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Dependence of variational perturbation expansions on strong-coupling behavior: Inapplicability
of d expansion to field theory

B. Hamprecht* and H. Kleinert†
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~Received 18 February 2003; revised manuscript received 12 May 2003; published 3 September 2003!

We show that in applications of variational theory to quantum field theory it is essential to account for the
correct Wegner exponentv governing the approach to the strong coupling, or scaling, limit. Otherwise the
procedure does not converge at all or to the wrong limit. This casts doubt on all papers applying the so-called
d expansion to quantum field theory.
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I. INTRODUCTION

Variational perturbation theory is a powerful tool for e
tracting nonperturbative strong-coupling results from we
coupling expansions. It was initially invented in quantu
mechanics as a reexpansion of the perturbation series o
action @1#

A5E
ta

tb
dtFM

2
ẋ22

v2

2
x22Vint~x!G , ~1.1!

which arises from splitting the potential into a quadratic p
VV

(0)[V2x2/2, with an arbitrary trial frequencyV, and an
interacting part

VV
int[dF ~v22V2!

2
x21Vint~x!G . ~1.2!

The perturbation expansion is then performed in powers
d, settingd51 at the end, and optimizing the result inV
guided by theprinciple of minimal sensitivity@2#. The history
and convergence properties are discussed in the textbook@3#.
Because of the prefactord in Eq. ~1.2!, the procedure is often
called d expansion@1#. For the anharmonic oscillator, con
vergence was proved to be exponentially fast for finite@4# as
well as for infinite coupling strength@3,5,6#.

In recent years the method has been extended in a sim
but essential way to allow for the resummation of diverg
perturbation expansions in quantum field theories@7,8#. The
most important new feature of thisfield-theoretic variational
perturbation theoryis that it accounts for the anomalou
power approach to the strong-coupling limit which thed
expansion cannot do. This approach is governed by an
tional critical exponentv as was first shown by Wegner@9#
in the context of critical phenomena. In contrast to thed
expansion, the field-theoretic variational perturbation exp
sionscannotbe derived from the action by adding and su
tracting a harmonic term as in Eq.~1.2!. The new theory has
led to the most accurate determination so far of critical
ponents via quantum field theory, as amply demonstrate
the textbook@10#. In particular, the theory has perfectly e
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plained the experimentally best known critical exponenta of
the specific heat of thel transition measured in a satellit
orbiting around the earth@11#.

In spite of the existence of this reliable quantum-fie
theoretic variational perturbation theory, the literature kee
offering applications of the above quantum-mechanicald ex-
pansion to quantum field theory, for instance in recent pap
by Braaten and Radescu~BR! @12,13# and de Souza Cruz
et al. and Kneuret al. @14# ~see also@15#!.

It is the purpose of this paper to show what goes wro
with such unjustified applications, and how the proper qu
tum field-theoretic variational perturbation theory corre
the mistakes.

II. REVIEW OF THE METHOD

Suppose the functionf (g) is given by a divergent serie
expansion around the pointg50:

f L~g!5(
l 50

L

alg
l , ~2.1!

typically with factorial growth of the coefficientsal . Sup-
pose, furthermore, that the expected leading behavior off (g)
for largeg has the general power structure:

f M~g!5ga (
m50

M

bmg2vm, ~2.2!

wherev is the Wegner exponent of approach to the stro
coupling limit. In quantum mechanics, this exponent is eas
found from the naive scaling properties of the action.
quantum field theory, however, it is an initially unknow
number which has to be determined from the above we
coupling expansion by a procedure to be called thedynami-
cal determinationof v.

Assuming for a moment that this has been done, theLth
order approximation to the leading coefficientb0 is given by
@16#

b0
(L)~z!5z2a(

l 50

L

alz
l S L2 l 1~ l 2a!/v

L2 l D , ~2.3!
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where thez[g/V2/v is the variational parameter to be op
mized for minimal sensitivity onz. A short reminder of the
derivation of this formula is given in Appendix A. An appl
cation to a simple known function is shown in Appendix
For a successful application to the quantum-mechanical
harmonic oscillators, the reader is referred to the textb
@3#. The exponentv is equal to 2/3 for anx4-anharmonic
oscillator, and the exponentially fast convergence has an
ror decreasing likee2const3L12v

. For the oscillator, the num
ber v is found directly from the dimensional analysis
Appendix A. As mentioned above, such an analysis will n
be applicable in quantum field theory, wherev is anomalous
and must be determined dynamically.

Most often we want to calculate a quantityf (g) which
goes to a constant in the strong-coupling limitf (g)→ f * .
This is the case for all critical exponents. Then we must
a50 in Eqs.~2.2! and ~2.3!, which implies that for infinite
g:

b~g!5
d log f ~g!

d logg U
g→`

50. ~2.4!

If b(g) is reexpressed as a function off, this implies
b( f * )50, the standard requirement for the existence o
critical point in quantum field theory iff (g)5gR(g) is the
renormalized coupling strength as a function of the bare c
pling strengthg.

The dynamical determination ofv proceeds now by treat
ing not only f (g) but also the beta function~2.4! according
to the rules of variational perturbation theory@7#, and deter-
mining v to makeb* 5b(`) vanish, which is done by op
timizing the following equation ofz:

b~`,z!5(
l 50

L

b lz
l S L2 l 1 l /v

L2 l D 50, ~2.5!

whereb l are the coefficients of the expansion of Eq.~2.4! in
powers ofg. Minimal sensitivity is reached for a vanishin
derivative with respect toz:

]

]z
b~`,z!5(

l 51

L

b l lz
l 21S L2 l 1 l /v

L2 l D 50, ~2.6!

so thatz andv are to be found as simultaneous solutions
Eqs.~2.5! and ~2.6!.

III. ANOMALOUS DIMENSIONS

As mentioned above, a number of authors have app
the d expansion to field theories. Most recently, this w
done for the purpose of calculating the shift of the critic
temperature in a Bose-Einstein condensate caused by a
interaction@13,14#. Since the perturbation expansion for th
quantity is a function ofg/m, wherem is the chemical po-
tential which goes to zero at the critical point, we are fac
with a typical strong-coupling problem of critical phenom
ena. In order to justify the application of thed expansion to
this problem, BR@12# studied the convergence properties
the method by applying it to a certain amplitudeD(g) of an
06500
n-
k

r-

t

et

a

u-

f

d

l
all

d

f

O(N)-symmetric f4-field theory in the limit of largeN,
where the model is exactly solvable.

Their procedure can be criticized in two ways. First, t
amplitudeD(g) they considered is not a good candidate fo
resummation by ad expansion since it does not possess
characteristic strong-coupling power structure~2.2! of quan-
tum mechanics and field theory, which the final resumm
expression will always have. The power structure is d
turbed by additional logarithmic terms. Second, thed expan-
sion is equivalent to choosing, on dimensional grounds,
exponentv52 in Eq. ~2.2!, which is far from the approxi-
mate optimal value 0.842 to be derived below. Thus thed
expansion is inapplicable, and this explains the problems
which BR run in their resummation attempt. Most impo
tantly, they do not find a well-shaped plateau of the var
tional expressionsD (L)(g,z) as a function ofz which would
be necessary for invoking the principle of minimal sensit
ity. Instead, they observe that the zeros of the first derivati
]zD

(L)(g,z) run away far into the complex plain. Choosin
the complex solutions to determine their final resumm
value they miss the correct result by 3% up to the 35th ord

One may improve the situation by trying out various d
ferent v values and choosing the best of them, yielding
acceptable plateau inD(g,z). This happens forv'0.842.
The numerical analysis indicates that then convergence
be achieved.

Let us explain these points in more detail. BR consid
the weak-coupling series with the reexpansion parameted:

D~g!52(
l 51

` S 2
dg

A12d
D l

al , ~3.1!

where

al[E
0

`

K~x! f l~x!dx,

with

K~x![
4x2

p~11x2!2
, f ~x![

2

x
arctan

x

2
. ~3.2!

The geometric series in Eq.~3.1! can be summed exactly
and the result may formally be reexpanded into a stro
coupling series inh[A12d/(dg):

D~g!5E
0

`

K~x!
dg f~x!

A12d1dg f~x!
dx

5 (
m50

`

bm~2h!m,

where

bm5E
0

`

K~x! f 2m~x!dx. ~3.3!

The strong-coupling limit is found forh→0 whereD→b0

5*0
`dxK(x)51. The approach to this limit is, however,not

given by a strong-coupling expansion of the form~3.3!. This
would only happen if all the integralsbm were to exist
1-2
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which, unfortunately, is not the case since all integrals forbm
with m.0 diverge at the upper limit, where

f ~x!5
2

x
arctan

x

2
;

p

x
. ~3.4!

The exact behavior ofD in the strong-coupling limith→0 is
found by studying the effect of the asymptoticp/x contribu-
tion of f (x) to the integral in Eq.~3.3!. For f (x)5p/x we
obtain

E
0

`

K~x!
1

11h/ f ~x!
dx

5
p412p2h2p2h212h314p2h logh/p

~p21h2!2
.

~3.5!

FIG. 1. Plot of 12b0
(L)(v,z) versus z for L510 and v

50.6,0.842,1,2. The curve withv50.6 shows oscillations. They
decrease with increasingv and the curve becomes flat at aboutv
50.842. Further increase ofv tilts the plateau and shows no re
gime of minimal sensitivity. At the same time, the minimum of t
curve rises rapidly above the correct value of 12b050, as can be
seen from the upper two curves forv51 andv52, respectively.
06500
The logarithm ofh shows a mismatch with Eq.~2.2! and
requires extra care if the expansion~3.1! is to become a
candidate for variational perturbation theory.

We now explain the second criticism. Suppose we ign
the just-demonstrated fundamental obstacle and follow
rules of thed expansion, to find theLth order approximant to
D(`) by expanding~3.1! in powers ofd up to orderdL,
settingd51, and replacingz→g. Then we obtain theLth
variational expression forb0:

b0
(L)~v,z!5(

l 51

L

alz
l S L2 l 1 l /v

L2 l D , ~3.6!

with v52, to be optimized inz. Thisv value would only be
adequate if the approach to the strong-coupling limit b
haved likeA1B/h21•••, rather than Eq.~3.5!. This is the
reason why BR find no real regime of minimal sensitivity o
z. Had there been no logarithmic term in Eq.~3.5!, v51
would have been the correct choice.

As mentioned above it is possible to improve the situat
by allowing for an effective anomalous dimension in the
summation of Eq.~3.5!. Thus we determinev dynamically
from Eq. ~2.4!, and we find that forv'0.842 there is defi-
nitely a flat regime of minimal sensitivity as can be seen
Fig. 1 by comparing plots of 12b0

(L)(v,z) versusz for sev-
eral differentv values. The optimalv is quite far from the
naive valuev52, and also way off fromv51.

This value can also be estimated by inspecting plots
12b0

(L)(v,z) versusz for several differentv values, select-
ing the one producing minimal sensitivity. It produces go
results also in higher orders, as is seen in Fig. 2. The
proximations appear to converge rapidly.

As a final step, we are pushing the order up toL5100,
focussing onv51 andv50.842 . . . . Wedetermine the op-
timum of the variational parameterz from the plateau, mak-
ing use of the vanishing of the second derivative
b0

(L)(v,z) with respect toz. All real zeros are exploited to
win an approximation for the strong-coupling coefficie
t.
e
-
u
g
e

r,
FIG. 2. The functions 1
2b0

(L)(v,z) are shown for various or-
dersL510,17,24,31,38,45 in each plo
The critical exponent is chosen to b
v50.6,0.842,1,2, respectively. The op
timal v50.842 ensures that the platea
is well pronounced and for increasin
ordersL stays near zero, which is th
correct value. The other choices forv
do not have this property. In particula
for v52 of the d expansion of BR
there is no convergence.
1-3
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B. HAMPRECHT AND H. KLEINERT PHYSICAL REVIEW D68, 065001 ~2003!
b0
(L) . Figure 3 shows the logarithm of its absolute err

logu12b0
(L)u, plotted over the orderL. Obviously the dynami-

cally determinedv50.842 gives a better result thanv51.
Figure 3 does not give sufficient evidence for the latter
reach the correct result, but if so, it will certainly not do
exponentially fast. It is interesting to see that the expon
tially convergent result given by one of the roots forv
50.842 seems to depend very sensitively on the cor
choice of the Wegner dimension. We have found that sm
changes inv make the result oscillate around the corre
value. Adjustingv as the orderL increases, we may push th
transition from exponential to oscillatory behavior to high
and higher orders.

This implies that the failure of the strong-coupling beha
ior ~3.5! to have a pure power structure~2.2! requires a de-
parture from naive dimensions in favor of dynamically d
termined ones. To corroborate this issue we change
function f (x) in Eq. ~3.2! slightly into f (x)→ f̃ (x)5 f (x)
11, which makes the integrals forb̃m in Eq. ~3.3! conver-
gent. The exact limiting value 1 ofD̃ remains unchanged, bu
b̄0

(L) acquires now the correct strong-coupling power str
ture ~2.2!. The reader may easily verify that the applicati

FIG. 3. The absolute logarithmic error of the leading stron
coupling coefficient logu12b0

(L)u is plotted as a function of the orde
L for v51 andv50.842. The choicev51 would be the correct
dimension, if the logarithm was absent from 3.5, whereasv
50.842 has been determined dynamically as an effective ano
lous Wegner exponent to achieve a plateau of minimal sensiti
The real zeros of the second derivative ofb0

(L)(v,z) with respect to
z have been used throughout to fixz. For v51 there is only one
zero for everyL, leading to the highest curve. Forv50.842, there
are four zeros contributing at eachL, assembling themselves int
four families for sufficiently largeL. One of them seems to have a
error, exponentially decreasing with the orderL. All others, includ-
ing the one forv51, level off and either converge slowly to som
value, which may not be the correct one, or converging rapidly
wrong value. It cannot be concluded whether the exponential
havior of the ‘‘good’’ family carries through to much higher order
since the numerical data have always a limited accuracy. Here
have employed an accuracy of at least 200 digits. It is remark
that for closely lying neighboring values such asv50.841 orv
50.843, the exponentially decreasing families disappear. Ap
ently, smaller and smaller adjustments ofv50.842 in higher deci-
mals are necessary to ensure exponential convergence to arbit
high orders.
06500
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of variational theory with a dynamical determination ofv
yields the correct strong-coupling limit 1 with the expone
tially fast convergence of the successive approximations
L→` like b̄0

(L)'12exp(21.90921.168L).
In the next section we are going to point out that an

cape to complex zeros which BR propose to remedy
problems of thed expansion is really of no help.

IV. RULING OUT COMPLEX ZEROS

It has been claimed@17# and repeatedly quoted@18# that
the study of the anharmonic oscillator in quantum mechan
suggests the use of complex extrema to optimize thed ex-
pansion. In particular, the use of so-calledfamiliesof optimal
candidates for the variational parameterz has been sug-
gested. We are now going to show that by following the
suggestions one obtains bad resummation results for the
harmonic oscillator@19#. Thus we expect such procedures
lead to even worse results in field-theoretic applications.

In quantum mechanical applications there are no ano
lous dimensions in the strong-coupling behavior of the
ergy eigenvalues. The growth parametersa and v can be
directly read off from the Schro¨dinger equation; they area
51/3 andv52/3 for the anharmonic oscillator~see Appen-
dix A!. The variational perturbation theory is applicable f
all coupling strengthsg as long asb0

(L)(z) becomes station-
ary for a certain value ofz. For higher ordersL it must
exhibit a well-developed plateau. Within the range of t
plateau, various derivatives ofb0

(L)(z) with respect toz will
vanish. In addition there will be complex zeros with sm
imaginary parts clustering around the plateau. They a
however, of limited use for designing an automatized co
puter program for localizing the position of the plateau. T
study of several examples shows that plottingb0

(L)(z) for
various values ofa andv and judging visually the plateau i
by far the safest method, showing immediately which valu

-

a-
y.

a
e-

e
le

r-

rily

FIG. 4. Logarithmic error of the leading strong-coupling coef
cient b0

(L) of the ground state energy of the anharmonic oscilla
with x4 potential. The errors are plotted over the orderL of the
variational perturbation expansion. At each order, all zeros of
first derivative have been exploited. Only the real parts of the co
plex roots have been used to evaluateb0

(L) . The fat points show the
results from real zeros, the smaller points those from complex
ros, with the size decreasing with distance from the real axis.
1-4
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FIG. 5. Deviation of the coefficientb0
(L) from the exact value is shown as a function of perturbative orderL on a linear scale. As before

fat dots represent real zeros. In addition to Fig. 4, the results obtained from zeros of the second derivative ofb0
(L) are included. They give

rise to their own families with smaller errors by about 30%. AtN56, the upper left plot shows the start of two families belonging to the fi
and second derivative ofb0

(L) , respectively. The deviations of both families are negative. On the upper right-hand figure, an enlarg
visualizes the next two families starting atN515. Their deviations are positive. The bottom row shows two more enlargements of fam
starting atN530 andN553, respectively. The deviations alternate again in sign.
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of a andv lead to a well-shaped plateau.
Let us review briefly the properties of the results obtain

from real and complex zeros of]zb0
(L)(z) for the anharmonic

oscillator. In Fig. 4 the logarithmic error ofb0
(L) is plotted

versus the orderL. At each order, all zeros of the first deriva
tive are exploited. To test the rule suggested in@17#, only the
real parts of the complex roots have been used to eval
b0

(L) . The fat points represent the results of real zeros;
thin points stem from the real parts of complex zeros. It
readily seen that the real zeros give the better result. Only
chance may a complex zero yield a smaller error. Unfor
nately, there is no rule to detect these accidental events. M
complex zeros produce large errors.

We observe the existence of families described in deta
the textbook@3# and rediscovered in Ref.@17#. These fami-
lies start at aboutN56,15,30,53, respectively. But each fam
ily fails to converge to the correct result. Only a sequence
selected members in each family leads to an exponential
vergence. Consecutive families alternate around the cor
result, as can be seen more clearly in a plot of the deviat
of b0

(L) from theirL→` limit in Fig. 5, where values derived
from the zeros of the second derivative ofb0

(L) have been
included. These give rise to accompanying families of sim
lar behavior, deviating with the same sign pattern from
exact result, but lying closer to the correct result by ab
30%.

V. TEMPERATURE SHIFT FOR NÄ2 REVISITED

Much attention has been paid to a field theoretic mo
with O(2) symmetry@13,14,20# to calculate in a realistic
context the coefficientc1, which enters into the temperatur
06500
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shift of the Bose-Einstein condensation parametrized as

DTc

Tc
(0)

5c1an1/3. ~5.1!

Presently, five coefficients of the relevant perturbation
pansion are known for the weak-coupling expans
@13,14,20#

F~x!5 (
n521

3

anxn, ~5.2!

whose asymptotic value forx→` coincides with c1:c1
5F* [ limx→`F(x). The known coefficients area215
213.9707, a050, a1520.446572, a250.264412, a35
20.199.

We would like to offer an alternative resummation res
for this series to that in Ref.@20#. It is based on considering
the functionxF(x) containing no negative powers ofx. The
desired numberc1 is the leading coefficientb0 of the strong-
coupling expansion

F~x!5xS c11 (
n51

bnx2vnD . ~5.3!

The result forc1 should be unaffected by this modification o
the function, and given by the optimizedLth-order approxi-
mations

c1
(L)~z,v!5(

l 50

L

alz
l 21S L2 l 1~ l 21!/v

L2 l D . ~5.4!
1-5
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For the available ordersL<4, this set of functions is now
inspected for plateaus. ForL,3 there is none. ForL53 and
L54, a plateau can be identified unambiguously as the o
horizontal turning point solving simultaneously]zc1

(L)(z,v)
50 and]z

2c1
(L)(z,v)50. The results are

L53, z(3)51.089, v (3)51.071, c1
(3)50.940, ~5.5!

L54, z(4)52.057, v (4)50.571, c1
(4)51.282.

~5.6!

Given only two approximations forc1 it is unrealistic to
attempt an extrapolation toL→`, as done with another se
lection rule of optima in Ref.@20#, but it is interesting to note
that the value of the coefficient for the temperature s
c1

(4)51.282 is in excellent agreement with the latest Mon
Carlo result ofc1'1.30 @21#.

VI. RENORMALIZATION GROUP AND VARIATIONAL
PERTURBATION

The most convincing evidence for the power of the fie
theoretic variational perturbation theory with anomalous
mensions comes from applications to critical exponents
42e dimensions@8,10#. The results obtained turn out to b
immediately resummed expressions of thee expansions,
which can be recovered as a Taylor series. The renorma
tion group functionb(g) is obtained from the weak-couplin
expansion of the renormalized coupling constantg in terms
of the bare coupling constantgB @10,22#:

b~g,e!52eg
d logg~gB ,e!

d loggB
52egFd loggB~g,e!

d logg G21

.

~6.1!

Due to renormalizability,b(g) necessarily has the form

b~g,e!52eg1b0~g!. ~6.2!

Perturbation theory with minimal subtractions yields t
weak-coupling expansion

g5gB1 (
k51

`

f k~gB!e2k, ~6.3!

wheref k(gB) possesses an expansion in powers ofgB , start-
ing with gB

k11 . By suitably normalizingg andgB , the lead-
ing coefficient of f 1 can be made equal to minus on
f 1(gB)52gB

21O(gB)3. The function b0(g) can be ex-
pressed in terms of the residuef 1(gB) of the e pole in Eq.
~6.3! alone

b0~g!5 f 1~g!2g f18~g!. ~6.4!

Recall the standard proof for this based on combining E
~6.1! and ~6.2! to

b0~g!5eg2egB]gB
g~gB ,e!, ~6.5!

which becomes, after inserting Eq.~6.3!:
06500
ly
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b0FgB1 (
k51

`

f k~gB!e2kG5e(
k51

`

@ f k~gB!2gBf k8~gB!#e2k.

~6.6!

The limit e→` leads directly to the property~6.4!.
Another well-known fact is that all the functionsf k(gB)

for k.1 can be expressed in terms of the residuesf 1(gB)
only @10#. Indeed, taking the derivatives ofb0(g) in Eq.
~6.5! with respect togB ande:

b08~g!]gB
g52egB]gB

2 g, ~6.7!

b08~g!]eg5g1e]eg2gB]gB
g2egB]gB

]eg, ~6.8!

eliminating b08(g) between these two equations, and inse
ing the expansion~6.3!, we obtain order by order in 1/e a
recursive set of differential equations for the functio
f k(gB) with k.1, which are power series ingB . If we now
expand

f 1~gB!52gB
21(

j 53

`

g jgB
j , f k~gB!5 (

j 5k11

`

gk, jgB
j ,

~6.9!

a solution is readily found, beginning with

gk,k115~21!k, g2,452
8

3
g3 , g2,55

3

2
g3

22
7

2
g4 ,

~6.10!

g3,55
29

6
g3 , g2,65

18

5
g3g42

22

5
g5 ,

g3,652
32

5
g3

21
39

5
g4 , ~6.11!

g4,652
37

5
g3 , g2,752g4

21
13

3
g3g52

16

3
g6 ,

g3,75
5

2
g3

32
551

30
g3g41

59

5
g5 , ~6.12!

g4,75
751

45
g3

22
141

10
g4 , g5,75

103

10
g3 . ~6.13!

In the renormalization group approach, a fixed pointg* Þ0
is determined by the zero of theb function: b(g* )50. The
Wegner exponentv governing the approach to scaling
given by the slope at the fixed point:v5b8(g* ). The two
quantities havee expansions

g* 5(
j 51

`

a je
j , v5(

j 51

`

v je
j . ~6.14!

The coefficientsa j andv j are determined from the residue
g j as

a151, a252g3 , a358g3
213g4 , ~6.15!
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a4540g3
3130g3g414g5 ,

a55224g3
41252g3

2g4127g4
2148g3g515g6 , ~6.16!

and

v151, v2522g3 , v3528g3
226g4 ,

v45240g3
3248g3g4212g5 . ~6.17!

We can now convince ourselves that precisely the same
sults can be derived from variational perturbation theory
plied to the weak-coupling expansion~6.3! ~and as shown in
@23# from the expansion of any other critical exponent!. We
determinev dynamically solving Eq.~2.5!, while assuming
for v an unknowne expansion of the form~6.14!. The varia-
tional parameterz is again adjusted to make~2.5! stationary.
Then, since fore→0 the weak-coupling coefficients o
g(gB) in the expansion~6.3! behave like;e12 l , z has to
scale with e, so that we may putz5z1e1z2e21z3e3

1O(e4), and solve Eqs.~2.5! and~2.6! for each perturbative
orderL, order by order ine. This leads to a rapidly increas
ing number of nonlinear and not even independent equat
for the unknownz l and v l , some depending also on th
orderL.

Despite these possible complications, the solutions t
out to be well structured and easily obtained. At eachL to
lowest order ine, the term independent ofe in Eq. ~2.5! and
the coefficient ofe21 in Eq. ~2.6! demand thatz151. In
addition, they requiregk,k115(21)k for somek, in agree-
ment with Eqs.~6.10!. Such conditions imposed ongk,l can,
of course, not depend on the orderL, but must be enforced in
general. Raising the order ofe in Eqs. ~2.5! and ~2.6!, and
imposingz151 as well as the conditions already establish
for thegk,l , all dependences on thevk andzk disappear, and
we are left with conditions ongk,l alone, which reproduce
exactly the relations~6.10! through ~6.13!. This shows that
the variational perturbation method is completely compati
with the well-known e expansions, if the input divergen
series has a structure satisfying the renormalization gr
equation~6.2!.

After having reproducedgk,l , there are further equation
to be solved. Going to the next higher order ine, either for
Eq. ~2.5! or for ~2.6!, gives a relation involving exactly on
of the expansion coefficients ofe/v, which are simply re-
lated to the coefficientsv l of v. In this way, the renormal-
ization group results of Eq.~6.17! are exactly reproduced
These solutions are stable in the sense that with increa
order L, the expansion coefficientsv l for l ,L remain un-
changed. This proves that the variational method produ
the samee expansions of all critical exponents as renorm
ization group theory. At the same time this implies that t
standardd expansion which does not allow for the anom
lous dimensionv is bound to fail.

It is noteworthy that several other conditions are au
matically satisfied up to some ordereL, eL21, or eL22, re-
spectively. Among them is the variationally transcribed s
ond logarithmic derivative of the weak-coupling series a
the derivative thereof:
06500
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(
l 50

L

hlz
l S L2 l 1 l /v

L2 l D 5212v, ~6.18!

(
l 51

L

hl lz
l 21S L2 l 1 l /v

L2 l D 50, ~6.19!

where thehl are the expansion coefficients of

gBg9~gB!

g8~gB!
. ~6.20!

Of some computational benefit is the observation that w
the same accuracy ine the first and second derivatives of th
variational series~2.3! themselves vanish~here fora50).
This means that the function has a flat plateau. For a typ
field-theoretic application with only a few known perturb
tion coefficients, the plateau is easily found by inspecti
Therefore, if the model possesses a well-behavedb function
satisfying Eq. ~6.2!, we expect a reliable result for th
anomalous dimensionv if it is chosen such as to produce a
acceptable plateau. The ordinate of the plateau is the m
promising variational perturbative value for the quantity an
lyzed to the respective order.

VII. CONCLUSION

Summarizing this paper we have learned that the so-ca
d expansion is inapplicable to quantum field theory, since
does not account for the Wegner exponentv of approach to
the strong-coupling limit. Only the field-theoretic variation
perturbation theory yields the correct results by incorporat
v in an essential way.

APPENDIX A

Here we review briefly how the strong-coupling param
etersa andv in Eq. ~2.2! and the variational equation~2.3!
for the leading strong-coupling coefficient are found for t
anharmonic oscillator with the Schro¨dinger equation in natu-
ral units

2
1

2
C91

x2

2
C1gx2kC5EC. ~A1!

We rescale the space coordinatex so that the potential be
comes

V~x!5
1

2
g22/(k11)x21x2k. ~A2!

Any eigenvalue has the obvious strong-coupling expansi

E5g1/(k11)(
l 50

`

bl~g22/(k11)! l , ~A3!

wherebl are the strong-coupling coefficients. The aim is
determine them from the known weak-coupling coefficie
an of the divergent perturbation expansion:
1-7
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E5(
l 50

`

alg
l . ~A4!

The solution of this problem comes from physical intuitio
suggesting that the perturbation expansion should be
formed around an effective harmonic potentialV2x2/2,
whose frequency is different from the bare value 1/2 in E
~A1!, depending ong and the orderL of truncation of Eq.
~A3!. Thereafter only the difference between the anharmo
part and the effective harmonic part is to be treated by p
turbation methods. The trial frequencyV of the effective
potential can be fixed later by the consideration that the
sulting quantity of interest should be as independent as
sible ofV, according to the principle of minimal sensitivity
With the harmonic trial potentialVV

(0)5V2x2/2, the interac-
tion potential~1.2! readsVV

int5d@gx2k2(V221)x2/2#. The
parameterd organizes the reexpansion and is set equal to
the end. The expansion proceeds from the rescaled Sc¨-
dinger equation~A1!:

2
1

2
C91

x2

2
C1

dgx2kC

bN11
5

E

b
C, ~A5!

whereb5AV22d(V221). To orderL, the energy has the
reexpansion

E(L)~V,g!5b(
l 50

L

al
( i )S dg

bk11D l

, ~A6!

with the well-known weak-coupling expansion coefficien
as defined in Eq.~A4!. The strong-coupling behavior~A3!
suggests changing the variational parameter fromV to z
ªg/Vk11. In the limit g→` we obtain the reexpansio
which must be optimized inz:

E(L)~z!5ga(
l 50

L

al
( i )zl 2aS L2 l 1~ l 2a!/v

L2 l D , ~A7!

wherev52/(k11) anda51/(k11). For the leading coef-
ficient of the strong coupling expansion of the ground st
energy, Eq.~A7! leads directly to the variational equatio
~2.3!.
.
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APPENDIX B

In order to gain further insight into the working of th
variational resummation procedure, we apply it to the sim
test function

f ~x!5~11x!a5xaS 11
1

xD a

~B1!

with weak coupling coefficientsan5( n
a) and a leading

strong-coupling behaviorf ;xa(11a/x1•••), so thatb0
51. Inserting this information into Eq.~2.3!, we obtain the
variational leading coefficient toLth order:

b0
(L)~z!5(

l 50

L S a

l D S L2a

L2 l D zl 2a, ~B2!

which is easily transformed into the expression

b0
(L)~z!5S a

L D(
l 50

L S L

l D L2a

l 2a
~21!L1 lzl 2a. ~B3!

Determining the variational parameterz according to the
principle of minimal sensitivity requires a well develope
plateau ofb0

(L) as a function ofz. For the simple test func-
tion, the derivative]zb0

(L)(z) can be obtained in the close
form:

d

dz
b0

(L)~z!5~21!L11
L2a

za11 S a

L D(
l 50

L

~2z! l S L

l D ~B4!

5~21!L11~L2a!S a

L D ~12z!L

za11
. ~B5!

This exhibits a flat plateau aroundz51 if the orderL is
much larger thana. An equally flat plateau is found fo
b0

(L)(z). The value of the leading strong coupling coefficie
b0

(L) at the plateau is

b0
(L)~1!5S a

L D(
l 50

L S L

l D L2a

l 2a
~21!L1 l51, ~B6!

in perfect agreement with the exact result, thus confirm
the applicability of the resummation scheme for this class
problems.
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