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Abstract: We derive sum rules for the isovector electromagnetic transition moments N**
— N*y where N*, N** are arbitrary resonances. The derivation is based on the fol-
lowing assumptions: (i) the isospin odd amplitudes of the scattering process N*¥*x
« N*z obey unsubstracted dispersion relations in forward as well as in backward
direction; (ii) the coupling constants of the s channel resonances are given, to a good
approXimation, by existing solutions of the algebra of axial charges; (iii) the f-chan-
nel contribution of these amplitudes is dominated by a single p meson; and (iv) the
N** N*o coupling constant can be related to the electromagnetic couplings N** N*y
via vector meson dotninance.

Our equations are tested by a calculation of the known couplings of the nucleon

and the ANy transition. The results agree well with experiment. We then predict the
isovector couplings

v v
R(147 K ~1.2), R(14 K. ~13),
(1470) Ny (K = 1.2) (1470) Ry (K, = 1.3)

where R(1470) is the §+ Roper resonance. We conclude that R (1470) should be seen
in photoproduction on deuteron.

1. INTRODUCTION

In the past, sum rules on scattering amplitudes have been of great help in gaining
some insight in the interrelation of coupling strenghts of baryon and meson reso-
nances. An important class of such sum rules is obtained by combining the knowl-
edge of some low energy value of an amplitude, taken from a symmetry principle,
with an unsubstracted dispersion relation and saturating the dispersion integral with
a finite number of resonances. In this manner, the low energy theorems supplied by
current algebra yield, via the PCAC hypothesis, a large set of Adler-Weisberger rela-
tions [1] involving coupling constants of pions to arbitrary resonances. They can be

I Supported in part by Deutsche Forschungsgemeinschaft under grant no. KL 256.
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solved most efficiently by algebraic methods [2--4]. Similarly, for Compton scat-
tering one obtains the Drell-Hearn [4] and Cabibbo-Radicati [5] type of sum rules.

[f no low energy theorems are available from symmetry priciples, other informa-
tion is needed to determine at least one value of an amplitude. This information may
come from a knowledge of the asymptotic behaviour. For example if an amplitude
is known to converge asymptotically to zero by one power stronger than required
for an unsubtracted dispersion relation, one can convert this information into so
called superconvergence surn rules. Similarly, if the asymptotic behaviour is control-
led by a Regge formula one can derive the well known finite energy sum rules.

A further possibility for deriving sum rules opens up if there is more than one in-
dependent variable in which an amplitude obeys unsubtracted dispersion relations.
It is the purpose of this paper to describe the sum rules that emerge in this manner
if an amplitude obeys unsubtracted dispersion relations for scattering in the forward
as well as in the backward direction.

Backward dispersion relations have first been used in 7N elastic scattering in or-
der to obtain information on the n7 scattering phase shifts [6]. A little later it was
recognized that by equating the values of pion nucleon amplitudes at threshold ob-
tained by dispersing in the backward direction with those obtained from the for-
ward dispersion relation leads to sum rules connecting s- and #- channel absorptive
parts [7]. These sum rules were studied by Hohler and collaborators for the isospin
odd [8] as well as for the isospin even [9] amplitudes. It turns out that the ¢- chan-
nel cut of the isospin odd amplitude can be approximated quite well by a simpie p
pole. The coupling constants of p to nucleons can be obtained and agree reasonably
with those obtained from vector meson dominance. For the isospin even amplitudes
this approach lead to first estimates on the coupling of the partly hypothetical o
particle. (m, =700 MeV, T' =400 MeV) [9, 10] and of the f meson (m;= 1260
MeV, Ff_"m =150 # 25 MeV) to nucleons. The f was found to decouple from the
flip amplitude of the nucleon [9]. This is in good agreement with the observation
that the pomeron and f trajectories apparently decouple from the nucleon helicity
flip amplitude [11] thus exhibiting an extreme smoothness of the Regge residue of
the f trajectory. Guided by these results on 7N scattering we propose to study the
possibility of determining the electromagnetic coupling of arbitrary resonances by
the same method.

The program is as follows. From the Regge pole hypotheses we can estimate the
asymptotic behaviour of the invariant amplitudes for the process TN*™ aN* (N* N**
some nucleon excited states) in forward as well as in backward«direction. If an am-
plitude is found to converge to zero in either case we disperse in both directions and
equate the threshold values. We saturate the resulting sum rules by the important
resonances in the s-channel and by a single p meson in the #-channel. The s-channel
coupling constants for higher resonances are in general unknown experimentally.
Therefore we shall use as an approximation the values obtained from algebraic solu-
tions of Adler Weisberger relations [2, 3]. In this way one obtains the couplings of
the p meson to the baryon resonances. One then invokes the hypothesis of vector
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meson dominance of the electromagnetic current to relate the p meson coupling to
the photon vertex. We shall assume the external pion mass to be continued to zero in
our discussion. This allows for a considerable simplification of kinematics and is
known, due to PCAC, to introduce errors not larger than 8%.

2. GENERAL FRAMEWORK

Consider the scattering of zero mass pions on arbitrary targets 7 and m'. Then
the scattering angle in the c.m.s. of the s-channel is given by

sin 0 = 2/sVo (5.0 / (55 554) (2.1

cos § = [2st +s2—s(m2+m'Y) + m?m'?l) (515 534) (2.2)
with

¢(s,0) = t(su—m?m'?) = —t(ts + (s—m?) s—m'?)) , (2.3)

s12=s—m2, s34=s~m'2 : (2.4)

Thus forward scattering occurs along the line # = 0, while the backward direction is
defined by

su—m2m'2=0 . (2.5)

Consider an amplitude A4 (s,#,u) with the following properties:
(i) A (s,t,u) is crossing even under the exchange s « u,
(ii) A (s,z,u) obeys a Mandelstam respresentation,
(iii) A (s, £,1) tends to zero for s oo and 6,= 0 as well as 6 ;= 180°.
Then A (s,z,u) satisfies an unsubtracted dispersion relation at t =0 inv =3 {s—u) of
the form

1 (ImA4 (V )

2
R (2.6)

-V

In the backward direction we choose ¢ as the variable in which to disperse and note
that (2.5) leads to

(5} =3 -m2—m'2) £ $/—Om+mP) (e=(m—m"HD) ,  (2.7)
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which implies kinematic singularities of s and u and consequently for A (s,¢,u). An
even amplitude, however, depends only on »2 which in the backward directions be-
comes

vE =1(t—(m+m)?) (t—(m-m')?) (2.8)

and can therefore be dispersed in ¢ without any problem. Notice that it is for this
point that the approximation of zero pion mass was made. For nonzero pion mass
(2.7) would read

: t—-4u?
(3} =3¢-m*-m 2v2u2)i%\/ -

(t—(m'+m)?) (1—(m'~m)*) ,

thus introducing a kinematic pole at ¢ = 0 in »2. Only if m = m' does this pole disap-
pear and we can in that case relax the condition u2=0.
The backwards dispersion relation for 4 (¥2,7) reads

ImA(@'2 (¢),7
L2 U0 . (2.9)

A@g(0.0= p

m

Equating (2.6) and (2.9) at v = £ (m'2—m?2), t = 0 we obtain

! ImA(V'z,o) 20N Y a4
;f“ o L [mAC? WD ar=o (2.10)
m

p'2 4

Consider now the contribution of an s-channel resonance of mass m, in the sharp res-
onance approximation. Its contribution to 4 (v2,) is

“m? ou—
s—my U

1 1
[A(Vz,t)]n=R§l(gnm,gm,n,m%,t)[ + 2} . | (2.11)
m:.

Here qu (&> &m'n> m2,t) is linear combination of products of coupling constants
&um &m'n With kinematical and angular momentum factors. Their detailed structure
will be specified below. The contribution to the forward dispersion integral in (2.10)
is then

m2+m'2—2m,21

(mz—mﬁ) (m'2~m5) .

[Ap (0,00, = RS (8, .8, s M21) (2.12)
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To obtain the contribution to the backward dispersion integral we note that the
square bracket in (2.11) can be written as

—rtmErm'2—2m?  —rtmZ4m' 2 2m?
I: 1 + 1 }: n_ n (2.13)
sAmg u~m’% (s—m,%) (u-mi%) (t—tn) m,21
where
1 '
t, = ~2(m§ —m?) (m2—m'?) (2.14)
mn

is the ¢ value at which the resonance leads to a pole in backward direction. The ex-
pression (2.13) becomes unsubstracted if t is replaced by 7,, in the numerator. Then
the contribution to the backward dispersion integral in (2.10) is

] 5 mzm'z—mﬁ
[AB (0’0]n=Rn(gnm’gm’n’mn’rn) 2 2 2 ,2 2 (215)
m, (m=—m;) (m “—m:)
The #-channel resonance contributions are of the form
a2 A =l 2 1
[AC%0),= R By 20 ) —— (2.16)
t—mr
and therefore yield at threshold
1
[Ap (0,0, = ~R (&1 &y MpT) —5 - (2.17)
m

As a final result we obtain the sum rule

T R! 2 1 SRS 2 22 12
- Rr(gm'mr’grmr’mr’n) 2 iRn(gm'n’gnm’mn’O)(zmn_m —m )
r n
”

5 mi —m?m'? 1
~R (&> &rims Min> 1) (2.18)
mﬁ (mi —m?) (m% -m'?)

As we said in the introduction, we shall use for the coupling constants g+, £,,,,, the
values obtained from an algebraic solution of Adler Weisberger relations {2, 3]. In or-
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der to do so we relate the invariant functions free of kinematical singularities and
constraints A (s,£) to s-channel helicity amplitudes

—|A+A| —IA =l

= (cos 3 0s) (sin 4 85) T}\S,A

as

A= 25 My, (.07 (2.19)
A

Close to a sharp resonance of mass m,, and spinJ,, in the s-channel the helicity am-
plitudes behave as

P 1
Lon=—57M s (7\),1,,1 w09 (2.20)

S—mn

where d';{;\ are related to the usual rotation matrices a’Mr in the same way as 7, to
T)3 - Thej, (N),., are the matrix elements of the pionic current with the isospin
label a(a = I 2, 3) between two states of helicity A*. Since the mass of the external
pion is assumed to be continued to zero we can use PCAC to express/ (A), . in
terms of the invariant collinear matrix elements X of 4°

Jo (N, = <DL A (0)pm A )

— _]_ t ! M 3
= (pz,m ,AIB#Aa lp,m,\>
m

i ’ 1] '
=7 () P NAT pm\)

b0 2 1 LTy 403

== (m—m*)y—— (p_,m,A|A LA )
Fﬂ,( m )2(p0+p3) pz I a IpZ

N S R

:ﬁ—(m —m)X, (N) . (2.21)
id

In terms of these matrix elements, 7 becomes

~ l l ' t -~
7S = — — (m 2-m2) (m? —m2 X, (\VX, (V) d, . (6) (2.22)
n w

+ Normalized to 2 p, (27r)3 53 (p-p".
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which can be inserted into (2.19) and compared with (2.11) to obtain

A 1 ' '
R85 B My 1) = 20 My (12) 3 (m%m) (m®ml) X X, (X, ()
A

i

Then the sum rule (2.18) becomes

1 1 o
— 33 R, s £y s AT === Z) (M, , (m2,0) 2m2 —m?—m'?)d |} (0)
r m, Fooan
2 mi —mzm'z Jn '
~M,., (m21) — d (M) X, (\) X, (N (2.23)

n

J
For the rotation matrices d}\;z, one finds explicitly for A > A

7 — A=A I, _ 1 (Jn+?\)!(‘]n_}\,)!
A (O =D dy 0= (1) 575, 7 +N) (T, N

J J —-x J J AN J
n - n n - n n (0) . 2.24
af(m=cn" " a =0T d, " O (2.24)
The matrix elements X ,(A) are known to satisfy, together with the isospin operators
T,, the algebra of SU(2) X SU(2), i.e.

[7,.7,] =ie, T, [T,X, (V] =i, X, (N,  [X,(0).X, (M) =ie, T

€’ abe’ ¢ -

(2.25)

From the definition (2.21) it also follows that X () satisfies
Jml _Jm
XN, =10, M, (1) X(—2n) (2.26)

where 7,,, denotes the parity of particle m. If we define reduced matrix elements of
X by [33]*

— + T 1 1
Xa (R)m'm - GAXm'jaXm ’ (2 hid f) b (2'273)
3
X0, . = % G*xtx, (3o4), (2.27b)

+xare T=1, Xg= 3 {e,—57,(re)) x are T = } isospinors.
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= 3 i + 3 .3
Xy Ny = 116G € Xy X (3+3), (2.27b)

for the transitions between different isospins, the commutation rules (2.25) are e-
quivalent to the set of Adler Weisberger relations for the scattering of pions on spin
3 and spin 3 targets N and A, respectively

G:-G*=1, (7N < N) |
G*2+iG*2=1, (nA < aN) |
G*G,—5G,G"=0, (mA < TA) . (2.28)

Here G has to be understood as a matrix in the space of particles of definite isospins.
The simplest nontrivial solutions of these equations are the following
(1) only one N and one A particle are present
(a) No NA transitions, i.e. G*=0.ThenG, =1,G} = 1.
(b) There are NA transitions, then G, =3, G*=%, G} =%, which is the well
known SU(4) solution
(2) Two I =% and one / = 3 resonances, the nucleon, the Roper R(1470) and the
A(1236) are present with one free mixing angle 8. Then

1+3 cos2 8 2 cos B sin 0
G, = )
2cosOsinf  1+%sin20
G =(cosf,sinf) , Gr=%. (2.29)

For a first rough calculation we shall stick to the last approximation. The angle
6 has to be taken around 45° in order to get reasonable agreement with experiment *.

* Experimentally one has G A=~ 1.23, (G 4)py~0.37 from

223
 (mpg=m")7 4

- 2 2 2 =
FR-’ Nr = > 3 4 (GA)RN (GA)RNX 0.86 GeV =0.120 GeV
167F m
s R
mz—mz
and G =1 from FA—>N1T= ﬁ ~—3— EG ~G X 0.123 GeV = 0.120 GeV .
161an my
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Notice that in terms of the reduced matrix elements G the contribution of
X, (\) X, (M) to the I, = 1 combinations of 4 can be written as

[Xb(?\'),Xa(A)]% =3 [GA)YG) -GG § [7,7 ],

X, (V). X, (N

PTG, (N +S5G L (X () 7, XX, %) »

(X, (V) X, (V5 5 =5 6T GT (N +G L (NG, (V]

33
22
Xiebad (—iedefxexf) ,

where the commutation stands for antisymmetrization in b and 4.

The construction of the matrix M, (s,f) relating the s-channel helicity amplitu-
des to the invariant amplitudes free of kinematical singularities will have to be done
for each process separately.

The contribution of arbitrary ¢-channel resonances to the sum ruie (2.23) can be
calculated in a completely analogous fashion. However, since we shall assume a sin-
gle p meson to make up the dominant part of it, we find it more convenient to cal-
culate the residues R % (&omm'> 8pam m%, 0) directly via a Feynman graph for every
process under consideration.

We shall therefore turn now directly to the applications.

3. APPLICATION TO R(1470) m < Nn

The invariant amplitudes free of kinematical singularities and constraints for the
process (37} (p'm) 7(q') « (*) (p,m) m(q) are defined by §

T=-ua(p)(A+:(d~4) B)u(p) Vdm'm . (3.1)

If the incoming 4 ¥ particle moves as particle 1 in the positive z direction, the s-chan-
nel c.m. helicity amplitudes ¥+ can be expressed in terms of A and B in the form $¥#

1 Normalization: § = 1 - 2m* 64 (P P) T.
1% Jacob Wick conventions.
111 These are defined by 4p,= 5,4 ")+ 1 [75,7,14C) with the same equation for B.
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(m'+m) —4(m'2+m?)
(3.2)
'm _m'+m

w2

ol LAy

W (s—m'm)

- m’+m o e L ) 2 s
AE_ | W (s—mm)—(s—z(m “+m*) T%%
app'W , ,
B stm'm (m'+mW T_ S.
2
TIS]
S ORI (3.3)
T_ 7,
—12
Consider the isospin odd amplitudes. They have the property that
(i) The amplitude
24
s—u
A= (3.4)
)

is symmetric in v =5 (s—u)

(i) Fors > o, t=0 A ) is dominated by a p trajectory with an intercept a,(0)
~ 7 and behaves like

5%
()~
A F

(3.5)
s"‘;o_1

(iii) For ¢ so along the backward curve the asymptotic behaviour of 4 is governed
by the A trajectory o, =~ 0.2 . So
) teAT
(=)~
A B

(3.6)
feA 3

Therefore A )satlsfles the sum rule eq. (2. 3) where the summation is now over
A=1,N" =1 —1 and the matrix M is



J. Baacke and H. Kleinert, Electromagnetic couplings 311

M(s,0) = N(s) . (3.7)

Thus we get explicitly

A& )f =_
(0,0)= E (nm, +m)(nm +m)
2nm tm'+m —nQ@nm, +m'+m)
X
(m’%+mm')(2nmn+m’+m) — 42 (mit—n(m'+rffz)m’31m(m+m'2)m;”'z
nm, "
—nm'm(m’ +m)m —m'?Im?)
i
X b6, .G, —Gr. G ]
1 mn m'n- nm ,
n(~1)""7 (J+4) (3.8)

In obtaining this use has been made of the reflection property (2.26) of the axial
charges X(\) in A,

Let us turn to the calculation of the contribution of the f-channel cut. As stated
in the introduction the investigation of Hohler et al. [8] of 7N backward scattering
in the I, = 1 state has shown, that the r-channel cut can be approximated quite well
by the exchange of a single p meson, as far as the low ¢ region is concerned. For the
coupling strength one can take the value derived from the vector meson dominance
hypothesis of the electromagnetic current. We shall assume that this situation is true
for the scattering of pions on any target. For the case under consideration this gives
an effective interaction

—p“a”‘Il o, Ty, (3.9)

L =g ptrX0 ®m+g w7

pmr prT i3 PTR 2
The (unsubtracted) contribution of p exchange becomes then }
t The p,,,,y term in the lower component comes from the isovector charge contribution present

for elastic transitions. For the right hand side of the equation the KSFR approximation
8 o™ mp/\/fFﬂ has been used.
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kY kY
ggm m' +m mi 1 m' +m
A=y TR P (3.10)
t—mg V.1 F?‘r t—mg V.
K +56mm' K +—2'(3mm.
At threshold this contributes
A
m +m
A7) (0,0) = L (3.11)
F2
kY4l 8 m

Hence the resulting sum rule can be written as

| «Vym'm
Wk mmn
mtm

< =3 1

2(n,m, tm’) (n, m, +m)

&Yy . +1s

m'm m'm J

2n,m, +m' +m —n,(2n,m, +m'+m)

X (mg +m'm) (2ngm, +m'+m)

nn ' '
TN = 5 Ly, O+, — (' + my? =,
n H mn
X m'm(m'+m)mnmm'2]
1
A A ® *
X - 1 (G, GG G (3.12)
n,(=1) (J,*+3)

As a first approximation we assume that in the s-channel the sum over resonances
saturates sufficiently fast to justify taking into account only the nucleon, the Roper
resonance of 1470 MeV and the A (1238). Then our sum rule reads

2m, +m'+m

A AT 3
() mim { ; 2(mA+m')(mA+m)Gm'A
%5m’m

GAm

m+m' m'+m
'—levm/vamiHG G

maA T Am

Vv .
( )m'm+ m mm ~ mm Im

(3.13)
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with
2m1 +3(m' +m) mi —(m'T+mm’ +mz)mfl —Ymm' (m+mym, . (3.14)
u:

2m2A(mA +m') (m, +m)

We now insert the explicit coupling constants of the Adler Weisberger scheme (2.29).
This yields the magnetic moments

K‘IGN rl»?— cosZ 0 |

‘ | = o (3.15)
%'*KXN 142 cos? 0 +35 cos?

rKKN‘ 4sin26 |

(=9 - (3.16)
KKN (1.2+0.055cos 20)sin 26

kYR 2.9 sin? |

4 ) = { ) . (3.17)
Yrgn 1+0.34sin6 —0.31 sin* 0

As discussed in sect. 2, the angle 8 should be around 45° to give a reasonable overall
agreement for the coupling constants G,,,,- measured experimentally. From (3.15)
we see that at @ = 45° both sum rules tend to give a somewhat too small value for
kYN Which is experimentally KN = 1.85. The best agreement is reached if one
chooses 6 = 33°. Then we have

\
v
KNN 1.6
{ ) = ) . (3.18)
b+ 1+1.95

The transition moment to the Roper resonance is, on the other hand, rather insen-
sitive to the value of 0 in the region around 45°. For 8 between 33°and 55° on finds
approximately KXN ~ 1.2 from both sum rules.
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The elastic magnetic moment of the Roper resonance is not so reliably deter-
mined. The two sum rules (3.17) differ considerably. One has for § = 33°

v
KRR 0.9

\ P = 9 ) - (3.19)
iy $+13

This, however, is not too surprising. In the scattering process Rw < R7 higher masses
than that of the Roper resonance will be important in the saturation of the disper-
sion integral. Our result for the transition moment of the Roper resonance is the
most interesting one. Experimentalists have been looking for P(1470) excitation in
photo-and electroproduction, for quite some time. The data for 7% <« yp and n'*n
< p are by now sufficiently good to say that the positive state couples only very
weakly to the photon. Since K}{N is found so big we conclude that kge, ~ —2.4 and
the resonance should be visible in the photoproduction data on neutrons *, At pre-
sent only one phenomenological analysis of photoproduction has tried to accomo-
date a Roper coupling of the size of ours [13]. There is also some indication in re-
cent data from Frascati [14] that Roper might be strongly coupled to neutrons. We
hope that experiments will soon confirm our result.

4. THE TRANSITION MOMENT A Ny

An interesting test of the strength of our method is provided by the calculation of
the ANy vertex [15]. This coupling has been analyzed quite well in recent years. Be-
fore we trust any prediction derived for other resonances it is crucial to check wheth-
er we can reproduce these coupling constants. The amplitudes free of kinematical
singularities and constraints for the process

A(p';m')yn(q") < N(p,m)w (q)

* Remember that the magnetic dipole amplitude is given in terms of Kppat the resonance posi-
tion by

im MYP~ "Px _0.65 Khp VD tm MT 7™ 5 0,65 kpo, VHD
and
KXNZ 1 (KR*'p ~KRop) -
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are defined by

(4 A (DT 7 (q")N(p) ) =i (p") [(AP*+ @B @ + (A5 + FBEDIK Ju(p)

4.1)
with
0=3(q"*+q) , K=%(q-q). (4.2)
Since A has isospin 3, the isospin decomposition for this process is given by
Aba= 4) pha g g ) pba (4.3)
where
hac =1 (5P 19 £ 5% 10y | (4.4)
In terms of 4 and B the s-channel helicity amplitudes * are given by
33 4
V3T, 4,
L = N1 (4.5)
V3 f_l 1 B
222
N T \ B,
where
7S -pS, 0032%0+K1S_ -pS_ sin2%6—KlS+ pS,
pS_ —pS, cos? § 0 +K,8 —pS_sin? $60-K,S, pS,
N1=
-pS, pS_ cosz%BleS+ pS, sin2%6+K1S_ -pS
\—p§4 pS_ cosz%BYKszL pS, sin2%6+KzS_ -nS_

* The nucleon is particle 1, Jacob-Wick conventions are used.
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1 0 1 (m'—m) 0
0 1 0 Y (m'—m)
X : (4.6)
0 0 7% 0
0 0 0 1%

Here S, =sinh 3 (£§££') and

1 ' ' ' __L ' ' -
Klij/[(zpw+pE+EpcosH), Kz—M —Ep +FE'pcos@).

and ¢ and ¢ denote the rapidities of nucleon and A respectively. Inverting these e-
quations we find

1 0 ~ oW 0
m'—m
N=— mr2m 0 1 0 — 2W
V207" W o 0 , 0
W
1
0 0 0 W

peos’t0S,—K,S  pS_ pS psin?40S_+K,S,

—p cosz%BS++K1S_ -pS  -pS -pS,—p sinz%t‘)S_—KlSJr
X (4.7)
p COSZ%BS_—KzS pS_ pS p sin2%6’8++1<28_

+

—p 0032%987+KIS+ -pS, -pS_  -p sin2%0S+-K1Sé

Since the pion mass is taken to be zero, we can write

. w1 s—m'm ) nom—m
Smh%(g+§):2\/m'm W , smh%(§*.§)=zm,

w1 s+m'm n_ mtm
cosh 3 (¢ +¢ )=2 m W Cosh%(§—§)=2\/n7n;- (4.8)

One obtains then
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N=- mﬂ-—(N cos 2+N sin? 6) 4.9)
8 2}7 p’2w3 2 2

where N and Np are given, respectively, by

Siy 1o+ S3)-M2M G S\, M5 "mSpy Sy +S3) WMM (55453
m’ ~ 2
S 3 (S + 53y S| M_G 'S 5 (51 + S3) WS 5 +S3,)
NF= 1
m’ ~ ’ 2
—2mSu M _ ZW S ¥ 2m'SyM 2WMIM
~ m o~ ,
283, (V +S} “20 5,0 S ,M_ —2WM_ (S5 + Sy
(4.10)
and
M- 2 LU , 1 -
. e WM 7 Sy Syt Sy 583 w8yt )
- o~ m’S - , 1 ~
P (2S3q=vw) —S oM@ =519 819+ S34) —38342S34~mM 0)
N = J
B ’
2552 Mg T s, M 2 s
PR W S12Y¥ M3 M_ w3
25 (2.54,-TF e 3 'S M 2s miv2M
?KU (2.5’ 34*“&3“#) *W 1211/ -2m 1M —W 34(mlf1+zs )
with (4-11)

F=(Gstmm)y, Y=(—mm), S,=(-m?), Sy =(-m?, M=(m'tm).

Consider the isospin odd amplitudes
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46 =]

They are all even functions in v and behave as

/sap -1

A )

(4.12)

(4.13)

for large s in forward scattering and as t “4 ™% ~ =03 for large ¢ in the backward
direction. Thus the sum rules (2.23) hold again with

M(S,t) = 9

0 0
0o 0
2
sS—u

0 1

' N(s,0,) .

(4.14)

The evaluation of the sum of the baryon contributions is a cumbersome numerical
calculation from which not much physical insight can be gained. In order to get a
first estimate we take an SU(4) type approximation in which N and A are the only
baryon resonances in the s-channel with equal mass. Then the matrix M simplifies
considerably. We find in forward direction
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while at @ =x (¢=1¢,)

Ms,i)= 23 2mw

(s—m?)?]

m 0 m 0
0 —m —2W
L, (4.15)
m
0 W 0 0
m
2 7 0 0
2
s+m
0 0 m ~ W
2
stm
0 0 —m W
5. (4.16)
stm> om0 m
S W 1%
s—m? m 0 m
s W W

If one uses again the reflection properties (2.26) of X one finds for the contribution

of N and A

(4% (0,0 - -

2 2m

m

ik
1

X, G X, ()]

[X, 2).X, D]y

, (4.17)

and going to the reduced matrix elements G we obtain
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T m(GT G, +25G, G")

1 15 % =
-~ 2G,G
(4150, 0)] _ 13 | mz1A (4.18)
B VT p0 2m g s

m —_ * *®
m_z_GAG

* * *

~G" G, +25G, G

Now consider the exchange of a p meson in the #-channel. With the vector meson
dominance hypothesis the coupling of the p current to N and A is given by

(BE) NI, IN(), N =g, 7" (N.p) [C; (dgy—a,7™)

+C,((qp)gk—a,p'™")
(4.19)
+C ((gp)gh) u(p.A)

X V%:x;rx

where C3, Cy, Cs are the electromagnetic coupling constants as defined by Gourdin
and Salin [17] and x, and x,, are the isospinors of A and N, respectively. With this
coupling the contribution of p to 4 < for degenerate A and N masses is

—2m Cy +51(C,—Cy)
2 —(C, +C,)
- 6 m 4 S
[4L5) (0, 0)] =‘Z; p_ . = (4.20)
F t—m% 0
-2€,

Therefore the unsubtracted contribution at threshold is for degenerate A and N
masses:



J. Baacke and H. Kleinert, Electromagnetic couplings 321

m,
—2m Cy +7 (€,—C5)
—(Cy +Cs)
[A55) (0, 0)] =\/_26‘ - (4.21)
F1r 0
—2C,

We insert this result in equation (4.18) and use for the coupling constants G the
SU(4) numbers

G,.G".6G)=G5.4.%) . (4.22)
The result is

C.m=

S 2_ 2.1
3 \/§ , C4m =C.m* =3 (4.23)

5

5
7

The experimental situation concerning these couplings constants is the following:
The magnetic and electric decay widths of A* - py are given by

_e tm?y® 1

2
le y YPERYY: | 3M +m) Cy-M(M-m) (Cy + C) | (4.24)
- _ e? (Mz—mz)?’ 1 5
Lo, ~an P | (M—m) Cy~M(M~m) (Cy +Cy) | (4.25)

+ The magnetic moment is normally [18] defined as
1

2mm’ _
2o r ~17.8x 103Gev T
ok 3 1 1

Experimentally Tmy =~ 69.10~3 BeV and therefore ,u* = 3.5 as found by all analyses oi;photo
and electroproduction data. Note that also the measurement of*Ash etal [21] givesu =3.45
even though the authors claim to have measured the value of & = 3. The reason is that they
have mistaken «/m/m’ u* ~ (.87 ,u* for the magnetic moment u* as first defined by Dalitz and
Sutherland {18]. Thus their value of /m /m’ ¢~ 3isin perfect agreement with the result of
electroproduction data (The literature has been rather confused about this point. See for ex-
ample the review article of Pfeil and Schwela [19] (p.225) and ref. [20] (p.282)). The correct
normalization of the form factors (of all resonances) is given in ref. [22].
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The analysis of photoproduction data n°p <« <yp is usually done in terms of the am-
plitudes M, and £, of CGLN [23]
They are connected with I';m; and e, by

le FT(Op T
=K 21M, 1 (4.26)
tot
Fe2 1—‘Trc:)p . 5
> =K'q"61E, |I*, (4.27)
tot

where k* and ¢ are the c.m. momenta of y and 7° respectively. If one takes propes
care of the sign one obtains for the ratio

M1+_ (3m’+m)_-m'(m'_m)(c4+C5)/C3 155 —-132x (4.28)
Epy m'—m —m'(m'—m) (C, +C5) | C, I-1.32x - '

Using the experimental values of T, = 0.69 X 103 BeV [19] or Im M7P I”TOP
~ 3.28 v/ub = 0.167 BeV~! [12, 19] together with the ratio £, /My, ~ —0.05 [15]
we find

C3mp%2.0 s x=0.16 .
Our result, on the other hand, implies

~ 4 (4.29)

To be consistent with our approximation we have inserted for # the average mass of
nucleon and A resonance. We see that the agreement is quite reasonable considering
the roughness of the approximation involved,

5. CONCLUSION

QOur program of
(i) Equating forward and backward dispersion relations at threshold
(ii) Using for the baryon contributions in the s-channel sharp resonances with
coupling constants taken from algebraic saturation schemes of Adler Weisberger re-
lations
(iii) Saturating the f-channel dispersion integral of /, = 1 amplitudes with a single
p meson
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(iv) Relating the coupling constants of the p meson to the electromagnetic cou-
pling via the vector meson dominance hypothesis appears to provide a simple way of
determining electromagnetic couplings of higher resonances. It has been tested to
work in the calculation of the anomalous magnetic moment of the nucleons and the
transition ANY. As a first prediction we have obtained a large isovector coupling for
the Roper nucleon transition. The evaluation of transition moments of higher reso-
nances will be done in the future. As a final remark we want to mention that the
same methods can also be applied to other scattering processes as photoproduction
of pions and compton scattering on nucleons in order to obtain information on the
coupling strengths of mesons exchanged in the #-channel. We refer the reader to the
literature for further reference [24, 25].
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