη2
= −h2e−ψ,

d

dη
(he−ψ) = −βh, (40)

with the parameter β ∼ σu. At β = 0, this reduces to the previous electro-dilaton

soliton (33).

To analyze Eqs. (40) it is convenient to introduce the new variable

z = he−ψ, (41)

which is unity in the absence of dissipation. The first integral of the differential

equations (40) leads to the solution:

z2 = 4β

(

∂ψ

∂η

)

+ C; C = 1 − 4β.

The integration constant is selected so that in the limit η → −∞ the solution tends

to the dissipation-free soliton with (dψ/dη)− → 1 for z2 → 1. In the opposite limit

η → ∞, the variable z2 tends to zero and

(

dψ

dη

)

+

→ 4β − 1

4β
. (42)

Thus for z2 → 0, the solution represents a kink moving in the positive x-direction.

By virtue of β > 0, the asymptotic value of the dilaton energy density before the

front is less than behind it. Physically this means that the pressure of the dilaton

field creates a plasma at the wave front pushing it ahead. It follows from Eq. (42)

that the limiting value of β is now βc = 1/4 implying that the electro-dilaton energy

goes completely over into an energy flux of moving plasma. The solutions are plotted

in Fig. 3.
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Figure 3: Dependence of the energy density ε and velocity v of plasma on the

self-similar variable ξ behind the front of detonation wave for various parameters β.

8 Conclusion

¿From our discussion it appears perfectly plausible that dark matter consists of

electro-dilaton stars and is not dark at all, but has been showing its presence quite

dramatically all along via the powerful gamma-ray bursts observed since.
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