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Abstract

We point out that the permanent confinement in a compact(2+ 1)-dimensionalU(1) Abelian
Higgs model is destroyed by matter fields in the fundamental representation. The deconfi
transition is Kosterlitz–Thouless-like. The dual theory is shown to describe a three-dimension
of point charges withlogarithmic interactions which arises from an anomalous dimension of
gauge field caused by critical matter field fluctuations. The theory is equivalent to a sine-Gord
theory in(2+ 1)-dimensions with ananomalous gradient energyproportional tok3. The Callan–
Symanzik equation is used to demonstrate that this theory has a massless and a massive p
renormalization group equations for the fugacityy(l) and stiffness parameterK(l) of the theory show
that the renormalization ofK(l) induces an anomalous scaling dimensionηy of y(l). The stiffness
parameter of the theory has a universal jump at the transition determined by the dimensiona
ηy . As a byproduct of our analysis, we relate the critical coupling of the sine-Gordon-like th
to an a priori arbitrary constant that enters into the computation of critical exponents in the A
Higgs model at the charged infrared-stable fixed point of the theory, enabling a determina
this parameter. This facilitates the computation of the critical exponentν at the charged fixed poin
in excellent agreement with one-loop renormalization group calculations for the three-dimen
XY model, thus confirming expectations based on duality transformations.
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1. Introduction

Gauge theories ind = 2+ 1 dimensions are often considered as effective theorie
strongly correlated systems in two spatial dimensions at zero temperature [1–3]. Pro
examples of systems to which such theories are hoped to be applicable are theTc
cuprates in the underdoped or undoped regime. In the undoped regime it is know
spinor QED3 is an effective low energy theory for the quantum Heisenberg antiferroma
(QHA) [1]. It is hoped that one effectively can account for doping by coupling the g
theory to a scalar boson representing the holon part (charge part) of composite Hu
operators describingprojectedelectrons, which however do not satisfy simple ferm
commutation relations. Similar effective theories have a long history as useful toy-m
in high-energy physics [4–6], and have recently been suggested to describe neural n
[7].

Of particular interest in the physics of strongly correlated systems is the compact v
of the (2+ 1)-dimensional Abelian Higgs model with matter fields in the fundame
representation. This is the model we shall be concerned with in this paper and for
we shall find the results summarized in the abstract.

1.1. Preliminary remarks

Our starting point is the following Abelian euclidean field theory of a scalar matter
coupled to a massless gauge field

(1)Lb =
∣∣(∂µ − iA0

µ

)
φ0

∣∣2+m2
0|φ0|2+ u0

2
|φ0|4,

where the subscript zero denotes bare quantities. It corresponds to a theory with a M
term

(2)LM = 1

4e2
0

F 0
µν

2,

whereF 0
µν = ∂µA0

ν − ∂νA0
µ, in which the gauge couplinge0 goes to infinity. This limit

implies the constraintjµb = 0, wherejµb = φ∗0
↔
∂
µφ0 is the boson current.

When derivingeffectivetheories for thet–J model we arrive naturally at acompact
U(1) lattice gauge field [2]. For QHA, the gauge symmetry is larger and given by
gauge groupSU(2) [3]. However, in this case a reducedU(1) formulation is also possibl
[1]. Since thisU(1) is a subgroup ofSU(2), which is a compact group, theU(1) gauge
theory of QHA is necessarily a compact Abelian gauge theory.

It is well known that a compactU(1) theory of the pure Maxwell type in thre
dimensions confines electric charges permanently [8]. In the literature [9] it is also a
that this permanent confinement should be present if an additional fermionic fieψ
coupled to the gauge field by a Lagrangian

N∑ ( 0 )

(3)Lf =

i=1

ψ̄i ∂µ − iAµ ψi.
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This means that the particles represented by the fieldsψ andφ0 never have an independe
dynamics. In the context of many-body theory, the Dirac fermionψ could represent a
spinon, while φ represents aholon. If electric test charges were permanently confin
in the model, then the spinon and the holon would only appear as composite pa
In this case it would be impossible to fractionalize the electron, i.e. spin and c
would always remain attached to each other. Spin-charge separation is known to o
1+ 1 dimensions [10]. There fermions can be transmuted into bosons via the so-
Jordan–Wigner transformation. In 2+ 1 dimensions the situation is less clear, but
matter fields in the fundamental representation there is one circumstance where spin
separation is known rigorously to occur, namely the chiral spin liquid state [11]. How
the statistics of particles can be changed as in 1+ 1 dimensions. In the chiral spin liquid
spinons have anyonic statistics described by a Chern–Simons term [12] in the ef
gauge theory, which reflects the breaking of parity and time reversal symmetry.

The lack of consensus about spin-charge separation in(2+ 1)-dimensional compac
U(1) matter-coupled gauge theories with matter fields in the fundamental represen
initiated investigations of other gauge theories for strongly correlated electron sys
One of the most promising candidates is aZ2 gauge field coupled to matter field
[13]. Similar ideas leading to electron fractionalization had earlier been presented
condensed matter literature [14,15]. In 2+1 dimensions theZ2 theory has a deconfineme
transition [5]. Thus,Z2 gauge theories are potentially good candidates for describing
charge separation without breaking parity and time reversal symmetries.

The confinement properties ofU(1) gauge theories for the cuprates and the rela
to spin-charge separation were recently discussed from various points of view [9,1
Nayak [9] states that in gauge theories of thet–J model fermions and bosons interact
infinite (bare) gauge coupling and, for this reason, it is necessarily a theory with perm
confinement of slave particles. In contrast, Ichinose and Matsui [18] have argued th
coupling to matter fields strongly influences the phase structure of the system. In Re
it is correctly pointed out that if spin-charge separation occurs, it is not necessaril
to the notion of confinement–deconfinement of slave particles. The picture propo
Ref. [9] in 2+ 1 dimensions is reminiscent of 1+ 1 dimensions where spinons and holo
are solitons and cannot be identified with the slave particles, which are not part
spectrum [10]. Nagaosa and Lee [17] discuss a compactU(1) gauge theory coupled t
bosonic matter field in the fundamental representation. They conclude that ind = 2+ 1
this theory permanently confines electric charges, in contrast to the analysis by E
and Savit on the same model [4].

In a recent letter [20], we have studied the confining properties of the Lagra
(1), as well as the case of a fermionic fieldψ coupled to a gauge field, but with a
added Maxwell term. The Lagrangian (1) with a Maxwell term corresponds essen
to the model considered by Nagaosa and Lee [17], though these authors have cons
frozen-amplitude version of the model. In Ref. [20], it was emphasized that an anom
scaling dimension of the gauge field, arising from matter-field fluctuations, chang
interaction between monopoles from 1/r to lnr in three dimensions. It was then argu
that a monopole–antimonopole unbinding transition similar to the Kosterlitz–Tho

(KT) transition takes place, but now in three dimensions. From this, we concluded that
test charges undergo a deconfinement transition.
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It must be pointed out that the authors of Refs. [5,17], were looking for a trans
similar to those encountered ind = 3+ 1, namely ordinary first- or second-order pha
transitions [5]. In Ref. [17], a duality transformation was performed showing tha
disorder parameter〈φV 〉 is always different from zero, implying that〈φ〉 is always zero
This result is essentially correct and is perfectly consistent with the scenario inRef. [20]
and explained further in the present paper.

A main result in our letter [20] is that there exists a non-trivial infrared stable fi
point in the theory ind = 2+ 1 which drives the deconfinement transition. There
anomalous dimension of the gauge field is given byηA = 1 in d = 2+1 [21,22].This result
is exact as a consequence of gauge invariance. It implies that the non-trivial infrared
point arises at an infinite bare gauge coupling.To see this, consider the boson–ferm
LagrangianL= Lf +Lb+LM . Due to gauge invariance, the gauge coupling renorma
to e2= ZAe2

0, whereZA is the wave function renormalization constant of the gauge fi
The renormalization group (RG)β function for the renormalized dimensionless gau
couplingα = e2/µ has the following exact form in 2+ 1 dimensions

(4)βα(α,g)= µ∂α
∂µ
= [
γA(α,g)− 1

]
α,

whereg is the renormalized dimensionless|φ|4 coupling andγA = µ∂ lnZA/∂µ. Let
us assume that there exist non-trivial infrared stable fixed pointsα∗ andg∗, where the
β functionsβα and βg vanish. We have explained in Ref. [20] why such fixed po
must exist. (For similar arguments, see Ref. [23].) Moreover, large-scale Monte
simulations have demonstrated explicitly the existence of such a non-trivial fixed
[22,24] (see also Ref. [25]). Its existence has long been assured theoretically by
arguments [26,27] (see also Section 2.2). We shall not repeat the arguments and
here. Instead, we focus on the physical consequences of the non-trivial fixed point.

We would like to stress an important point, pertinent tod = 2+1 dimensions, and quit
different from the situation ford = 3+ 1. Asα→ α∗, the bare couplinge2

0 must tend to
infinity. By definition, the aboveβ function is given at fixedΛ, α0, andg0. Here,Λ is the
ultraviolet cutoff whileα0 = e2

0/Λ andg0 = u0/Λ are the dimensionlessbarecouplings.
The fixed point is reached forµ→ 0. Alternatively, the fixed point is reached forΛ→∞
if µ is held fixed. However, sinceα0 is fixed it follows thate2

0→∞ asΛ→∞. Thus, in
d = 2+ 1, the fixed point theory is atinfinite bare gauge coupling. One might object tha
this infinite gauge coupling cannot be relevant for the cuprates which have an infinite
of e2

0 at all scales, not only in the scale invariant regime. This is true, but irrelevant a
as the deconfinement transition is concerned, which is determined by the non-trivia
point structure. The situation is analogous to theO(N) non-linearσ model as oppose
to theO(N) φ4 model. These models are quite different, but agree with each other
critical point [28,29], thus belonging to the same universality class. In our case, the
with the Maxwell term at the fixed point has the same correlation functions as the m
without it also at the fixed point.

To summarize the discussion in the above paragraph, the non-compact actio

no Maxwell term has the same critical behavior as the compact oneat the critical point
corresponding to a non-trivial fixed point, characterized by an infinite bare coupling. Had
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we started from an infinitely weak bare coupling, the only fixed point we would have
hope of reaching ford = 2+ 1 would be the Gaussian fixed point.

In Ref. [20] we have pointed out that chiral symmetry breaking can destroy
deconfinement in the fermionic case. We want to point out that for the combined b
fermion model,L = Lf + Lb + LM , chiral symmetry breaking does not spoil t
deconfinement transition. Chiral symmetry breaking occurs at a lower value of nu
of fermion flavoursNf , when also bosons are present. Kim and Lee [30] claimed tha
critical value ofNf is decreased by a factor two. Since we have typicallyNcf ∼ 3 and the
physical number of fermion components in the cuprates isNf = 2, Kim and Lee argued
that spin-charge separation would occur at finite doping [30].

1.2. Anomalous scaling and the potential between test charges

The high-energy physics literature is usually concerned withd = 4 and use low-
dimensions only in toy models. In condensed matter physics, however,(2+1)-dimensional
gauge theories are supposed to describe real physical phenomena such as the an
properties of high-Tc superconductors [31], or the physics of QHA [1,32]. Ford ∈ (2,4]
the gauge couplingβ-function may be written as

(5)βα(α,g)=
[
γA(α,g)+ d − 4

]
α.

Non-trivial fixed points induce an anomalous scaling behavior in the gauge
propagator. In the Landau gauge we have that

(6)Dµν(p)=D(p)
(
δµν − pµpν

p2

)
,

with the large distance behavior given by

(7)D(p)∼ 1

|p|2−ηA .
The anomalous scaling dimension is given exactly by [21,22]

(8)ηA ≡ γA(α∗, g∗)= 4− d.
Due to the above result, the propagator (7) in configuration space becomes

(9)D(x)∼ 1

|x|d−2+ηA ∼
1

|x|2 ,
for all d ∈ (2,4]. The potential betweeneffective electric chargesq(R), separated by
large distanceR in (d − 1)-dimensional space is given by

(10)V (R)∼ q
2(R)

Rd−3
,

where
−ηA d−4
(11)q2(R)∼ 1− (ΛR)
ηA

∼ (ΛR) − 1

d − 4
,
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and whereΛ is a short distance cutoff. The anomalous scaling in Eq. (11) is a conseq
of the coupling to matter fields. Due to it, the potentialV (R) behaves effectively like 1/R
for d = 3. Ford = 4, it goes like ln(ΛR)/R, while for d = 2, it has a confining behavio
proportional toR. The regime governed by the Gaussian fixed point hasq2(R) = q2

0 =
const, and corresponds to the so-called Coulomb phase. In this phase, the four-dime
theory hasV (R) = q2

0/R, whereasV (R) = q2
0 lnR for d = 3. We see that the non-trivia

infrared behavior induces an effective electric potential between test charges sim
that which characterizes the Coulomb phase ind = 4. If we extrapolate tod = 2, we
obtainV (R) = q2

0R. Note that ind = 2, we obtain a confining potential irrespective
whether anomalous scaling is taken into account or not.

In compact Abelian gauge theories a confined phase is realized by the format
electric flux tubes connecting electric charges. These flux tubes are the dual anal
themagneticflux tubes connecting magnetic monopoles [33,34]. There is a Dirac rel
between the effective electric and magnetic charges

(12)q(R)qm(R)∼ 1.

Let us consider now the potential between the magnetic charges

(13)Vm(R)∼ q
2
m(R)

Rd−3
∼ 1

q2(R)Rd−3
.

From Eq. (11) we see that ford = 4 the magnetic potential behaves like 1/[R ln(ΛR)].
However, ford = 3 we have

(14)Vm(R)∼ 1

R
,

which is self-dual with respect to the potential between electric test charges.
The Higgs phase for theelectric chargescorresponds toV (R) ∼ const because of th

gauge field mass gap. The Higgs phase formagnetic test charges, on the other hand, i
given byV (R) ∼ R. In the electric–magnetic duality picture [33,34] this Higgs phase
magnetic charges is exchanged by the confined phase for electric charges. This s
should be valid for matter fields in theadjoint representation. In the absence of ma
fields, a compact(2+ 1)-dimensional gauge theory is definitely confined permane
[8]. The above result shows that if matter fields are present, a deconfined phase
possible. However, if the matter fields are in the fundamental representation, the si
is controversial [4,9,17–20]. Our recent results in Ref. [20] seem to be confirmed b
Monte Carlo work in Ref. [6]. The main purpose of this paper is to give more detai
the scenario proposed in Ref. [20] and to describe a theory for a deconfinement tra
in Abelian gauge theories coupled to matter fields in the fundamental representation

1.3. Outline of the paper

In Section 2, we consider the lattice duality transformations to the(2+ 1)-dimensional
Abelian Higgs lattice (AHL) model, first the non-compact case and later the compac

We then discuss the possible ordinary first- or second-order phase transitions these models
can have, with matter fields in the fundamental representation for the compact case.
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In Section 3, we construct the continuum effective Lagrangian and its dual count
for the compact(2+ 1)-dimensional AHL model when matter-fields have been integr
out. Because these are central results of the paper, it behooves us to announce the

The dual field theory is given by Eq. (51). It represents a description of a
dimensional gas of point charges interacting with alogarithmic pair-potential, given
by Eq. (49). We emphasize that the 3d ln-plasma action of Eq. (49) emerges fro
underlying matter-coupled gauge theory, Eq. (38), by integrating out the fluctuating m
fields and considering the influence ofcritical matter fluctuations on the gauge-fie
propagator. The result of this procedure is the effective theory Eq. (46). Such m
field fluctuations endow the gauge-field propagator with an anomalous scaling dim
ηA = 4− d [21,22] which in three-dimensions alters the interaction between the mon
configurations of the gauge-field from a Coulomb-interaction 1/R to a lnR interaction.

Recall that in contrast to this, in the classic treatment by Polyakov [8] of compact t
dimensional QED with no matter fields, the standard three-dimensional sine-Gordo
theory with a quadratic gradient term, describing the three-dimensional Coulomb g
obtained. This action is given by, in the notation of Eq. (51)

(15)SSG= 1

2t

∫
d3x

[
ϕ
(−∂2)ϕ − 2z0 cosϕ

]
.

Polyakov has demonstrated [8] that Eq. (15) has no phase transition, i.e., it is a
massive. Our Eq. (51) differs drastically from Eq. (15), due the presence of an anom
gradient term.

In Section 4.1, we show using the Callan–Symanzik equations, that the effectiv
Lagrangian Eq. (51) has a massless and a massive phase separated at a critical
tc. Hence a phase transition must exist. This does not by itself suffice to show pre
what sort of phase transitionthe system undergoes, nor does it allow us to construc
correct flow diagram of the coupling constants of the problem. It does, however, suf
show that two different phases exist. Since the propagator of the problem is logarith
d = 2+ 1, a Hohenberg–Mermin–Wagner theorem [36] holds. Under such circumsta
it is very natural to conjecture that any phase transition in the system, if it exists,
be of atopological character. In Section 4.2, we construct the renormalization group fl
equations for the problem and show that the phase transition is of a KT-like type.

In Section 5, we consider the connection between the renormalization group fun
obtained directly from the Abelian Higgs model, and the KT phase transition we fi
Section 4. The main point here is that we can use the value of the critical coupling
dual effective Lagrangian for the topological defects of the gauge field to fix an a
arbitrary constant which enters into evaluating critical exponents for thenon-compac
Abelian Higgs model.

In Section 6, we conclude with a summary and outlook. Appendix A discusses an
type of sine-Gordon theory also exhibiting a KT-like transition in three dimension
Appendix B, we derive the flow equations for the stiffness parameter and the fugacity
system defined by Eq. (49), and of which Eq. (51) is a field theory formulation. In Appe
C, we compute the screened effective potential between charges in the insulating p

the 3d ln-plasma. In Appendix D, for completeness, we derive the exact equation of state
for a d-dimensional ln-plasmawith no short-distance cutoffand relate the singularities in
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this plasma to the Callan–Symanzik approach of Section 4. In Appendix E, we con
also for completeness, the duality transformation of the AHL model with a Chern–Si
term added. This case is of interest in the fractional quantum Hall effect [37] and
spin liquids [11].

2. Duality in the Abelian Higgs lattice model

In this section we review the duality approach to the AHL model. Although this
well studied topic [4,26,27,38,39], it is worth reviewing it here in order to emphasiz
differences and similarities between the non-compact and compact cases. In par
we shall discuss the extent to which these cases exhibit ordinary first- or second
phase transitions. The interesting case including a Chern–Simons term will be discu
Appendix D.

The essential point is that starting from a non-compact or compact AHL model, the
action has the general form

(16)Sdual= 1

2

∑
i,j

hiµMµν(ri − rj )hiν − i2π
∑
i

li · hi ,

wherehiµ ∈ (−∞,∞) and li are integer dual link variables. In the non-compact casli
satisfy the constraint

(17)∇ · li = 0,

whereas in the compact case, the right-hand side is non-zero

(18)∇ · li =Qi,
due to monopole chargesQi ∈ Z. The symbol∇ denotes the gradient vector on a sim
cubic lattice of unit spacing with components∇µfi ≡ fi+µ̂ − fi .

2.1. The non-compact case and the “inverted”XY transition

In the non-compact case, the partition function of the AHL model is given by

(19)Z =
∑
{niµ}

π∫
−π

[∏
i

dθi

2π

] ∞∫
−∞

[∏
i,µ

dAiµ

]
exp(−S),

where the actionS is given by the Villain approximation

(20)S = β
2

∑
i,µ

(∇µθi −Aiµ − 2πniµ)2+ 1

2e2

∑
i

(∇×Ai )2.

Using the identity

∞∑ √ ∞∑

(21)

m=−∞
e(−t/2)m2+ixm = 2π

t
n=−∞

e(−1/2t )(x−2πn)2,
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following directly from Poisson’s formula

(22)
∞∑

n=−∞
F(n)=

∞∑
m=−∞

∞∫
−∞

dx F(x)e2πimx,

we obtain

(23)

Z =
∞∫

−∞

[∏
i,µ

dAiµ

]∑
{mi}

δ∇·mi ,0 exp

{∑
i

[
− 1

2β
m2
i i +Ai ·mi − 1

2e2 (∇×Ai )2
]}
.

The Kronecker delta in Eq. (23) is generated by theθi integrations. Now we shoul
integrate out the gauge fieldAi . The easiest way of performing this integration is by
introduction of an auxiliary fieldhi such that the partition function can be rewritten as

Z =
∞∫

−∞

∞∫
−∞

∞∫
−∞

[∏
i,µ

dAiµ dhiµ dbiµ

] ∑
{Mi}

δ(∇ · bi )

(24)× exp

{∑
i

[
− 1

2β
b2
i + iAi · (bi −∇× hi )− e

2

2
h2
i + 2πiMi · bi

]}
,

where a summation by parts has been done to replacehi · (∇×Ai ) by Ai · (∇ × hi ), and
we have used the Poisson formula (22) to replace the integer variablesmi by continuum
variablesbi , at the cost of an additional sum over integer variablesMi . We may now
integrate outAi to obtain a delta functionδ(bi − ∇ × hi ), after which alsobi can be
integrated outbi , yielding

(25)

Z =
∑
{Mi }

∞∫
−∞

[∏
i,µ

dhiµ

]
exp

{
−

∑
i

[
1

2β
(∇× hi )2+ e

2

2
h2
i − 2πiMi · (∇× hi )

]}
.

Summing the last term in the exponent by parts and going over to integer var
li =∇×Mi , we obtain

(26)

Z =
∑
{li}

∞∫
−∞

[∏
i,µ

dhiµ

]
δ∇·li ,0 exp

{
−

∑
i

[
1

2β
(∇× hi )2+ e

2

2
h2
i − 2πili · hi

]}
.

Note that the Kronecker delta constraint above is a direct consequence of our cha
integer-valued variables. Ifhi is integrated out we obtain

(27)Z =Z0

∑
li

δ∇·li ,0 exp

[
−2π2β

∑
i,j,µ

liµD(ri − rj )ljµ

]
,

where the Green functionG has the large-distance behavior
√

(28)D(ri − rj )∼ e
− β e|ri−rj |

4π |ri − rj | .
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The factorZ0 in Eq. (27) corresponds to the partition function of a free massive g
boson theory.

Eq. (27) is the dual representation of the partition function for the non-compact
model. Due to the constraint∇ · li = 0, the integer linksli form closed loops.

By taking the limite→ 0 in Eq. (23), we obtain

(29)Z|e=0=
∑
{mi }

δ∇·mi ,0 exp

(
− 1

2β

∑
i

m2
i

)
,

which is the loop gas representation of theXY model. If, on the other hand, we tak
the limit β → ∞ in Eq. (27), we obtain the loop gas representation of the “fro
superconductor” [38]

(30)Z|β=∞ =
∑
{li }
δ∇·li ,0 exp

(
−2π2

e2

∑
i

l2i

)
,

which has precisely the same form as in Eq. (29). Therefore, theXY model is equivalen
to the frozen superconductor, provided the Dirac-like relatione2 = 4π2β holds. Eq. (27)
is a reformulation of Eq. (19) in terms of the topological defects of the model, whic
identified as integer-valued vortex strings forming closed loops.

If we consider the phase diagram in the(e2–T )-plane (withT = 1/β), we can use
Eqs. (29) and (30) to establish the critical points on the axese2 andT , corresponding to
T → 0 ande2→ 0 limits, respectively. From Eq. (29) we see that whene2→ 0 we have
a XY critical point on theT -axis. Eq. (30) has exactly the same form as Eq. (29),
corresponds to theT → 0 limit. The critical point in this limit is thereforee2

c = 4π2/Tc,
with Tc being the critical temperature of theXY transition as described by the Villa
approximation. This is the so-called “inverted”XY transition (IXY ) [26]. From the
existence of these two critical points we can establish a phase diagram where the
critical line connecting them [26]. The ordered superconducting phase corresponds
region 0< e2< e2

c .

2.2. The compact case and the absence of an ordinary phase transition

In the compact AHL model the gauge fieldAiµ ∈ [−π,π]. The corresponding Villain
action is now given by

(31)S̃ = β
2

∑
i

(∇µθi −Aiµ − 2πniµ)2+ 1

2e2

∑
i

(εµνλ∇νAiλ − 2πNiµ)2,

and in the partition function we should sum over both integersniµ andNiµ. Using the
identity (21) we obtain

(32)Z =
∑ ∑ π∫ [∏ dAiµ

] π∫ [∏ dθi
]

exp(S′),

{ni } {mi}−π i,µ

2π
−π i

2π
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where

(33)S′ =
∑
i

[
1

2β
n2
i + ini · (∇θi −Ai )+ e

2

2
m2
i + imi · (∇×Ai )

]
.

Now we integrate outAiµ andθi to obtain

Z =
∑

{ni },{mi }
δ∇·ni ,0δ∇×mi ,ni exp

[
−

∑
i

(
1

2β
n2
i +

e2

2
m2
i

)]

=
∑
{mi }

exp

[
−

∑
i

(
1

2β
(∇×mi )

2+ e
2

2
m2
i

)]

(34)=
∑
{li}

∞∫
−∞

[∏
i,µ

dhiµ

]
exp

{
−

∑
i

[
1

2β
(∇× hi )2+ e

2

2
h2
i − 2πili · hi

]}
,

where from the second to the third line we used the Poisson formula. Note the diffe
between Eq. (34) and its non-compact counterpart Eq. (26). In the latter there
Kronecker delta constraint∇ · li = 0 while in the former there is no such a constra
As we shall see, this difference has important consequences. We proceed by inte
outhiµ, thus obtaining the partition function

(35)Z =Z0

∑
{li}

exp

[
−2π2β

∑
i,j

liµDµν(ri − rj )ljν

]
,

where

(36)Dµν(ri − rj )=
(
δµν − ∇µ∇ν

βe2

)
D(ri − rj ),

(37)
(−∇2+ βe2)D(ri − rj )= δij .

Due to the constraint∇ · li = 0, the term containing∇µ∇ν in Eq. (36) does not contribut
in the non-compact case, and Eq. (27) results. In the compact case, on the other han∇ · li
is completely unconstrained and can take any integer value. Thus, in order to bring
differences and similarities between Eqs. (35) and (27), and also to identify the cha
of the topological defects of Eq. (31) appearing in Eq. (35), we can introduce an aux
integer-valued scalar fieldQi such that∇ · li =Qi and rewrite the partition function (35
as

(38)Z =Z0

∑
{li}

∑
{Qi}

δ∇·li ,Qi exp

[
−2π2β

∑
i,j

D(ri − rj )
(
liµljµ + 1

e2β
QiQj

)]
.

Whereas the non-compact theory has only closed vortex lines as topological defec
compact case contains also open lines with integer-valued monopoles of chargeQi at the
ends.

In the limit β → 0, Eq. (38), the vortex loops are frozen out and (38) is the

representation of three-dimensional lattice compact QED [8] describing a Coulomb gas
of monopoles in three dimensions. This is equivalent to a sine-Gordon model which is
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always massive in three dimensions, and leads to the well-known result that compac
in three dimensions has permanent confinement of electric charges, since the mono
will always be in the plasma phase. As shown by Polyakov [8], we obtain as a conseq
that the Wilson loop satisfies the area law.

As in the non-compact case, the limite2→ 0 corresponds to the Villain form of th
XY model. Thus, if we consider again a phase diagram in the(e2, T )-plane we have tha
a critical point atTc exists on theT -axis. However, as we shall now show,there is no
IXY transition in the compact case. To see this, let us take the “frozen” limitβ→∞ in
Eq. (38). The result is

(39)Z =Z0

∑
{li}

∑
{Qi}

δ∇·li ,Qi exp

(
−2π2

e2

∑
i

l2i

)
.

The sum overQi is trivially done,
∑
{Qi} δ∇·li ,Qi = 1 after which there is no constrain

We are left with a trivial sum overli giving Jacobiϑ-functionsϑ3(0, e−2π2/e2). Since
this function is analytic, there is no phase transition on thee2-axis, in contrast to the
non-compact case. Thus, at first sight it seems that there is no phase transition
compact AHL model with matter fields in the fundamental representation, except f
XY transition on theT -axis. That is, there appears to be no ordinary second- or first-
phase transition in the interior of the phase diagram of this model. However, in the
sections we shall derive an effective Lagrangian for the compact Abelian Higgs m
in 2+ 1 dimensions, which will be shown to nevertheless exhibit a topological p
transition of the KT type.

3. Effective Lagrangian

This section is one of the central parts of the paper in which we shall derive an eff
field theory for the compact Abelian Higgs model ind = 2+1 dimensions. More precisel
we derive a continuum action, Eq. (51) below, for the dual model of the system, ob
after matter fields have been integrated out leaving an effective theory for the monop
the problem. It will turn out that the effective dual Lagrangian for the(2+ 1)-dimensional
compact Abelian Higgs model, is described by a theory which has many similarit
the sine-Gordon theory of Polyakov’s pure compact electrodynamics ind = 2+ 1 [8].
The crucial difference lies in the fact that the gradient term in the dual theory receiv
anomalous dimension after the matter-fields have been integrated out. It is the pr
of this anomalous gradient term induced by matter-field fluctuations which eventuall
lead to the possibility of a deconfinement transition ind = 2+1, in contrast to the classica
Polyakov result of permanent confinement pertaining to the pure gauge theory.

3.1. Three-dimensional compact QED

Let us consider the Euclidean Maxwell action in three dimensions:∫

(40)S = d3x

1

4e2F
2
µν,
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whereFµν = ∂µaν − ∂νaµ. In order to account for monopoles, we have to subtract f
Fµν the gauge field of monopoles [35]

(41)FMµν(x)= 2πεµνλδλ(x;L),
whereδλ(x;L) is a delta function on linesL. The dual field strength of̃FMλ = εµνλFMµν/2
has divergences at the end points of the linesL, say [34,35]

(42)∂µF̃
M
µ = 2πn(x)= 2π

∑
i

Qiδ
3(x − xi),

whereQi may be arbitrary are integers counting the number of lines ending atxi . The
shape of the lines is physically irrelevant. They are the Dirac strings of the mono
at xi . Under shape deformations,FMµν undergoes the monopole gauge transformat
FMµν→ FMµν + ∂µΛMν − ∂νΛMµ which leaveF̃Mµ invariant.

An ordinary gauge transformation can be used to bringFMµν(x) to the form

(43)FMµν =−2πεµνλ∂λ

∫
d3y

1

4π |x − y|n(y),

whose dual field strength is

(44)F̃Mµ =−2π∂µ

∫
d3y

1

4π |x − y|n(y).

By substitutingFµν by Fµν − FMµν in Eq. (40), we obtain the action

(45)S =
∫
d3x

1

4e2
F 2
µν +

2π2

e2

∫
d3x

∫
d3y n(x)

1

4π |x − y|n(y).

The action (45) corresponds to the continuum counterpart of theβ→ 0 limit of the lattice
action in Eq. (38) describing a Coulomb gas of monopoles. This is known to be equi
to a sine-Gordon action as the one in Eq. (15). In three dimensions this theory is a
massive and it was shown by Polyakov [8] that this implies an area law for the Wilson
Thus, electric test charges in three-dimensional compact QED are permanently con

3.2. Anomalous three-dimensional compact QED

When bosonic matter fields are present, the topological defects of the theory are
loops and vortex lines having monopoles with opposite charges at the ends. The
lines connecting the monopoles have a line tensionσ which vanishes as the scalar boso
become massless. Thus, when the vortex lines become tensionless, we are left with
monopoles. However, the anomalous scaling of the gauge field due to matter fields
the interaction between pair of monopoles with respect to the ordinary Coulomb inter
case. This will lead us to theanomalousCoulomb gas to be described below.
From the exact behavior of the critical gauge field propagator we have discussed in
Section 1.2, we can write an effective quadraticnon-localLagrangian for the gauge field:
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LA = K
4
Fµν

1

(−∂2)ηA/2
Fµν

(46)= K
2
F̃µ

1

(−∂2)ηA/2
F̃µ,

where the constantK = K(α∗, g∗) and in the second line of Eq. (46) we have rewrit
LA in terms of the dual field strength. Specializing to three dimensions, we haveF̃µ =
εµνλFνλ/2 and ηA = 1. After introducing an auxiliary vector fieldbµ, we obtain the
equivalent Lagrangian:

(47)L′A =
1

2K
bµ

√
−∂2bµ + ibµF̃µ.

In order to take into account the monopoles, we use the expression forF̃µ as given in
Eq. (44). By introducing a new field throughbµ = ∂µϕ and using integration by parts, w
obtain

(48)L′′A =
1

2K
(∂µϕ)

√
−∂2 (∂µϕ)+ i2πn(x)ϕ(x).

Integrating outϕ and using Eq. (42), we obtain the monopole action

(49)Smon= 2π2K
∑
i,j

QiQjG(xi − xj ),

where

(50)G(x)=
∫

d3k

(2π)3
eik·x

|k|3 .
Thus, instead of having a standard three-dimensional Coulomb gas with inter
potentials 1/|xi − xj |, we have a three-dimensional gas of point particles of ch
Qi =±|Q| (with overall charge-neutrality, see Section 4.1)with logarithmic interactions,
much akin to the situation one has in two dimensions. We emphasize, once more, th
is a result of integrating out matter-field fluctuations and considering the effect ofcritical
such fluctuations on the gauge-field propagator, which is seen to acquire an ano
scaling dimension from these fluctuations, cf. Eq. (46). It therefore seemsplausible, at the
very least, that one should consider the possibility of having a KT-transition of unbin
of monopole–antimonopole pairs, but now in three dimensions. If this turns out to b
case, then the confinement–deconfinement transition in the(2+ 1)-dimensional compac
Abelian Higgs model with matter fields in the fundamental representation, would b
topologicalnature with no local order parameter, consistent with previous work [5,17

We are now ready to state one of the main results of this paper. The system d
by Eqs. (46) and (49) can be brought into the form of a sine-Gordon theory, as
two-dimensional case,but now with an anomalous propagator, whose action is

(51)SASG= 1

2t

∫
d3x

[
ϕ
(−∂2)3/2

ϕ − 2z0 cosϕ
]
,

where t = 4π2K and z0 = 4π2Kζ , with ζ being the fugacity of the Coulomb gas

monopoles. In Eq. (51),SASG refers to the action of what we name the anomalous sine-
Gordon (ASG) theory, since the cubic power of the propagator arises from the anomalous
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scaling dimension of the gauge field. The manner in which the coupling constantt enters
in Eq. (51) shows that it regulates the stiffness of the phase fieldϕ. Sincet ∝K, we shall
in following sections refer toK as a stiffness parameter.

4. Renormalization group analysis of the anomalous sine-Gordon model

This section is another central part of the paper. Here, we shall consider an
scaling argument applied to Eq. (51). The scaling argument will suffice to demonstra
this model has a phase transition. We emphasize this as an important point, since
numerical studies [6] have provided strong support for the picture proposed in Ref. [2
matter-field coupled to compactU(1) gauge fields ind = 2+ 1 lead to a recombination o
magnetic monopoles into dipoles. For the dual electric charges, this leads to a destru
permanent confinement, and in Ref. [20] it was argued that this happened, not throu
ordinary first- or second-order phase transition, but rather through a KT-like transition
authors of Ref. [6] were looking for more conventional phase transitions, concludin
none were found, consistent with the results of Ref. [20]. Having established the exi
of a phase transition, we then go on to argue that it indeed is of a KT-like type. The d
are as follows.

4.1. Callan–Symanzik renormalization group analysis

Let us consider the renormalization of the anomalous sine-Gordon action defin
Eq. (51). The infrared divergence is easily studied by considering the cubic prop
G(p)= 1/|p|3 in real space. To this end, we introduce an infrared cutoffµ as follows

(52)Gµ(x)=
∫

|p|>µ

d3p

(2π)3
eip·x

|p|3 =
1

2π2

[
sin(µ|x|)
µ|x| − ci

(
µ|x|)],

where ci(λ) is the cosine integral

(53)ci(λ)≡−
∞∫
λ

cosv

v
dv.

Asµ→ 0 we have

(54)Gµ(x)= 1

2π2

[
1− γ − ln

(
µ|x|)]+O(µ),

where γ is the Euler–Mascheroni constant. Forx = 0, on the other hand,Gµ(x) is
ultraviolet divergent and becomes

(55)Gµ(0)= 1

2π2 ln

(
Λ

µ

)
+ const+O

(
1

Λ

)
,

whereΛ is an ultraviolet cutoff.
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Let us consider now the correlation function〈
n∏
j=1

eiqjϕ(xj )

〉

(56)= 1

Z0

∫
Dϕ exp

{
− 1

2t

∫
d3x

[∫
d3y ϕ(x)G−1

µ (x − y)ϕ(y)− J (x)ϕ(x)
]}
,

where J (x) = i∑j qj δ(x − xj ) and Z0 is the above functional integral forJ = 0.
Integrating outϕ, we obtain

(57)

〈
n∏
j=1

eiqjϕ(xj )

〉
= exp

[
−1

2

∑
i,j

Gµ(xi − xj )qiqj
]
.

Using Eqs. (54) and (55), we obtain∑
i,j

Gµ(xi − xj )qiqj

=− 1

2π2

[(∑
i

qi

)2

(lnµ+ γ − 1)−
∑
i

q2
i lnΛ+

∑
i �=j
qiqj ln |xi − xj |

]
(58)+O(µ).

Thus, asµ→ 0 the only non-zero contributions to (57) satisfy the neutrality condition
the charge

∑
i qi = 0. The expansion in Eq. (58) is essentially the same as in thed = 2

case, except for the 1/2π2 factor instead of a 1/2π , and minor differences in the constan
The ultraviolet divergence of the phase fieldui(x)≡ eiqiϕ(x) is removed by introducing

a wave function renormalizationζi such that

(59)ui(x)= ζ 1/2
i ui,R(x),

with ui,R being the renormalized counterpart ofui and

(60)ζi =
(
Λ

µ

)−q2
i /(2π

2)

.

Therefore, if we specialize to the case whereqi =±|q| for all i, the renormalized two-poin
correlation function is given by

(61)
〈
ui,R(x)u

†
i,R(0)

〉∝ x−q2/(2π2).

It follows that the dimension ofui is justq2/(4π2).
Due to the above analysis it is now easy to see howz0 renormalizes in the ASG mode

Note that the model is super-renormalizable, just as the ordinary sine-Gordon model
the renormalization ofz0 is achieved by taking into account only tadpole contraction
cosϕ. We obtain
(62)z0=Z−1/2
ϕ z,
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where

(63)Zϕ =
(
Λ

µ

)−t/(2π2)

.

Furthermore, we have the RG function

(64)ηϕ ≡ µ∂ lnZϕ
∂µ

= t

2π2
.

The renormalizedn-point correlation functionG(n) satisfies the following Callan
Symanzik equation

(65)

(
µ
∂

∂µ
+ n

2
ηϕ + 1

2
ηϕz

∂

∂z

)
G(n)(pi, t, z)= 0.

Dimensional analysis, on the other hand, gives

(66)

[
µ
∂

∂µ
+ 3z

∂

∂z
+ pi ∂

∂pi
+ 3(n− 1)

]
G(n)(pi, t, z)= 0,

where 3(1− n) represents the mass dimension ofG(n). Using Eq. (66) in (65), we obtain

(67)

[
pi
∂

∂pi
+ 3(n− 1)− n

2
ηϕ +

(
3− 1

2
ηϕ

)
z
∂

∂z

]
G(n)(pi, t, z)= 0.

Forp = 0 we have

(68)(6− ηϕ)z∂G
(n)(0, t, z)

∂z
= [

6(1− n)+ nηϕ
]
G(n)(0, t, z),

which gives the following scaling relation for smallz

(69)G(n)(0, t, z)∼ z[6(1−n)+nηϕ]/(6−ηϕ).
Also, it is clear from Eq. (67) that the scaling behavior of the mass scale is

(70)mϕ ∼ z2/(6−ηϕ).

The momentum space behavior ofG(2) is ∼ 1/p3−ηϕ and thereforeG(2) becomes
singular in the ultraviolet if 3− ηϕ < 0. This happens fort = 6π2. For t = 6π2 the mass
scale behaves likez2/3. This is an important difference between the usual sine-Go
model in two dimensions and the CPSG model in three dimensions. The mass scal
usual two-dimensional sine-Gordon theory behaves linearly inz when the singular short
distance behavior is reached. There, this behavior is important for the fermionization
model, which establishes the equivalence between the sine-Gordon model and the T
model in two dimensions [40].

From Eqs. (69) and (70) we see thatG(n)(0, t, z) andmϕ vanish for t = tc = 12π2.
The interpretation of this result closely parallels the one in the usual sine-Gordon m
For instance, it tells us that att = tc the operator cosϕ is marginal, and means th

further renormalizations are necessary att = tc. The situation exactly parallels the two-
dimensional case where a thorough analysis was carried out by Amit et al. [41]. Fort > tc
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the anomalous sine-Gordon model Eq. (51) is no longer renormalizable. These
follow from the observation that the dimension of the operator cosϕ is just ηϕ/2. Thus,∫
d3x cosϕ has dimensionηϕ/2− 3, which means thatz has an effective dimension o

3− ηϕ/2. Therefore, the interaction is relevant forηϕ < 6 or t < tc , thus generating
mass. It is marginal ifηϕ = 6 and irrelevant forηϕ > 6, or t > tc, meaning that the theor
is massless. Hence, there is a phase where the field has a mass and another one w
massless, implying the existence of a genuine phase transition in the model Eq. (51
follows from the fact that a mass changing from a finite value to zero on a finite int
of coupling constants must do so in a non-analytic fashion. This conclusion is one
main results of this paper. Note, however, that since the above discussion is basically
wave analysis and suffices to show that a phase transition exists, it does not elucid
characterof the phase transition. In order to understand the phase transition we h
account for the topological defects in the theory [42], and this is the purpose of the
subsection.

4.2. Kosterlitz–Thouless-like recursion relations for the anomalous sine-Gordon mo

The above discussion strongly suggests the existence of a phase transition in the
defined by Eq. (51). However, as we have already mentioned, the cosine inter
becomes marginal att = tc. This means that it is not true thatβ(t) = 0 for all values
of t . The analysis of the previous subsection is neglecting the monopole fluctuations
would lead to a renormalization oft . This situation is well known for the logarithm
interaction in two dimensions and leads to the KT-recursion relations [42,43]. Si
arguments can be used in our case.

Let us define the dimensionless couplingy = z/µ3. Using Eq. (62) we obtain the flow
equation

(71)µ
∂y

∂µ
=

(
t

4π2 − 3

)
y.

The above equation can be derived in another way, which is useful for the purpo
this subsection. Let us consider again the monopole action in Eq. (49). We can wr
partition function of the monopoles as

(72)Zmon=
∑
{n(x)}

exp

[
−2π2K

∫
|xi |>a

d3x

∫
|x ′i |>a

d3x ′ n(x)G(x − x ′)n(x ′)
]
,

wherea is a short distance cutoff. Using Eqs. (54) and (55), we rewrite the above i
following form

Zmon=
∑
{n(x)}

′
exp

[
−2π2K

∫
|xi |>a

d3x

∫
|x ′i |>a

d3x ′ n(x)G̃(x − x ′)n(x ′)

∫
3 2

]

(73)+ lny0

|xi |>a
d x n (x) ,
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where

(74)G̃(x)=− 1

2π2 ln
|x|
a
.

The prime on the summation sign in Eq. (73) indicates that the charge neu
constraint implied by the large distance limit is enforced. If we assume smally0 such
that configurations with zero or one pair of monopoles are dominant, we obtain

(75)Zmon≈ 1+ y2
0

∫
|xi |>a

d3x

∫
|x ′i |>a

d3x ′ 1

|x − x ′|2K .

If we change the short-distance cutoff in the integrals asa→ ab, we see that the form
of Eq. (75) is unchanged providedx andx ′ are rescaled in such a way as to restore
previous integration region andy0 is changed according

(76)y = y0b
3−K.

If we definel ≡ lnb, we obtain

(77)
dy

dl
= (3−K)y.

Recalling thatt = 4π2K, we see that Eq. (77) is precisely Eq. (71), except for
sign, which is due to differences in the cutoff procedure. Eq. (77) is analogous
corresponding flow equation for the fugacity in the ordinary KT transition [42,43]. In
case we find insteaddy/dl = (2− πK)y. The factor 2 in the usual KT case reflects
dimensionality. In our case we have a factor 3 instead (and also justK rather thanπK).

It is also possible to derive recursion relations involving the fugacity of the proble
arbitrary dimensions to lowest orders in the fugacity for thed-dimensional Coulomb ga
with a power law interaction

(78)V (x)= F
(
d−2

2

)
(4π)d/2

[( |x|
a

)2−d
− 1

]
.

This problem was considered by Kosterlitz [44], who also obtained the flow of the stiff
The result is

(79)
dK−1

dl
= y2− (2− d)K−1,

(80)
dy

dl
= [
d − 2π2f (d)K

]
y,

where f (d) = (d − 2)F[(d − 2)/2]/(4π)d/2. For d = 2 this reduces to the KT flow
equations.

However, we see that ford = 3 the recursion relations (79) and (80) do not have a fi
point and therefore no phase transition happens in this case. In case of Eq. (49),
other hand, we have an anomalous Coulomb gas whose potential is logarithmic in

dimensions. It is thus plausible to conjecture that we would have a flow equation for the
stiffness similar to thed = 2 KT case. As we shall see, this is indeed the case.
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For d = 3, Eq. (80) coincides with our Eq. (77). However, since the potentials
different we should in fact not expect the same recursion relation for the fugacity.
suggests that the “spin wave” picture of Section 4.1 is not giving the correct flow fo
fugacity. Note that ford = 2 discussed in [41],the spin wave analysis does in fact give
correct flow for the fugacity(see Appendix B). For a logarithmic potential ind = 3 there
are some subtleties.

Let us consider a problem with a potential like

(81)V (x)= F
( d−2−ηA

2

)
2ηA(4π)d/2F

( 2+ηA
2

)[( |x|
a

)2−d+ηA
− 1

]
.

Here we have taken into account the effect of anomalous scaling due to matte
fluctuations in our original problem. A logarithmic interaction corresponds to the
d = 3 andηA = 1, which is the case which eventually will be relevant for us. Stri
speaking, the duality scenario in Section 3 is valid only atd = 3. However, as far as th
scaling behavior is concerned, it is useful to continue to the whole dimension in
(2,4), while keeping the sameε-tensors. This dimensional continuation procedure
reminiscent of the one considered in some RG studies of Chern–Simons theorie
The recursion relations we obtain are given by (see Appendix B)

dK−1

dl
= y2− (2− d + ηA)K−1,

(82)
dy

dl
= [
d − ηy − 2π2f̃ (d)K

]
y,

whereηy is theanomalous dimensionof the fugacity which is given by

(83)ηy = ηA2 =
4− d

2
,

and

(84)f̃ (d)= (d − 2− ηA)F
( d−2−ηA

2

)
2ηA(4π)d/2F(1+ ηA/2) .

Hence, for the case of alogarithmic interaction in three dimensions, which corresponds t
ηA = 1, the recursion relations for the fugacity and the stiffness have a similar stru
as the standard Kosterlitz–Thouless recursion relations one obtains in the two-dime
case [42,43]. The main difference is in the recursion relation for the fugacity, whic
an anomalous dimensionηy = 1/2. Note that the second term in the equation forK−1(l),
which prevents fixed points of Eqs. (82) from being obtained, is absent for a logari
potential in any dimension.

WhenηA = 0, which corresponds to neglecting the effect of matter fields in the orig
gauge theory, we haveηy = 0. Our recursion relations then reduce to the ones g
in Eqs. (79) and (80) obtained in [44] by a very different method than we emplo
Appendix B. Moreover, we have also derived Eqs. (82) along a different route tha

used in Appendix B, namely by the method employed in [43]. This constitutes an important
consistency check on our calculations. For the case whereηA = 0, the absence of a phase
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transition reflects the permanent confinement of electric test charges in the usua
dimensional compact QED [8].

We see that the flow equation for the fugacity obtained in Eq. (82) does not agre
the result of our “spin-wave” theory, which leads to Eq. (71) or, equivalently, Eq.
The reason for this is that an anomalous scaling dimensionηy for the fugacity is induced
by the renormalization of the stiffness. Indeed, in Appendix B we show that a potent
like (78) leads to an additional scaling transformation in theeffectivestiffness of the form
K(l)→ e(2−d+ηA)lK(l). If ηA �= 0, this is compensated in theeffectivefugacity by the
scaling transformation,y(l)→ e−ηyly(l). In the case of the Coulomb gas, whereηA = 0,
the spin-wave analysis gives the right answer, Eq. (80), as can easily be seen by work
a Callan–Symanzik RG analysis in the sine-Gordon theory (15) for arbitrary dimen
Thus, deviations from an ordinary type of Coulomb potential ind-dimensions lead to a
anomalous dimension to the fugacity, Eq. (83), which cannot be obtained by spin
theory.

The important point to note here is that a fixed point of the recursion relations Eqs
for d = 3 exists for the stiffness and fugacity in the limit of zero fugacity, so
problem scales to the weak coupling limit. Hence, the problem is selfconsistently
to be amenable to a KT-type of phenomenological RG analysis. It is not necess
calculate to higher-order iny to determine the fixed point. This demonstrates that
phase transition established above is of the KT type. This has some resemblance w
results of a rather remarkable paper by Amit et al. [46], which also finds a KT tran
in a three-dimensional Coulomb gas with logarithmic interaction between point ch
(see Appendix A). In their case, the logarithmic interaction between the point ch
in three dimensions did not have its origin in anomalous scaling dynamically gene
by matter-field fluctuations, but originated in anisotropic higher-order derivative term
an underlying field theory that were put in by hand. This anisotropy ultimately ind
dimensional reduction.

In four dimensions, we haveηA = 0 and extrapolating the above results it is clear t
no fixed points of the above recursion relations can be found. Indeed, the above a
no longer applies and no KT topological phase-transition occurs. This is so beca
dualizing a compact Maxwell Lagrangian in four dimensions, we obtain a non-com
Abelian Higgs model [38], which cannot be brought onto the form of a Coulomb gas
transition in this case is known to be of more conventional second- or first-order type

Finally, we note that in three dimensions there is a universal jump in the stif
parameter at the transition, analogous to what is known in the 2d case [47]. In un
Eqs. (82), this jump is determined by dimensionality and the anomalous scaling
fugacity,

(85)KR ≡ lim
l→∞K(l)=

d − ηy
2π2f̃ (d)

.

5. RG functions of Abelian Higgs model and KT transition
In this section we show how the RG functions and fixed points in the Abelian Higgs
model are related to the KT-like transition described in the previous section. In particular,
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we shall use the critical couplingtc to fix an a priori arbitrary constant that enters in
the computation of the critical exponents for the Abelian Higgs model. This in our
improves on a scheme previously used [21], where a corresponding constant was fi
appealing to numerical results for the value of the Ginzburg–Landau parameterκ which
separates first- from second-order behavior.1 In our approach, the parameter (denoter
below) is fixed from our theory of the critical behavior of the compact case, which we
argued in the introduction to be the same as for the non-compact Abelian Higgs mo
infinite baregauge coupling. Before doing this, however, a few preliminary remarks a
order.

The Abelian Higgs model is manifestly a two-scale theory. Indeed, the gauge
becomes massive due to the Higgs mechanism. Thus, in the ordered phase we are
two mass scales, the Higgs massm and the gauge field massmA. From these two mas
scales we obtain the Ginzburg parameterκ ≡ m/mA. Due to the existence of two ma
scales in the problem, we have very distinct situations depending on whetherκ � 1 or
κ 1. Forκ� 1 vortex lines, which are the topological defects of the matter field, at
each other. This corresponds to a type I regime, while forκ  1 we have repulsive force
between vortex lines, which corresponds to the type II regime. This two-scale be
survives in the disordered phase, though in this casemA = 0.

We shall consider the calculation of RG functions for the massless theory, but usin
renormalization scales [21]. In order to see the influence of the two mass scales ap
in the ordered phase, on the massless theory, we define the dimensionful coupl
different renormalization points,u atµ ande2 at µ̄. Let us define the ratior = µ/µ̄. By
rewritinge2(µ̄) in terms ofµ, we obtain the one-loopβ-functions for any fixed dimensio
d ∈ (2,4] and an order parameter withN/2 complex components [50]

(86)βα = (4− d)
[−α + rNA(d)α2],

(87)βg = (4− d)
{
−g +B(d)

[
−2(d − 1)αg+ N + 8

2
g2+ 2(d − 1)α2

]}
,

where

(88)A(d)=−F(1− d/2)F
2(d/2)

(4π)d/2F(d)
,

(89)B(d)= F(2− d/2)F
2(d/2− 1)

(4π)d/2F(d − 2)
.

From Eq. (86) we see thatγA = r(4−d)NA(d)α. By consideringd = 4−ε and expanding
for small ε, we recover the well-knownε-expansion result [51] if we taker = 1. In our
fixed dimension approachr is an arbitrary parameter that is usually fixed by impos

1 In an early Monte Carlo simulation, a tricritical valueκtri = 0.4/
√

2 was found, [48]. This is the value use
in the ad hoc scheme of Ref. [21]. More recently, a large-scale Monte Carlo simulation improved on this
finding κtri = (0.76± 0.04)/

√
2, [49]. This is in surprisingly good agreement with an early analytical re

κtri = 0.798/
√

2, see Ref. [27]. Using this improved value forκtri in the β-functions of Ref. [21], the critica

exponentν obtained would beν = 0.53. This is quite far from the correct 3DXY valueνXY = 0.67, as well as
from the 3DXY one-loop valueν = 0.625.
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additional conditions [21]. Whend = 3 andN = 2 we have the fixed pointα∗(r)= 16/r.
In the context of the compact Abelian Higgs model we fix the value ofr by demanding
thatKc should correspond to ar = rc, withK = 1/α∗ at one-loop. If we use the spin-wav
estimateKc = 3 (which corresponds totc = 12π2), we obtain then thatrc = 48 and thus
α∗ = 1/3. On the other hand, if we use the estimate from our KT-like recursion relat
we haveKc = 5/2 and thereforeα∗ = 2/5. In order to check the quality of these matchin
we compute the critical exponents of the three-dimensional Abelian Higgs model ind = 3.
The critical exponentν is given by the fixed point value of the RG function

(90)νφ = 1

2+ γm ,
where

(91)γm = µ∂ lnZm
∂µ

− γφ,
with Zm being the mass renormalization and

(92)γφ = µ∂ lnZφ
∂µ

.

At the fixed pointγφ gives the value of the critical exponentη. At one-loop order, we hav

(93)γm = α− g
4

, γφ =−α
4
.

WhenKc = 3, the fixed point for the couplingg which corresponds to infrared stabili
is given by g∗ = 2(7 + 2

√
11)/15. Therefore, we obtainν ≈ 0.615 andη = −1/12.

UsingKc = 5/2, we obtaing∗ = 4(6+√31)/25. The critical exponents in this case a
ν ≈ 0.61 andη=−1/10. Both estimates are close to the one-loop value of theXY model,
νXY ≈ 0.625. From duality arguments we expect indeed aXY value for the exponentν
[52].

6. Summary and discussion

In this paper, we have considered the Abelian Higgs model in 2+1 dimensions both fo
the non-compact and compact cases, with matter fields in the fundamental represe
We have performed a duality lattice transformation on these models, emphasizi
features that set them apart as well as those they have in common. A major diff
lies in the fact that in the dual formulation, the non-compact case has stringent cons
∇ · li = 0 imposed on the topological currents of the system, while in the compact
∇ · li can take any integer value, i.e., the currents are unconstrainedfor the case where
the matter field is in the fundamental representation. This effectively makes the dual no
compact case a much more strongly interacting system of topological currents, a
is why phase transitions are more easily brought out compared to the compact cas
result, we have seen that there is one limit of the LAH model where the non-compac

exhibits theIXY transition, while the compact case is an exactly soluble discrete Gaussian
model with apparently no phase transition.
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A major part of the paper (Sections 3 and 4) has been devoted to establishin
despite the absence of any phase transitions with a local order parameter in the c
case, a topological phase transition nevertheless is found in the interior of the
diagram of the model. A key ingredient is the renormalization of the gauge-field propa
of the problem due to critical matter field fluctuations, Eq. (46). With no matter fi
present, the topological defects of the gauge field, which are monopole configur
interact with a 1/R potential in d = 3. In the presence of matter fields, taking in
account their critical fluctuations, the resultant effective gauge theory may be des
as an overall neutral plasma of charges that interact with a logarithmic potential ind = 3,
Eq. (49). A field-theoretical formulation of the action given in Eq. (49) yields ananomalous
sine-Gordon (ASG) model, Eq. (51). A renormalization group analysis of this model b
on the Callan–Symanzik equations shows that the theory is massive below a critica
of the coupling constant. This by itself suffices to conclude that a phase transition
We then go on to show that the problem is amenable to an analysis based on K
recursion relations, Eqs. (82), derived for ad-dimensional gas of point charges interact
with a pair-potential which in a certain limit is logarithmic. In this limit, the recurs
relations we derive for the stiffness and fugacity of the problem reduce to equations
are similar in structure to the well-known Kosterlitz–Thouless recursion relations obt
for the two-dimensional Coulomb gas, but with a modified equation for the fugacity
to an induced anomalous scaling of it. This anomalous scaling in the fugacity acc
for deviations from the ordinary Coulomb gas case ind dimensions. The change in th
equation for the fugacity shows that the stiffness and the fugacity of the problem mu
influence each other under renormalization in a manner which is different from the c
a logarithmic pair-interaction ind = 2. As a consequence of this, the universal jump in
stiffness at the transition is then given, in appropriate units, by the dimensionality
system and the anomalous scaling of the fugacity, Eq. (85).

In Section 5, we have seen that the deconfinement phase transition we find
compact case, with a critical couplingtc , allows us to fix a parameter appearing
the evaluation of the critical exponents of the non-compact Abelian Higgs model.
represents an improvement on previous schemes to fix this parameter.

We close with a few remarks on unsolved problems. When only fermionic field
coupled to the massless gauge field (spinor QED3), then we again obtain aβ-function for
the renormalized gauge coupling as given in Eq. (4), butγA in the equation now depend
only on one coupling constant,α, not two as in the bosonic case. Then we do not have
freedom to tune parameters of the model to drive it through a phase transition of th
described in Section 4. The analysis of Section 4 may be carried through as befo
the point is that the fixed point coupling,α = α∗ does not depend on any second coup
constantg, this simply does not appear in the theory. Instead,α∗ depends on the numb
of fermion flavoursN only. In principle there thus exists a critical valueN =Nc where the
compact version of the model with fermionic matter, also goes through a deconfin
transition. The confining phase corresponds toN <Nc. It is highly controversial what thi
critical value is. A simple one-loop renormalization group calculation givesNc = 24 [20]
in agreement with an earlier result by Ioffe and Larkin obtained by a quite different m

[31]. However, we may in fact expect that the actual value is much smaller than this.
Marston has calculated the same number using one-instanton action and findsNc = 0.9
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[53]. The important point here is that whatever the precise value ofNc is, the interaction
between the monopoles is always logarithmic.

Also, in the fermionic case there is a subtlety in that another type of instability, a
in the bosonic case, could intervene to destroy the deconfinement transition. Fermio
in principle undergo a spontaneous chiral symmetry breaking (SχSB) [54]. This happen
when the number of fermion flavours is less than some critical value,Nch say. This mean
that a fermion mass is dynamically generated forN < Nch. The precise value ofNch is
presently also a matter of debate. One estimate from the Schwinger–Dyson equatio
Nch= 32/π2 [55]. This result is confirmed by Monte Carlo simulations findingNch≈ 3.5
[56]. Another analytic calculation givesNch = 128/3π2 [57]. A recent estimate base
on a new constraint on strongly interacting systems givesNch � 3/2 [58]. This is quite
consistent with the most recent numerical results we are aware of [59], where no
of SχSB is found forN � 2. Thus, there is no consensus on the precise value ofNch.
The calculation ofNc assumes that the fermions are massless. Thus, ifNc = 24 as in
Refs. [20,31], then a deconfinement transition will take place since the fermion m
generated at a much lower value ofN . With massive fermions present our anomalo
three-dimensional compact QED scenario does not apply because the Maxwell ter
not become irrelevant anymore. In such a situation the results of Polyakov [8] app
there is permanent confinement of electric test charges. This would be the case for th
Nc = 0.9 obtained by Marston [53], which lies below all estimates ofNch. In this case the
deconfinement transition does not happen.

Physically, SχSB in spinor QED3 has important consequences in the physics of highTc
cuprates. As we mentioned in the introduction, spinor QED3 with a compact gauge fiel
emerges as a possible low energy description of the fluctuations around the flux phas
quantum Heisenberg antiferromagnet [1]. In this context, the dynamical mass gen
is associated with the spin density wave (SDW) instability. Thus, gauge field fluctua
could in principle restore the Néel state. The physical number of fermion compone
this case isN = 2. Spinor QED3 also emerges by considering the low energy physic
thed-wave superconducting state in the pseudogap phase of the high-Tc cuprates [60]. In
this case, however, the gauge field is non-compact and there is an inherent anisot
the Lagrangian. There also, SχSB is responsible for the onset of SDW as half-filling
approached [61]. The physical number of fermion components in this case is againN = 2.
Therefore, in these theories it is essential thatNch > 2. If the most recent estimate fo
Nch is correct [58], this could have serious implications for the validity of the diffe
spinor QED3 scenarios discussed above. In the case of the spinor QED3 description of the
pseudogap phase, the inherent anisotropy could possibly affect the value ofNch. However,
results presented thus far indicate that at least weak anisotropy will not affectNch obtained
in the isotropic case [62]. Moreover, when studying effective theories of undoped hiTc
cuprates, we have argued in the introduction that the relevant theory to study is fer
coupled to compactU(1) gauge-fields. Hence, it is of importance to revisit the prob
of how monopoles affects SχSB [63]. Finally, we note that a recent provocative pa
by Wen [64] states that there exists a principle ofquantum orderwhich may preven

fermions from dynamically acquiring a mass even in the presence of strong coupling to
gauge fields. Hence, it seems to us that a renewed effort in numerical computations ofNch
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in (2+1)-dimensional gauge theories coupled to fermionic matter, including the effe
compactness and anisotropy, would be very timely.
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Appendix A. KT-like transition in three dimensions in an anisotropic sine-Gordon
theory

While considering a class of globally symmetric self-dualZN models in theN →∞
limit, Amit et al. [46] arrived at the following anisotropic three-dimensional sine-Gor
action containing higher derivatives:

(A.1)SANISG=
∫
d3x

[
1

2t1

(
∂2‖ϕ

)2+ 1

2t2
(∂zϕ)

2− zcosϕ

]
,

where∂2‖ = ∂2
x + ∂2

y . As pointed out in Ref. [46], the above model has a KT transi
in three dimensions. Indeed, it is easy to see that the propagator is logarithmic a
distances. Note, however, that anisotropy and the higher order derivatives in the p
direction are essential, and the system effectively shows two-dimensional behav
dimensional reduction. This is in contrast with our genuinely three-dimensional KT
scenario.

Appendix B. KT-like recursion relations

In this appendix we derive to lowest order in the fugacity the recursion relation
the scale-dependent stiffness parameterK(l) and fugacityy(l) given in Eqs. (82) for ad-
dimensional plasma where the bare pair-potential is given by Eq. (81), which reduc
logarithmic potential whend = 3. The starting point will be a low-density approximati
for a dielectric constant of this system. We closely follow a method for doing

introduced in [65]. Introducing the solid angle ind dimensionsΩd = 2πd/2/F(d/2) and
the density of dipoles in the fluid bynd , a low-density approximation for the dielectric
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constant is given by

(B.1)ε = 1+ ndΩdα,
whereα here denotes the polarizability of the medium, a standard linear-response a
givesα = 4π2K〈s2〉/d and〈s2〉 is the mean square of the dipole moment in the system
compute this, we need the low-density limit of the pair-distribution functionn±(r) of the
plasma, which is readily obtained from the grand canonical partition functionΞ expanded
to second order in the bare fugacityζ , and replacing the thermal de Broglie wavelength
a short-distance cutoffr0, as follows

(B.2)n±(r)= ζ 2

r2d
0

e−4π2KV .

In this way, we may now go on to express ascale-dependentdielectric constant as follow

(B.3)ε(r)= 1+ 4π2ΩdK

d

r∫
r0

ds sd+1n±(s).

Note however, that in Eq. (B.3), a mean-field approximation is understood to be
by replacing the bare potentialV in n±(r) by aneffective potentialU(r). This effective
screened potential must be selfconsistently determined by demanding that it gives
an electric field in the problem given by

(B.4)
∂U

∂r
=E(r)= f̃ (d)

ε(r)r1−ρ ,

whereρ = 2− d + ηA andf̃ (d) is defined in Eq. (84). Such a mean-field procedure
been consistently used with success in the 2d case, and the origin of the success lie
long range of the ln-interaction. In higher dimensions, such a procedure will work
better since the logarithmic potential is felt over even longer distances due to extra v
factors.

Let us introduce a logarithmic length scalel = ln(r/r0) along with the new variables

τ (l)= ε(r0 expl)

4π2K
,

(B.5)x(l)= 4π2KU(r0 expl).

Here,x(l) is determined selfconsistently by integrating the effective fieldE(r). Then we
get from Eqs. (B.3) and (B.4)

(B.6)τ (l)= τ (0)+ Ωdζ
2

drd−2
0

l∫
0

dv e(d+2)v−x(v),

and
l∫

r
ρ
eρv
(B.7)x(l)= x(0)+ f̃ (d)
0

dv 0

τ (v)
.
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From Eqs. (B.6) and (B.7), we may derive coupled renormalization group equatio
τ (l) and x(l). However, in order to obtain equations that have a form more simila
equations that have appeared in the literature on thed-dimensional Coulomb gas [44], w
introduce a new variableK(l) representing a scale dependent stiffness constant, as fo

(B.8)K−1(l)≡ τ (l)

r
ρ
0 e
ρl
.

Thus, we see that the effect of a nonzeroρ on the stiffness amounts to a scaling cha
K(l)→ eρlK(l). Using Eq. (B.7), we have that

(B.9)
∂x(l)

∂l
= 4π2f̃ (d)K(l).

DifferentiatingK−1(l) with respect tol and using Eq. (B.6), we obtain

(B.10)
∂K−1(l)

∂l
=−ρK−1(l)+ 2Ωdζ 2

dr
d−2+ρ
0

e[(d+2−ρ)l−x(l)].

From this expression, we define a scale dependent fugacityy(l) given by

(B.11)y(l)≡
√

2Ωd ζe[(d+2−ρ)l−x(l)]/2
√
d r

(d−2+ρ)/2
0

.

Thus, we see explicitly that the renormalization ofK(l) in principle influences the flow
equation fory(l), which is obtained by differentiating with respect tol and using Eq. (B.9

(B.12)
∂y(l)

∂l
= [
d − ηy − 2π2f̃ (d)K(l)

]
y(l),

whereηy = (d − 2+ ρ)/2. Eqs. (B.10) and (B.12) are precisely Eqs. (82). On the o
hand, the Callan–Symanzik approach of Section 4.1, which basically ignores the infl
of the renormalization ofK(l) on the structure of the flow equation fory(l), yields as we
have seen Eq. (77). We have already remarked in Section 4.2 that this type of ap
gives the correct answer only if there are no deviations from the Coulomb potentia
that is, we needρ = 2−d . Note that in the usual KT transition we would haveρ = ηy = 0.

Appendix C. Screened effective potential

In this appendix, we derive the asymptotic long-distance behavior of the scr
effective interactionU(r) introduced in Appendix B, for the caseρ = 0, corresponding
to d = 3 andηA = 1. We start from the recursion relations, written on the form

(C.1)
∂K−1

∂l
= y2,

∂y

∂l
=

[
5

2
−K(l)

]
y.

From Eq. (B.8), we have thatK−1(l)= τ (l) in this case. Next, we introduce the variab
T (l) defined by
(C.2)T (l)≡ 5τ (l)/2− 1

5τ (l)/2
≈ 5

2
τ (l)− 1,
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where the latter approximation is asymptotically exact close enough to the transiti
terms of this, the flow equation for the fugacity may be written on the form

(C.3)
∂y2(l)

∂l
= 5T (l)y2(l).

On the other hand, we have

(C.4)
∂T 2(l)

∂l
≈ 5T (l)

∂τ (l)

∂l
= 5T (l)y2(l),

and hence we have

(C.5)y2(l)− T 2(l)=±ω2,

whereω is some positive number. We are interested in the quantity liml→∞ x(l) for the
case wherey2(l) − T 2(l) < 0, andT (l) < 0, this will be the regime where the fugaci
scales to zero. In this case we choose the negative sign on the r.h.s. in Eq. (C.5). F
flow equation forK−1(l) we find

(C.6)
∂T (l)

∂l
= 5

2
y2(l)=−5

2

[
ω2− T 2(l)

]
.

This is solved to obtain, introducingu= (5/2)ωl+ θ ,

T (l)=−ω cothu,

(C.7)y(l)= ω

sinhu
,

whereω and θ are integration constants that are uniquely determined from the i
conditions onτ (l) andy(l), i.e., by the bare coupling constants of the problem as follo

y2(0)− T 2(0)=−ω2,

(C.8)
T (0)

y(0)
=−coshθ.

From the expression forT (l), using Eq. (C.2), we obtain

(C.9)τ (l)= 2

5
(1−ω cothu).

Sinceτ (l) > 0, this puts restrictions on the constantsω and θ , and the most sever
limitations onω in terms ofθ is given by

(C.10)1−ω cothθ > 0.

Using Eq. (B.9) and the fact thatK(l)= 1/τ(l), we have

(C.11)
∂x(l)

∂l
= 5/2

1−ω cothu
.

From Eq. (C.10), we see that∂x(l)/∂l > 0. This is an important result, since it immediate

reveals that, in the regimey2(l) − T 2(l) < 0 we consider here, the logarithmic bare
potentialV (r) cannot possibly be screened into a power law potential 1/rσ with σ > 0,
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since in that case we would have∂x(l)/∂l < 0. However, for alll we have

(C.12)
∂2x(l)

∂l2
=−

(
5ω/2

sinhu−ω coshu

)2

< 0.

Introducingω± = 1±ω, Eq. (C.11) is straightforwardly integrated to yield

(C.13)x(l)− x(0)= 1

ω+ω−

[
5

2
ω+l + ln

(
ω+e−2θ +ω−
ω+e−2u+ω−

)]
.

From this, it follows that forr  r0 the effective potential behaves asymptotically as

(C.14)U(r)∼ ln(r/r0).

Appendix D. Exact equation of state for the d-dimensional ln-plasma

The equation of state for ad-dimensional ln-plasma with no short-distance cutoff, m
be obtained via a simple scaling argument, previously applied to the two-dimensiona
[66]. The configurational integral in the canonical partition function is given by

(D.1)Q=
∫
V

· · ·
∫
V

ddr1 · · ·ddr2N exp

[
t̃
∑
i<j

qiqj ln(rij )

]
,

whereqi =±1, and we assumed that we have 2N particles in the system,N with charge
qi = 1 andN with chargeqi = −1,

∑2N
i=1qi = 0. Here,V = Ld is the volume of the

system. Introduce new dimensionless variablesRij = rij /L whererij = |ri− rj |, in which
case the configurational integral is given by

Q= L2Nd

1∫
0

· · ·
1∫

0

ddR1 · · ·ddR2N exp

(
t̃
∑
i<j

qiqj ln(RijL)

)

(D.2)= L2Nd exp

[
t̃
∑
i<j

qiqj ln(L)

]
I,

where the integralI is independent of volume. Now note that

(D.3)

2
∑
i<j

qiqj =
∑
i �=j
qiqj =

(∑
i

qi

)(∑
j

qj

)
−

2N∑
i=1

q2
i =−2N.

Then we obtain

(D.4)Q= L2Nde−t̃N ln(L)I = L2Nd−t̃N I = V 2N−t̃N/dI.

From this, we obtain the equation of state involving the pressure
(D.5)t̃pV = 2N − t̃N
d
.
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Note that the pressure vanishes whent̃ = t̃0 = 2d . A prerequisite for the validity of the
above analysis is that the quantityI must be finite, otherwise the scaling of variables t
lead to the equation of state is meaningless. In fact,I is not always finite. Consider aga
the integrand inQ, which is given by a product of factors

(D.6)e
t̃
∑
i<j qiqj ln(rij ) =

∏
i<j

r
t̃qiqj
ij .

Any factor withqi =−qj will be singular whenrij = 0, which is possible in the absence
a short-distance cutoff. To investigate whether or not this singularity is integrable, co
the integral

(D.7)
∫
dr rd−1r−t̃ .

This is finite only if

(D.8)d − t̃ > 0.

This means that the equation of state Eq. (D.5) makes sense fort̃ < t̃c = d , note that for all
dimensionsd , t̃0= 2t̃c.

In two dimensions, it is known that the negativity of the pressure occurs at a tempe
that coincides with the KT vortex–antivortex unbinding temperature, and that ther
phase transition at twice this temperature. It is amusing to note here that in the
dimensional case, the pressure vanishes attc = 12π2, after having reintroduced̃t = t/4π2.
This is precisely the critical coupling we found in Section 4.1 from the Callan–Syma
equations. In addition there is again a phase transition at precisely half the value
coupling constant, where the pressure becomes that of an ideal gas ofN particles. In
arbitrary dimensions, this persists, the phase transition to an ideal gas ofN particles always
happens at half of the value at which the pressure vanishes. This phase transition
is a collapse of an overall charge-neutral plasma ofN qi = +1 charges andN qi = −1
charges into an ideal gas ofN particles, occurs because of the lack of a short-dista
cutoff in the system we consider in this appendix.

Appendix E. Duality in the Abelian compact Higgs model with a Chern–Simons
term

For completeness, we present in this appendix the duality transformation of the
with a Chern–Simons term added [12]. Compact gauge theories with Chern–Simon
added are relevant in studies of chiral spin liquid states [11] when spinor states hav
integrated out. Such theories have been argued to exhibit a deconfinement transiti
68]. The compact LAH mode, i.e.,Aiµ ∈ (−π,π), with a Chern–Simons term has t
action

SCS=
∑
i

[
β

2
(∇µθi −Aiµ − 2πniµ)2+ 1

2e2(εµνλ∇νAiλ − 2πNiµ)2]

(E.1)+ i γ

2
(∇µθi −Aiµ − 2πniµ)(εµνλ∇νAiλ − 2πNiµ) .
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Let us introduce auxiliary fieldsai , bi , λiµ, andσiµ, such that

S′CS=
∑
i

[
β

2
a2
i +

1

2e2 b2
i + i

γ

2
ai · bi + iλiµ(∇µθi −Aiµ − 2πniµ − aiµ)

(E.2)+ iσiµ(εµνλ∇νAiλ − 2πNiµ − biµ)
]
.

Next we introduce integer valued fieldsmiµ andMiµ via the Poisson formula:

S′′CS=
∑
i

[
β

2
a2
i +

1

2e2 b2
i + i

γ

2
ai · bi + imiµ(∇µθi −Aiµ − aiµ)

(E.3)+ iMiµ(εµνλ∇νAiλ − biµ)
]
.

Integration ofθi andAiµ give the constraints enforced by delta of Kronecker

(E.4)∇ ·mi = 0,

(E.5)∇×Mi =mi .

Summing overmi gives

(E.6)S′′′CS=
∑
i

[
β

2
a2
i +

1

2e2 b2
i + i

γ

2
ai · bi − i(∇×Mi ) · ai − iMi · bi

]
.

By integrating outai andbi we arrive at the action

(E.7)S̃CS= K
2

∑
i

[
(∇×Mi )

2+ βe2M2
i − ie2γMi · (∇×Mi )

]
,

whereK ≡ 4/(γ 2e2+ 4β). Using the Poisson formula to introduce a real lattice fieldhiµ
and doing an appropriate rescaling of the variables we obtain finally the partition fun

(E.8)Z =Z0

∑
{li}

∞∫
−∞

[∏
i,µ

dhiµ

]
exp

[−Sdual
CS (hi , li )

]
,

where

(E.9)Sdual
CS =

K

2

∑
i

[
(∇× hi )2+ βe2h2− iγ e2hi · (∇× hi )

]+ i2π li · hi ,

which should be compared with Eqs. (26) and (34). Note the appearance of the cros
iγ e2hi · (∇ × hi ). When thehi are integrated out we are thus left with a partition of
same form as Eq. (35), but with an asymmetric propagator.

If we were to consider the non-compact LAH with a Chern–Simons term added
in the absence of the Maxwell term,e2→∞, then this is an effective description of th
fractional quantum Hall effect [37,69]. In this case we obtain∑[ ]
(E.10)Sdual
CS =

i

1

2β
(∇× hi )2− i

2γ
hi · (∇× hi ) + i2π li · hi .
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This is essentially the same as Eqs. (E.8) and (E.9) for the compact case (with n
term for thehi -fields), but we should add an additional constraint in the∇ · li = 0 in the
partition function.

One point worth emphasizing here, sometimes overlooked, is that the gauge-fihi
is never a compact gauge-field, whether one starts from an original compact o
compact gauge theory. In the non-compact Chern–Simons theory, there exists a s
point at a valueγ = 1/2π [69,70]. The possibility of self-duality is a consequence
non-compactness, it can never arise starting from a compact LAH model with C
Simons term added. It is an intriguing question whether the self-duality at the a
particular value ofγ in the non-compact case corresponds to a critical point. A cand
physical interpretation of such a putative phase transition would correspond to sta
transmutation of the Laughlin quasiparticles of the fractional quantum Hall effe
magnetic field is varied, since in the context of the FQHE, the parameterγ depends on
filling fraction, i.e., magnetic field. It is known that for the half-filled lowest Landau le
the quasiparticles are fermions [71], while for other filling fractions they are anyons.
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