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The critical behavior of the Ginzburg-Landau model is described in a manifestly gauge-invariant
manner. The gauge-invariant correlation-function exponent is computed to first order in the 4� d and
1=n expansion, and found to agree with the ordinary exponent obtained in the covariant gauge, with the
parameter � � 1� d in the gauge-fixing term �@�A��

2=2�.
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quantum electrodynamics (QED)—the fermionic coun-
terpart of the Ginzburg-Landau model (see Refs. [3–6],

Since the correlation length exponent � is gauge indepen-
dent, �
 and �
 depend on �.
Despite being one of the most studied field-theoretic
models in theoretical physics, the critical behavior of the
Ginzburg-Landau model is still poorly understood due to
nontrivial gauge properties. The model is defined by the
Hamiltonian

H � j�@� � ieA��
j2 �m2j
j2 � �j
j4

�
1

4
F2

�� �
1

2�
�@�A��

2; (1)

where F�� � @�A� � @�A�, with �; � � 1; . . . ; d, e and
m are electric charge and mass, and � parametrizes the
self-interaction. The last (covariant) term with parameter
� fixes the gauge. The phase transition occurs where m2

changes sign. The complex field 
 has a nonzero expec-
tation value in the ordered phase.

Apart from the standard field-theoretic interpretation,
the Ginzburg-Landau model can be equivalently under-
stood as describing a random tangle of intertwined elec-
tric current loops of arbitrary length and shape [1,2]. In
the normal state, only a few current loops are present due
to a finite line tension �. At the critical temperature Tc,
the tension vanishes and the current loops become infi-
nitely long. An important characteristic of these geomet-
rical objects is their fractal dimension D, which at Tc is
related to Fisher’s critical exponent �, determining the
anomalous dimension of the order field (see below). In
the absence of gauge fields, this exponent manifests itself
in the power behavior of the correlation function

G�x� x0� � h
�x�
y�x0�i (2)

at the critical point as being G�x� � 1=xd�2��
 . The free
theory has G�x� � 1=xd�2, corresponding to �
 � 0. A
nonzero value of the critical exponent �
 implies that the
dimension of 
 deviates from the canonical, or engineer-
ing dimension �d� 2�=2.

In this note, we wish to clarify the properties of this
important exponent, which has been controversially dis-
cussed in the past, and very recently also in the context of
0031-9007=03=90(9)=097001(4)$20.00 
and references therein). The poor understanding of this
exponent is because in a gauge theory, the correlation
function (2) depends on the gauge parameter � in
Eq. (1). In ordinary local quantum field theories without
gauge fields, one can prove that it must be greater or equal
to zero. In contrast, renormalization group studies have
always produced negative (albeit gauge dependent) val-
ues, starting with the historic paper by Halperin,
Lubensky, and Ma [7]. In gauge theories, the proof of a
non-negative � is not applicable due to the nonlocal
nature of the gauge-invariant correlation function [8].

We first consider the model close to the upper critical
dimension in d � 4� � dimensions, and extend the
Hamiltonian (1) for later discussions to contain n=2 com-
plex fields with an O�n=2�-symmetric self-interaction.

A one-loop perturbative treatment of the Hamiltionian
(1) yields the first term in the � expansion of the critical
exponents. For �
, the well-known result is [7,9]:

�
 � êe2
�� 3

8�2 �
6

n
��� 3��; (3)

where êe2 � 48�2�=n is the value of the charge at the
fixed point. For an infrared-stable fixed point to exist, n
must satisfy n > 12�15� 4

������
15

p
� � 365:9 to this order.

These results are for the massless model. To avoid infra-
red divergences, Feynman diagrams are evaluated at fi-
nite external momentum �. Being the only scale
available, � is used to remove the dimension from di-
mensionful parameters, for example, êe2 � e2�d�4. Most
calculations reported in the literature are performed in
the Landau gauge (� � 0) for which [7] �
 ! �18�=n.

Since the correlation function (2) is not gauge invari-
ant, it is not a physical quantity. It is therefore not sur-
prising to find that the critical exponent �
 depends
on the gauge parameter �. As long as the gauge is fixed
by the last term in Eq. (1), the correlation function is
nevertheless well defined and the critical exponents sat-
isfy the usual scaling laws: �
 � 1

2��d� 2� �
�; d� �
�
��
 � 1�, with �
 given in Eq. (3), as, following
Ref. [10], can be verified explicitly to first order in �.
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A physical correlation function must be gauge invari-
ant, i.e., invariant under the combined transfor-
mations 
�x� ! exp�ie��x��
�x�, A��x� ! A��x� �
@���x�. Such a correlation function is obtained by in-
cluding a path-dependent Schwinger phase factor in
Eq. (2), forming

G�x� x0� � h
�x�
y�x0�e�ie
R

x0

x
d �xx�A�� �xx�i; (4)

where the line integral extends from x to x0, and the
average, denoted by angle brackets, is taken with respect
to the Hamiltonian (1). At the critical point, we now
expect a power behavior G�x� � 1=xd�2��GI , where in
contrast to �
, the exponent �GI has no � dependence.
The exponential in Eq. (4) can alternatively be written
in terms of an external electric current line J��z� as

e�i
R

ddzJ��z�A��z�, where J��z� � e
R

x0
x d �xx���z� �xx� is a

delta function along the path from x to x0 which satisfies
the current conservation law @�J��z� � e��z� x� �
e��z� x0�, with a current source at x and a sink at x0. In
Refs. [11,12], the gauge-invariant correlation function
(4), with its external current line, was studied in d � 3
and found to behave differently in the normal and super-
conductive state. In the normal state, where the line
tension � of the current line was shown to be finite, this
correlation function decreases exponentially for large
separation, G�r� � e��r, with r� � x0� � x� being the
distance vector. In the superconductive state, on the
other hand, the line tension vanishes and the correla-
tion function was found to behave instead as G�r� �
exp�e2�2

L=4�r�, with �L being the London penetration
depth. Rather than tending to zero, the correlation func-
tion now reaches a finite value for large separation. The
finite expectation value at infinite separation signals that
the current lines have lost their line tension and have
become infinitely long. In the correlation function (4) it
manifests itself in an independence on the path over
which the line integral is taken. Only the end points of
the line connecting x and x0 are physical. The exponent in
the correlation function contains a Coulomblike interac-
tion between these end points. (Note that the combination
e�L is independent of the electric charge.)

To compute the exponent �GI to first order in the �
expansion, the gauge-invariant correlation function (4) is
expanded to order e2. Then, using Wick’s theorem, three
contributions are obtained besides the lowest order

G�r� � G� T0 � T1 � T2; (5)

containing, respectively, no, one, and two Schwinger
phase factors. The first contribution T0 is given by

e2
Z

ddzddz0�G�x� z�@
$
z�G�z0 � x0�@

$
z0�G�z0 � z��

�D���z� z0�;

where the right minus left derivatives @
$
z� � @z� � @�z�
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operate only within the square brackets, and D�� is the
correlation function of the gauge-field A� in Eq. (1), with
the Fourier components

D���q� �
1

q2

�
��� � �1� ��

q�q�

q2

�
: (6)

In momentum space this yields

T0 � e2
Z ddk

�2��d
ddq

�2��d
eik�r

k4
�q� 3

2 k���q� 3
2 k��

�q� k=2�2

�D���q� k=2�:

Since the fixed-point value of e2 is of order � [see below
Eq. (3)], the integrals can either be evaluated directly in
d � 4 or using dimensional regularization and taking the
limit d ! 4 at the end. Either way gives

T0�r� � êe2
�� 3

8�2

Z ddk

�2��d
eik�r

k2
ln
k
�

� �êe2
�� 3

8�2 G�r� ln�r

with logarithmic accuracy. Adding the free scalar corre-
lation function G�r�, we obtain

G�r� � T0�r� � G�r�
�
1� êe2

�� 3

8�2 ln�r
�

� G�r�r�êe2���3�=8�2
; (7)

which reproduces the old result (3).
The last term in Eq. (5),

T2�r� � �
1

2
G�r�

Z
ddzddz0J��z�D���z� z0�J��z0�; (8)

factorizes from the start in a scalar and gauge part,
with the second factor—which plays a central role
in the study of the gauge-invariant order parameter
of the Ginzburg-Landau model [11,12]—denoting the
Biot-Savart interaction between two segments of the ex-
ternal current line. Since the integrals in Eq. (8) are line
integrals, their value depends on the path chosen. Because
of the finite string tension, the external current line con-
nects the two end points x and x0 on the shortest path. The
relevant integration paths are therefore straight lines, and

T2�r� � �
e2

2
G�r�

Z 1

0
du du0r�D����u

0 � u�r�r�; (9)

after the reparametrization �xx� � x� � ur�, �xx0� � x� �
u0r�, with a fixed distance vector r� � x0� � x� and 0 �
u; u0 � 1. The integrals are easily evaluated following
Ref. [3], with the result

�
e2

�3� d��4� d�
��d=2� 1�

4�d=2

�
1�

1

2
�1� ���3� d�

�

�G�r�r4�d; (10)
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which for d near 4 yields

T2�r� � êe2
3� �

8�2 G�r�
�
ln��r� �

1

�

�
: (11)

Because of the appearance of the logarithm multiplying
G�r�, this gives the contribution

�2 � êe2
�� 3

8�2 (12)

to the Fisher exponent. When both contributions ob-
tained so far are subtracted, one obtains a result (which
happens to be zero) independent of �. As first noted in the
the context of QED [4], this is because the combination
�
 � �2 characterizes the correlation function

h
�x�
y�x0�i
�
exp�ie

Z x0

x
d �xx�A�� �xx��

�
�1

; (13)

which, although not fully gauge invariant, is indepen-
dent of the gauge-fixing parameter � within the class
of covariant gauges.

Next, the third, or mixed term in Eq. (5), given by

e
Z

ddz ddz0�G�x� z�@
$
z�G�z� x0��J��z

0�D���z� z0�;

(14)

is evaluated. We expect an �-dependent contribution
that precisely cancels the dependence on the gauge pa-
rameter found in Eqs. (3) and (12). To extract the term of
the form G�r� ln�r�, we use the approximation, cf. Ref. [4],

T1�r� � eG�r�
Z

ddz ddz0�@z�G�z� x0� � @z�G�x� z��

� J��z0�D���z� z0�; (15)

valid with logarithmic accuracy. Both terms in the square
brackets give the same contribution. Partially integrating
this expression and using the identity @��x�x�=x

4� �
��3� d�=2�@�x

�2 in d � 4, we obtain

T1�r� � �e2
�

2�2 G�r�
Z

ddzG�z� x0�
1

�z� x�2
; (16)

giving �êe2�=4�2�G�r� ln��r� and thus a contribution to �

�1 � �êe2
�

4�2 : (17)

As expected, this contribution precisely cancels the �
dependence in Eqs. (3) and (12). More specifically, we
obtain for the gauge-invariant correlation function

�GI � �
 � �1 � �2 � �êe2
3

4�2 � �
36

n
�: (18)

This value for �GI is twice that for �
 obtained in
the Landau gauge �� � 0�. Both results coincide, how-
ever, when � � �3.

In the current loop description, the critical exponent
�GI determines the fractal dimension D of the current
097001-3
lines via [13,14] D � 2� �GI. With �GI < 0, the fractal
dimension is larger than that of Brownian random walks
for which D � 2, implying that the current lines are self-
seeking, which makes them more crumpled than
Brownian random walks. Although higher-order correc-
tions may well change the sign of �GI, nothing in the
context of the Ginzburg-Landau model forbids negative
values [8,11], provided �GI > 2� d, or D < d.

Instead of an � expansion, we may compute the gauge-
invariant critical exponent �GI nonperturbatively in the
limit of a large number n of field components. Then � can
be expanded in powers of 1=n for all 2< d < 4.

The leading contribution in 1=n generated by fluctua-
tions in the gauge field is obtained by dressing its corre-
lation function with arbitrary many bubble insertions,
and summing the entire set of Feynman diagrams [15].
The resulting series is a simple geometrical one, which
leads to the following change in the denominator of the
prefactor in the correlation function (6):

q2 ! q2 � e2
n
2

c�d�
�d� 1�

qd�2; (19)

where the second term dominates the first one for small q
in 2< d < 4. In Eq. (19), c�d� stands for the 1-loop
integral

c�d� �
Z ddk

�2��d
1

k2�k� p�2

�������p2�1

�
��2� d=2��2�d=2� 1�

�4��d=2��d� 2�
; (20)

where analytic regularization is used to handle the ultra-
violet divergences. To leading order in 1=n the value of �

for 2< d < 4 reads [16,17]

�
 �
2

n
4� d� �d� 1��4�d� 1� � d��

�4��d=2c�d���d=2� 1�
; (21)

which depends on the gauge parameter �. For d � 4� �,
this result reduces to Eq. (3) obtained to first order in the �
expansion. The gauge dependence of �
 is not always
obvious from the results quoted in the literature as often a
specific gauge is chosen from the start, for example, the
Landau gauge [7], where �
 ! �40=�2n for d � 3.

The term (8) with the modified gauge-field correlation
function can be evaluated as before. To extract the depen-
dence on ln�r� it proves useful to replace qd�2 with qd�2��

in Eq. (19), so that the gauge-field correlation function in
the large-n limit becomes

D���q� �
2

ne2
d� 1

c�d�
1

qd�2��

�
��� � �1� ��

q�q�

q2

�
;

(22)

and to let � ! 0 at the end. This leads to
097001-3
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T2�r� �
1

n
8�d� 1�

�4��d=2c�d���d=2� 1�

	
1�

1� �
d� 2



G�r�

r�

�
;

(23)

with r�=� ! 1=�� ln�r�, and

�2 � �
4

n
�d� 1��d� 1� ��

�4��d=2c�d���d=2�
: (24)

As a check note that, when subtracted from �
 given in
Eq. (21), this yields an �-independent result characteriz-
ing the correlation function (13),

�
 � �2 �
1

n
16

�4��d=2c�d���d=2� 2�
: (25)

This expression is negative for all 2< d < 4. Specifically,
�
 � �2 � �4�2=n�O��3� for d � 4� �.

To calculate the mixed term (14), the gauge-field cor-
relation is needed in coordinate space. Fourier transform-
ing Eq. (22), we arrive at

D���x� �
2

ne2
d� 1

c�d�
4

�4��d=2��d=2�

1

x2��

�

�
1

2
�d� 3� ����� � �1� ��

x�x�
x2

�
: (26)

Proceeding as before, we obtain

T1�r� � �
�
n

16�d� 1�

�4��d=2c�d���d=2� 1�
G�r�

�
Z

ddzG�z� x0�
1

�z� x�2��

� ��1G�r� ln�r�; (27)

with

�1 � �
�
n

8�d� 1�

�4��d=2c�d���d=2�
; (28)

which, being proportional to �, should cancel the �
dependence in �
 and �2. And indeed, the sum

�GI � �
 � �1 � �2

� �
4

n
�d2 � 2d� 6���d� 2�

��2� d=2��2�d=2� 1���d=2�
(29)

is independent of the gauge parameter �. Remarkably, for
the d-dependent gauge choice � � 1� d (of which our
� � �3 found in the � expansion is a special case) the �

of Eq. (21) coincides with �GI to this order in 1=n. With
this gauge choice, the trace of the gauge-field correlation
function vanishes, D���q� � 0. Since this observation
does not depend on the matter part of the theory, we
expect it to hold also in QED. And indeed, the values
[4,5] for the the two � exponents obtained in first order in
1=n in d � 3 and also in the � expansion coincide when
� � 1� d. Although higher-order corrections might
change this simple relation between the two exponents,
097001-4
we speculate that in first order the gauge choice � � 1�
d provides a shortcut for obtaining the gauge invariant
result of other quantities such as the effective potential
and mass renormalization.

The expression (29) is negative for all 2< d < 4, with
�GI � �72=�2n for d � 3 and �36�=n�O��2� for d �
4� �. The latter result is in accord with Eq. (18) obtained
in perturbation theory.We repeat that in the context of the
Ginzburg-Landau model, negative values are allowed,
provided �GI > 2� d, so that the fractal dimension D �
2� �GI of the current lines is smaller than the dimension
of the embedding space. A negative value merely indi-
cates that the current lines are self-seeking.
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