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Abstract

We point out that the permanent confinement in a comp2et 1)-dimensionalU (1) Abelian
Higgs model is destroyed by matter fields in the fundamental representation. The deconfinement
transition is Kosterlitz—Thouless-like. The dual theory is shown to describe a three-dimensional gas
of point charges witHogarithmic interactions which arises from an anomalous dimension of the
gauge field caused by critical matter field fluctuations. The theory is equivalent to a sine-Gordon-like
theory in(2 + 1)-dimensions with amnomalous gradient energyoportional tok3. The Callan—
Symanzik equation is used to demonstrate that this theory has a massless and a massive phase. The
renormalization group equations for the fugagity) and stiffness parametér(/) of the theory show
that the renormalization ok (/) induces an anomalous scaling dimensignof y(/). The stiffness
parameter of the theory has a universal jump at the transition determined by the dimensionality and
ny. As a byproduct of our analysis, we relate the critical coupling of the sine-Gordon-like theory
to an a priori arbitrary constant that enters into the computation of critical exponents in the Abelian
Higgs model at the charged infrared-stable fixed point of the theory, enabling a determination of
this parameter. This facilitates the computation of the critical exponeritthe charged fixed point
in excellent agreement with one-loop renormalization group calculations for the three-dimensional
XY model, thus confirming expectations based on duality transformations.
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1. Introduction

Gauge theories id = 2+ 1 dimensions are often considered as effective theories of
strongly correlated systems in two spatial dimensions at zero temperature [1-3]. Prominent
examples of systems to which such theories are hoped to be applicable are tl%e high-
cuprates in the underdoped or undoped regime. In the undoped regime it is known that
spinor QEL is an effective low energy theory for the quantum Heisenberg antiferromagnet
(QHA) [1]. It is hoped that one effectively can account for doping by coupling the gauge
theory to a scalar boson representing the holon part (charge part) of composite Hubbard-
operators describingrojectedelectrons, which however do not satisfy simple fermion
commutation relations. Similar effective theories have a long history as useful toy-models
in high-energy physics [4—6], and have recently been suggested to describe neural networks
[7].

Of particular interest in the physics of strongly correlated systems is the compact version
of the (2 + 1)-dimensional Abelian Higgs model with matter fields in the fundamental
representation. This is the model we shall be concerned with in this paper and for which
we shall find the results summarized in the abstract.

1.1. Preliminary remarks

Our starting point is the following Abelian euclidean field theory of a scalar matter field
coupled to a massless gauge field

Ly = (8, = iA) o] + mol? + T Igol", (1)

where the subscript zero denotes bare quantities. It corresponds to a theory with a Maxwell
term

1
Ly =—F°? 2)

where F?, = 3, A9 — 8,49, in which the gauge couplingy goes to infinity. This limit

implies the constraint,’ = 0, wherej;’ = ¢§ 3“4&0 is the boson current.

When derivingeffectivetheories for thee—J model we arrive naturally at eompact
U (1) lattice gauge field [2]. For QHA, the gauge symmetry is larger and given by the
gauge groufsU(2) [3]. However, in this case a reducéd 1) formulation is also possible
[1]. Since thisU (1) is a subgroup o6U(2), which is a compact group, thé(1) gauge
theory of QHA is necessarily a compact Abelian gauge theory.

It is well known that a compact/(1) theory of the pure Maxwell type in three
dimensions confines electric charges permanently [8]. In the literature [9] it is also argued
that this permanent confinement should be present if an additional fermionicyfield
coupled to the gauge field by a Lagrangian

ﬁf—Zvn —iA%)y, 3
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This means that the particles represented by the figldadgo never have an independent
dynamics. In the context of many-body theory, the Dirac fermjorould represent a
spinon while ¢ represents dolon If electric test charges were permanently confined

in the model, then the spinon and the holon would only appear as composite particles.
In this case it would be impossible to fractionalize the electron, i.e. spin and charge
would always remain attached to each other. Spin-charge separation is known to occur in
1+ 1 dimensions [10]. There fermions can be transmuted into bosons via the so-called
Jordan—Wigner transformation. In21 dimensions the situation is less clear, but for
matter fields in the fundamental representation there is one circumstance where spin-charge
separation is known rigorously to occur, namely the chiral spin liquid state [11]. However,
the statistics of particles can be changed as4nIldimensions. In the chiral spin liquid,
spinons have anyonic statistics described by a Chern—Simons term [12] in the effective
gauge theory, which reflects the breaking of parity and time reversal symmetry.

The lack of consensus about spin-charge separati@f # 1)-dimensional compact
U (1) matter-coupled gauge theories with matter fields in the fundamental representation
initiated investigations of other gauge theories for strongly correlated electron systems.
One of the most promising candidates isZa gauge field coupled to matter fields
[13]. Similar ideas leading to electron fractionalization had earlier been presented in the
condensed matter literature [14,15]. Ia-2 dimensions th&, theory has a deconfinement
transition [5]. ThusZ, gauge theories are potentially good candidates for describing spin-
charge separation without breaking parity and time reversal symmetries.

The confinement properties @f(1) gauge theories for the cuprates and the relation
to spin-charge separation were recently discussed from various points of view [9,16-19].
Nayak [9] states that in gauge theories of th&d model fermions and bosons interact at
infinite (bare) gauge coupling and, for this reason, it is necessarily a theory with permanent
confinement of slave particles. In contrast, Ichinose and Matsui [18] have argued that the
coupling to matter fields strongly influences the phase structure of the system. In Ref. [19],
it is correctly pointed out that if spin-charge separation occurs, it is not necessarily tied
to the notion of confinement—deconfinement of slave particles. The picture proposed in
Ref. [9]in 24 1 dimensions is reminiscent off1 1 dimensions where spinons and holons
are solitons and cannot be identified with the slave particles, which are not part of the
spectrum [10]. Nagaosa and Lee [17] discuss a compd@t) gauge theory coupled to
bosonic matter field in the fundamental representation. They conclude that B+ 1
this theory permanently confines electric charges, in contrast to the analysis by Einhorn
and Savit on the same model [4].

In a recent letter [20], we have studied the confining properties of the Lagrangian
(1), as well as the case of a fermionic field coupled to a gauge field, but with an
added Maxwell term. The Lagrangian (1) with a Maxwell term corresponds essentially
to the model considered by Nagaosa and Lee [17], though these authors have considered a
frozen-amplitude version of the model. In Ref. [20], it was emphasized that an anomalous
scaling dimension of the gauge field, arising from matter-field fluctuations, changes the
interaction between monopoles fromirlto Inr in three dimensions. It was then argued
that a monopole—antimonopole unbinding transition similar to the Kosterlitz—Thouless
(KT) transition takes place, but now in three dimensions. From this, we concluded that
test charges undergo a deconfinement transition.
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It must be pointed out that the authors of Refs. [5,17], were looking for a transition
similar to those encountered ih= 3 + 1, namely ordinary first- or second-order phase
transitions [5]. In Ref. [17], a duality transformation was performed showing that the
disorder parametgy ) is always different from zero, implying thap) is always zero.
This result is essentially correct and is perfectly consistent with the scenaRefin20]
and explained further in the present paper.

A main result in our letter [20] is that there exists a non-trivial infrared stable fixed
point in the theory ind = 2 + 1 which drives the deconfinement transition. There the
anomalous dimension of the gauge field is givemly= 1 ind = 2+ 1 [21,22].This result
is exact as a consequence of gauge invariance. It implies that the non-trivial infrared fixed
point arises at an infinite bare gauge couplinip see this, consider the boson—fermion
LagrangianC = L + £, + L. Due to gauge invariance, the gauge coupling renormalizes
to 2 = ZAeS, whereZ 4 is the wave function renormalization constant of the gauge field.
The renormalization group (RGj function for the renormalized dimensionless gauge
couplinge = €2/ has the following exact form in 2 1 dimensions

9
Balet, g) = Ma—a =[ya(a, g) — 1], (4)
"

where g is the renormalized dimensionlegs|* coupling andy, = udInZ,/du. Let

us assume that there exist non-trivial infrared stable fixed paiptand g., where the

B functions g, and g, vanish. We have explained in Ref. [20] why such fixed points
must exist. (For similar arguments, see Ref. [23].) Moreover, large-scale Monte Carlo
simulations have demonstrated explicitly the existence of such a non-trivial fixed point
[22,24] (see also Ref. [25]). Its existence has long been assured theoretically by duality
arguments [26,27] (see also Section 2.2). We shall not repeat the arguments and details
here. Instead, we focus on the physical consequences of the non-trivial fixed point.

We would like to stress an important point, pertinenfte: 2+ 1 dimensions, and quite
different from the situation fod = 3+ 1. Ase — «., the bare couplingg must tend to
infinity. By definition the aboves function is given at fixedt, «g, andgo. Here, A is the
ultraviolet cutoff whileag = e%/A andgo = up/A are the dimensionlegsare couplings.

The fixed point is reached for — 0. Alternatively, the fixed point is reached fdr— oo

if u is held fixed. However, sincey is fixed it follows thateg — 0o asA — oo. Thus, in

d =2+ 1, the fixed point theory is anfinite bare gauge couplingdne might object that

this infinite gauge coupling cannot be relevant for the cuprates which have an infinite value
of e(z) atall scales, not only in the scale invariant regime. This is true, but irrelevant as far

as the deconfinement transition is concerned, which is determined by the non-trivial fixed
point structure. The situation is analogous to théN) non-linearc model as opposed

to the O(N) ¢* model. These models are quite different, but agree with each other at the
critical point [28,29], thus belonging to the same universality class. In our case, the model
with the Maxwell term at the fixed point has the same correlation functions as the model
without it also at the fixed point.

To summarize the discussion in the above paragraph, the non-compact action with
no Maxwell term has the same critical behavior as the compacabties critical point
corresponding to a non-trivial fixed point, characterized by an infinite bare couptiagd
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we started from an infinitely weak bare coupling, the only fixed point we would have any
hope of reaching fod = 2+ 1 would be the Gaussian fixed point.

In Ref. [20] we have pointed out that chiral symmetry breaking can destroy the
deconfinement in the fermionic case. We want to point out that for the combined boson—
fermion model,£L = Ly + L, + Ly, chiral symmetry breaking does not spoil the
deconfinement transition. Chiral symmetry breaking occurs at a lower value of number
of fermion flavoursV ¢, when also bosons are present. Kim and Lee [30] claimed that the
critical value of N is decreased by a factor two. Since we have typicNijN 3 and the
physical number of fermion components in the cuprate$is= 2, Kim and Lee argued
that spin-charge separation would occur at finite doping [30].

1.2. Anomalous scaling and the potential between test charges

The high-energy physics literature is usually concerned Witk 4 and use low-
dimensions only in toy models. In condensed matter physics, how@vef,)-dimensional
gauge theories are supposed to describe real physical phenomena such as the anomalous
properties of highZ, superconductors [31], or the physics of QHA [1,32]. FHog (2, 4]
the gauge coupling-function may be written as

Buola, 8) =[yale, g) +d — 4. (5)

Non-trivial fixed points induce an anomalous scaling behavior in the gauge field
propagator. In the Landau gauge we have that

Dyuw(p) = D(p) <5uv . ;é’) (6)

with the large distance behavior given by

D(p) ~ T (7)
The anomalous scaling dimension is given exactly by [21,22]
na=ya(as, g) =4—d. 8
Due to the above result, the propagator (7) in configuration space becomes
1 1
D(x) ~ 9

|x|d—2+’IA ~ |x|2’

for all d € (2,4]. The potential betweeaffective electric chargeg(R), separated by a
large distanceR in (d — 1)-dimensional space is given by

2(R
V(R) ~ chf—_g (10)
where
1—(AR)™ (AR 4-1
2Ry~ AR (AR (11)

naA d—4
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and whereA is a short distance cutoff. The anomalous scaling in Eq. (11) is a consequence
of the coupling to matter fields. Due to it, the poten#dlR) behaves effectively like AR

for d = 3. Ford = 4, it goes like IfAR) /R, while ford = 2, it has a confining behavior
proportional toR. The regime governed by the Gaussian fixed pointdfd®) = qg =

const, and corresponds to the so-called Coulomb phase. In this phase, the four-dimensional
theory hasV (R) = g3/R, whereasV (R) = g2In R for d = 3. We see that the non-trivial
infrared behavior induces an effective electric potential between test charges similar to
that which characterizes the Coulomb phasedie- 4. If we extrapolate tal = 2, we
obtainV(R) = qu. Note that ind = 2, we obtain a confining potential irrespective of
whether anomalous scaling is taken into account or not.

In compact Abelian gauge theories a confined phase is realized by the formation of
electric flux tubes connecting electric charges. These flux tubes are the dual analogs of
themagnetidlux tubes connecting magnetic monopoles [33,34]. There is a Dirac relation
between the effective electric and magnetic charges

q(R)gm(R) ~ 1. (12)
Let us consider now the potential between the magnetic charges
2(R 1
Vin(R) ~ L8 (13)

RA-3 qZ(R)Rd—3'

From Eg. (11) we see that faf = 4 the magnetic potential behaves likg{R In(AR)].
However, ford = 3 we have

1
Vin(R) ~ E» (14)

which is self-dual with respect to the potential between electric test charges.

The Higgs phase for thelectric chargesorresponds td’ (R) ~ const because of the
gauge field mass gap. The Higgs phasenfagnetic test chargesn the other hand, is
given by V(R) ~ R. In the electric—magnetic duality picture [33,34] this Higgs phase for
magnetic charges is exchanged by the confined phase for electric charges. This scenario
should be valid for matter fields in thedjoint representation. In the absence of matter
fields, a compact2 + 1)-dimensional gauge theory is definitely confined permanently
[8]. The above result shows that if matter fields are present, a deconfined phase is also
possible. However, if the matter fields are in the fundamental representation, the situation
is controversial [4,9,17-20]. Our recent results in Ref. [20] seem to be confirmed by the
Monte Carlo work in Ref. [6]. The main purpose of this paper is to give more details on
the scenario proposed in Ref. [20] and to describe a theory for a deconfinement transition
in Abelian gauge theories coupled to matter fields in the fundamental representation.

1.3. Outline of the paper

In Section 2, we consider the lattice duality transformations tq2he 1)-dimensional
Abelian Higgs lattice (AHL) model, first the non-compact case and later the compact case.
We then discuss the possible ordinary first- or second-order phase transitions these models
can have, with matter fields in the fundamental representation for the compact case.
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In Section 3, we construct the continuum effective Lagrangian and its dual counterpart
for the compact2 + 1)-dimensional AHL model when matter-fields have been integrated
out. Because these are central results of the paper, it behooves us to announce them here.

The dual field theory is given by Eq. (51). It represents a description of a three
dimensional gas of point charges interacting witHogarithmic pair-potential, given
by Eqg. (49). We emphasize that the 3d In-plasma action of Eq. (49) emerges from an
underlying matter-coupled gauge theory, Eq. (38), by integrating out the fluctuating matter
fields and considering the influence ofitical matter fluctuations on the gauge-field
propagator. The result of this procedure is the effective theory Eq. (46). Such matter-
field fluctuations endow the gauge-field propagator with an anomalous scaling dimension
na =4 —d [21,22] which in three-dimensions alters the interaction between the monopole
configurations of the gauge-field from a Coulomb-interactipR fo a InR interaction.

Recall that in contrast to this, in the classic treatment by Polyakov [8] of compact three-
dimensional QED with no matter fields, the standard three-dimensional sine-Gordon field
theory with a quadratic gradient term, describing the three-dimensional Coulomb gas, is
obtained. This action is given by, in the notation of Eq. (51)

1
Sse= 5 / a3 [p(—8)p — 2z0c0s9p)]. (15)

Polyakov has demonstrated [8] that Eq. (15) has no phase transition, i.e., it is always
massive. Our Eq. (51) differs drastically from Eq. (15), due the presence of an anomalous
gradient term.

In Section 4.1, we show using the Callan—Symanzik equations, that the effective dual
Lagrangian Eg. (51) has a massless and a massive phase separated at a critical coupling
t.. Hence a phase transition must exist. This does not by itself suffice to show precisely
what sort of phase transitiothe system undergoes, nor does it allow us to construct the
correct flow diagram of the coupling constants of the problem. It does, however, suffice to
show that two different phases exist. Since the propagator of the problem is logarithmic in
d =2+ 1, a Hohenberg—Mermin—Wagner theorem [36] holds. Under such circumstances,
it is very natural to conjecture that any phase transition in the system, if it exists, must
be of atopological characterin Section 4.2, we construct the renormalization group flow
equations for the problem and show that the phase transition is of a KT-like type.

In Section 5, we consider the connection between the renormalization group functions
obtained directly from the Abelian Higgs model, and the KT phase transition we find in
Section 4. The main point here is that we can use the value of the critical coupling of the
dual effective Lagrangian for the topological defects of the gauge field to fix an a priori
arbitrary constant which enters into evaluating critical exponents fomtrecompact
Abelian Higgs model.

In Section 6, we conclude with a summary and outlook. Appendix A discusses another
type of sine-Gordon theory also exhibiting a KT-like transition in three dimensions. In
Appendix B, we derive the flow equations for the stiffness parameter and the fugacity of the
system defined by Eq. (49), and of which Eq. (51) is a field theory formulation. In Appendix
C, we compute the screened effective potential between charges in the insulating phase of
the 3d In-plasma. In Appendix D, for completeness, we derive the exact equation of state
for ad-dimensional In-plasmeith no short-distance cutofind relate the singularities in
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this plasma to the Callan—Symanzik approach of Section 4. In Appendix E, we consider,
also for completeness, the duality transformation of the AHL model with a Chern—Simons
term added. This case is of interest in the fractional quantum Hall effect [37] and chiral
spin liquids [11].

2. Duality in the Abelian Higgs lattice model

In this section we review the duality approach to the AHL model. Although this is a
well studied topic [4,26,27,38,39], it is worth reviewing it here in order to emphasize the
differences and similarities between the non-compact and compact cases. In particular,
we shall discuss the extent to which these cases exhibit ordinary first- or second-order
phase transitions. The interesting case including a Chern—Simons term will be discussed in
Appendix D.

The essential point is that starting from a non-compact or compact AHL model, the dual
action has the general form

Sdual = %ZhiﬂMpw(ri — I j)hiy —i27 Zh -h;, (16)
i,] i
whereh;,, € (—oo, 0o) andl; are integer dual link variables. In the non-compact dase
satisfy the constraint
V.l;=0, 17
whereas in the compact case, the right-hand side is non-zero
V.l;=0;, (18)

due to monopole charge®; € Z. The symbolV denotes the gradient vector on a simple
cubic lattice of unit spacing with components f; = fi s — fi-

2.1. The non-compact case and the “invertexi¥ transition

In the non-compact case, the partition function of the AHL model is given by

T d@i 00
Z:{HZ:}/[UZ}/[E{dAW] exp(—S), (19)

where the actiors is given by the Villain approximation
B 1
S=5 g(vﬂei — Ajp —27ni)% + o Xi:(v x A;)2. (20)

Using the identity

[e.e]

[o)0]
(—t/2)m%*+ixm _ 2n (=1/21)(x—27n)? 2
e =./— e , 1
) Vo (21)

m=—0oQ n=—oo
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following directly from Poisson’s formula

o0

> Fy= Z /a’xF(x)eZ”’mx (22)
we obtain

/ [HdAW] > 6vm,, oexp{Z[——m i+A;-m; — %Z(V X AI-)Z]},

{m;}
(23)
The Kronecker delta in Eq. (23) is generated by thantegrations. Now we should
integrate out the gauge field;. The easiest way of performing this integration is by the
introduction of an auxiliary fieldh; such that the partition function can be rewritten as

///[HdAwdhmdbm]Zﬁ(V bi)

—00 —00 —00 {M;}
2 . e 2 .
X exp{zi:[—ﬂbi +iA;-(b; =V x h;) — Ehl + 2iM; -bi:“, (24)

where a summation by parts has been done to replacév x A;) by A; - (V x h;), and
we have used the Poisson formula (22) to replace the integer variableg continuum
variablesb;, at the cost of an additional sum over integer varialtlgs We may now
integrate outA; to obtain a delta functiod(b; — V x h;), after which alsab; can be
integrated oub;, yielding

Z= Z/[Hdhm}exp{ Z[—'B(Vxh)z —h?—zmMi-(Vxh,»)“.

M}
- (25)
Summing the last term in the exponent by parts and going over to integer variables
l; =V x M;, we obtain

—Z/[Hdhlﬂ]5V| Oexp{ Z[—(Vxh)Z _h?—zml,-.hi”.

{li} =
(26)
Note that the Kronecker delta constraint above is a direct consequence of our change to
integer-valued variables. H; is integrated out we obtain

Z= ZOZ(SW oexp[ 2728 Y "Ly D(ri —rj)zm}, (27)

ij.u
where the Green functio@ has the large-distance behavior
—+/Belri—r |

D;j—rij)~——"6#—.
(ri J) 47T|I'i—rj|

(28)
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The factorZp in Eq. (27) corresponds to the partition function of a free massive gauge
boson theory.

Eqg. (27) is the dual representation of the partition function for the non-compact AHL
model. Due to the constraim - |; = 0, the integer link$; form closed loops.

By taking the limite — 0 in Eq. (23), we obtain

1
Zle=0=Y_v.m.0 exp(—ﬂ > m?), (29)

{m;}

which is the loop gas representation of tK& model. If, on the other hand, we take
the limit 8 — oo in EqQ. (27), we obtain the loop gas representation of the “frozen
superconductor” [38]

272
Zlpmoo = Zav_li,oexp(—e—z > |5>, (30)

{1}

which has precisely the same form as in Eq. (29). ThereforeXthenodel is equivalent
to the frozen superconductor, provided the Dirac-like rela#®e: 4728 holds. Eq. (27)
is a reformulation of Eq. (19) in terms of the topological defects of the model, which are
identified as integer-valued vortex strings forming closed loops.

If we consider the phase diagram in the€—T)-plane (with7 = 1/8), we can use
Egs. (29) and (30) to establish the critical points on the a%emnd T, corresponding to
T — 0 ande? — 0 limits, respectively. From Eq. (29) we see that wkér> 0 we have
a XY critical point on theT-axis. Eqg. (30) has exactly the same form as Eqg. (29), but
corresponds to th& — 0 limit. The critical point in this limit is thereforef =47?/T,,
with T, being the critical temperature of the€Y transition as described by the Villain
approximation. This is the so-called “inverte&XY transition ( XY) [26]. From the
existence of these two critical points we can establish a phase diagram where there is a
critical line connecting them [26]. The ordered superconducting phase corresponds to the
region O< ¢? < e2.

2.2. The compact case and the absence of an ordinary phase transition

In the compact AHL model the gauge field,, € [, w]. The corresponding Villain
action is now given by

~ B 1
S= E Xi:(vuei - Aiu - 277”1'#)2 + ? Xi:(euvkvaiA - ZjTNiu)za (31)

and in the partition function we should sum over both integgrsand ;. Using the
identity (21) we obtain

-2 ¥ [[11%2] [ [5]ews: @)

{ni} {mi} S =i “n
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where

1 €2
S/=Z[%nl?+ini-(vei—Ai)Jr?m,?Jrimi-(VxA,»)}. (33)

Now we integrate ou#;,, ando; to obtain

1 2
Z 5V~n,-,05me,~,n,- exp|: Z(ﬂn + —ms: >:|

{n;},{m;}

_ Zexp[—Z(%(V x M) + %m?ﬂ
_Z/[Hdh‘“]eXp{ Z:|:—(V><h)2 —hl~2—2ni|i~hi:|}, (34)

{liy =

where from the second to the third line we used the Poisson formula. Note the difference

between Eq. (34) and its non-compact counterpart Eq. (26). In the latter there is a

Kronecker delta constrair¥ - |I; = 0 while in the former there is no such a constraint.

As we shall see, this difference has important consequences. We proceed by integrating
outh;,, thus obtaining the partition function

Z:ZoZGXp[—ZﬂZﬂZliuDuu(ri _rj)ljv:|» (35)
{:} )
where
v,V
Dyy(ri—r)) = <auu—#>D(ri—r1), (36)
(=V2+Be?)D(r; — 1)) = &) (37)
Due to the constrairi¥ - |; = 0, the term containin§ .V, in Eg. (36) does not contribute

in the non-compact case, and Eq. (27) results. In the compact case, on the oth& Hand,

is completely unconstrained and can take any integer value. Thus, in order to bring out the
differences and similarities between Egs. (35) and (27), and also to identify the character
of the topological defects of Eq. (31) appearing in Eq. (35), we can introduce an auxiliary

integer-valued scalar fiel@; such thatv - I; = Q; and rewrite the partition function (35)
as
Z=27Z0y Y Svi.0 exp[—anﬁ > D@ —r1)) (zi#zjﬂ 25 — 0 Q1>]. (38)
{l:} {Qi} )

Whereas the non-compact theory has only closed vortex lines as topological defects, the
compact case contains also open lines with integer-valued monopoles of ¢haag¢he
ends.

In the limit 8 — 0, Eq. (38), the vortex loops are frozen out and (38) is the dual
representation of three-dimensional lattice compact QED [8] describing a Coulomb gas
of monopoles in three dimensions. This is equivalent to a sine-Gordon model which is
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always massive in three dimensions, and leads to the well-known result that compact QED
in three dimensions has permanent confinement of electric charges, since the monopole gas
will always be in the plasma phase. As shown by Polyakov [8], we obtain as a consequence
that the Wilson loop satisfies the area law.

As in the non-compact case, the linak — 0 corresponds to the Villain form of the
XY model. Thus, if we consider again a phase diagram in@her)-plane we have that
a critical point atT, exists on theT-axis. However, as we shall now shatliere is no
I XY transition in the compact cas@o see this, let us take the “frozen” lint— oo in
Eq. (38). The result is

2
2=2% Y vio exp(_zeiz D;)_ (39)

{li} {Qi}
The sum overQ; is trivially done,Z{Qi} 8v.;, 0; = 1 after which there is no constraint.

We are left with a trivial sum ovel; giving Jacobiz?-functionsﬁg(o,e‘Z”z/ez). Since

this function is analytic, there is no phase transition on d¢haxis, in contrast to the
non-compact case. Thus, at first sight it seems that there is no phase transition in the
compact AHL model with matter fields in the fundamental representation, except for the
XY transition on thel'-axis. That is, there appears to be no ordinary second- or first-order
phase transition in the interior of the phase diagram of this model. However, in the next
sections we shall derive an effective Lagrangian for the compact Abelian Higgs model
in 2 + 1 dimensions, which will be shown to nevertheless exhibit a topological phase
transition of the KT type.

3. Effective Lagrangian

This section is one of the central parts of the paper in which we shall derive an effective
field theory for the compact Abelian Higgs modelir= 2+ 1 dimensions. More precisely,
we derive a continuum action, Eq. (51) below, for the dual model of the system, obtained
after matter fields have been integrated out leaving an effective theory for the monopoles of
the problem. It will turn out that the effective dual Lagrangian for ¢de- 1)-dimensional
compact Abelian Higgs model, is described by a theory which has many similarities to
the sine-Gordon theory of Polyakov’s pure compact electrodynamids=n2 + 1 [8].
The crucial difference lies in the fact that the gradient term in the dual theory receives an
anomalous dimension after the matter-fields have been integrated out. It is the presence
of this anomalous gradient term induced by matter-field fluctuations which eventually will
lead to the possibility of a deconfinement transitiod ia 2+ 1, in contrast to the classical
Polyakov result of permanent confinement pertaining to the pure gauge theory.

3.1. Three-dimensional compact QED
Let us consider the Euclidean Maxwell action in three dimensions:

1
s= / @5 1R (40)
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whereF,, = d,a, — d,a,. In order to account for monopoles, we have to subtract from
F,,, the gauge field of monopoles [35]

FY(x) =2mepndi(x: L), (41)

wheres; (x; L) is a delta function on line&. The dual field strength oﬁM = e,wAF%/Z
has divergences at the end points of the lihesay [34,35]

0 F) =2mn(x)=2m)" 0i83(x — xy). (42)
i
where Q; may be arbitrary are integers counting the number of lines ending dthe
shape of the lines is physically irrelevant. They are the Dirac strings of the monopoles
at x;. Under shape deformations’% undergoes the monopole gauge transformations

FM — FM 49, AM — 5, A% which leaveF invariant,
An ordinary gauge transformation can be used to bﬁﬁ@(x) to the form

1
FM Z”EuvkaA/d3y ———n(y), (43)
4 |x — y|

whose dual field strength is

~ 1
FM =279, | d3y ——— . 44
= —2r [ &y ) (44)
By substitutingF,,, by F,, — F,% in Eq. (40), we obtain the action
3 2 3 3
S= /a’ 462FW /a’ /d yn(x)4 | 3 n(y). (45)

The action (45) corresponds to the continuum counterpart gf theO limit of the lattice

action in Eq. (38) describing a Coulomb gas of monopoles. This is known to be equivalent
to a sine-Gordon action as the one in Eq. (15). In three dimensions this theory is always
massive and it was shown by Polyakov [8] that this implies an area law for the Wilson loop.

Thus, electric test charges in three-dimensional compact QED are permanently confined.

3.2. Anomalous three-dimensional compact QED

When bosonic matter fields are present, the topological defects of the theory are vortex
loops and vortex lines having monopoles with opposite charges at the ends. The vortex
lines connecting the monopoles have a line tensiavhich vanishes as the scalar bosons
become massless. Thus, when the vortex lines become tensionless, we are left with a gas of
monopoles. However, the anomalous scaling of the gauge field due to matter fields alters
the interaction between pair of monopoles with respect to the ordinary Coulomb interaction
case. This will lead us to thenomalousCoulomb gas to be described below.

From the exact behavior of the critical gauge field propagator we have discussed in
Section 1.2, we can write an effective quadratin-localLagrangian for the gauge field:
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K 1
EA = ZF#UWFMV
K ~ 1

=5 Pz o
where the constank’ = K (., g«) and in the second line of Eq. (46) we have rewritten
L4 in terms of the dual field strength. Specializing to three dimensions, we FHave
euwrFua/2 andng = 1. After introducing an auxiliary vector field,,, we obtain the
equivalent Lagrangian:

1 — ~
In order to take into account the monopoles, we use the expressioﬁfas given in

Eq. (44). By introducing a new field through = d,,¢ and using integration by parts, we
obtain

1
L= ﬁ(za,ﬂp)\/—az () +i27rn(x)p(x). (48)
Integrating outp and using Eq. (42), we obtain the monopole action
Smon=27°K Y 0i Q;G (xi — x)), (49)
iJ
where
d3k eik-x
G)= | ——. 50
=] G ke 0

Thus, instead of having a standard three-dimensional Coulomb gas with interaction
potentials }|x; — x;|, we have a three-dimensional gas of point particles of charge
Q; = +| Q| (with overall charge-neutrality, see Section 4uith logarithmic interactions
much akin to the situation one has in two dimensions. We emphasize, once more, that this
is a result of integrating out matter-field fluctuations and considering the effecitiofl
such fluctuations on the gauge-field propagator, which is seen to acquire an anomalous
scaling dimension from these fluctuations, cf. Eq. (46). It therefore spkusible at the
very least, that one should consider the possibility of having a KT-transition of unbinding
of monopole—antimonopole pairs, but now in three dimensions. If this turns out to be the
case, then the confinement—deconfinement transition ii2hel)-dimensional compact
Abelian Higgs model with matter fields in the fundamental representation, would be of a
topologicalnature with no local order parameter, consistent with previous work [5,17].

We are now ready to state one of the main results of this paper. The system defined
by Egs. (46) and (49) can be brought into the form of a sine-Gordon theory, as in the
two-dimensional casd&ut now with an anomalous propagatevhose action is

1
Sasc = o / d®x [w(_az)S/zw — 2zpC0sp], (51)

wherer = 472K and zo = 47?K ¢, with ¢ being the fugacity of the Coulomb gas of
monopoles. In Eq. (51)asc refers to the action of what we name the anomalous sine-
Gordon (ASG) theory, since the cubic power of the propagator arises from the anomalous
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scaling dimension of the gauge field. The manner in which the coupling constatdrs
in Eq. (51) shows that it regulates the stiffness of the phasedieRincer o« K, we shall
in following sections refer t& as a stiffness parameter.

4. Renormalization group analysis of the anomalous sine-Gordon model

This section is another central part of the paper. Here, we shall consider an exact
scaling argument applied to Eq. (51). The scaling argument will suffice to demonstrate that
this model has a phase transition. We emphasize this as an important point, since recent
numerical studies [6] have provided strong support for the picture proposed in Ref. [20] that
matter-field coupled to compabt(1) gauge fields inl = 2 + 1 lead to a recombination of
magnetic monopoles into dipoles. For the dual electric charges, this leads to a destruction of
permanent confinement, and in Ref. [20] it was argued that this happened, not through any
ordinary first- or second-order phase transition, but rather through a KT-like transition. The
authors of Ref. [6] were looking for more conventional phase transitions, concluding that
none were found, consistent with the results of Ref. [20]. Having established the existence
of a phase transition, we then go on to argue that it indeed is of a KT-like type. The details
are as follows.

4.1. Callan—Symanzik renormalization group analysis
Let us consider the renormalization of the anomalous sine-Gordon action defined by

Eqg. (51). The infrared divergence is easily studied by considering the cubic propagator
G(p) =1/|p|® in real space. To this end, we introduce an infrared cytadf follows

3, ipx ;
Ipl>n
where c¢{}) is the cosine integral
o0
ci() = — / oSV . (53)
] v
As i — 0 we have
Gy(0) = 55 [1— y — In(ulx)] + OGo), (54)

272

where y is the Euler—-Mascheroni constant. For= 0, on the other handG ,(x) is
ultraviolet divergent and becomes

G,.(0)= %In(%) + constt O(%) (55)

whereA is an ultraviolet cutoff.
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Let us consider now the correlation function

n
<l_[ einfﬂ(Xj)>

j=1
1

1
=7 / Dy exp{—z / d3x [ f A3y p(x)G M x = y)o(y) — J(x)co(x)} } (56)

where J(x) = iZj q;j8(x — x;) and Zg is the above functional integral far = 0.
Integrating outp, we obtain

L 1
< l_[ equ“’("f)> = eXp[—é Z Gpu(xi — XJ)%'QJ]. (57)
i,J

j=1
Using Egs. (54) and (55), we obtain

Z Gu(xi —xj)qiq;

iJj

1 2
= _WKZ%) np+y -1 = g?InA+> giq;In|x; —qu
i i i#]
+ O(). (58)

Thus, asu — 0 the only non-zero contributions to (57) satisfy the neutrality condition for

the charge)_; gi = 0. The expansion in Eq. (58) is essentially the same as id the?

case, except for the/2r 2 factor instead of a 227, and minor differences in the constants.
The ultraviolet divergence of the phase fieldx) = ¢/%¢™) is removed by introducing

a wave function renormalizatian such that

wi(x) =& %u; r (), (59)

with u; g being the renormalized counterpartgfand

A\ 92/ @)
&= (—) . (60)
"

Therefore, if we specialize to the case where- £|¢| for all i, the renormalized two-point
correlation function is given by

(ui,R(x)uZR(O)> O(x_qz/(Zﬂz). (61)

It follows that the dimension af; is justg?/(47?).

Due to the above analysis it is now easy to see hgvenormalizes in the ASG model.
Note that the model is super-renormalizable, just as the ordinary sine-Gordon model. Thus,
the renormalization ofg is achieved by taking into account only tadpole contractions of
cosp. We obtain

0= Z;l/zz, (62)
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where
AN /@12
Zy,= (-) . (63)
"
Furthermore, we have the RG function
dInZ, t
= =—. 64
o =15 52 (64)

The renormalizedn-point correlation functionG®™ satisfies the following Callan—
Symanzik equation

0 n 1 0
— 4 =0y + onpz— |G (pi,1,2) =0. 65
(“au+2"¢+2"‘”zaz>g (pist,2) (65)
Dimensional analysis, on the other hand, gives
[ 9 a d
p—+3z—+pi— + 30— 1 |G (p;,1,2) =0, (66)
| ou 0z api
where 31— n) represents the mass dimensiorgéf . Using Eq. (66) in (65), we obtain
9 n 1 0
P 4 3m—1)— = 3—ny )z—|G"™ (pi.t.2) =0. 67
Piop +3(n -1 2"“’+( Zma)zaz]g (pis1,2) (67)

For p = 0 we have

oG 0,1,
6 nq))z% — [6(1—n) + 0, ]G (0. 1.2), (68)

which gives the following scaling relation for small

G0, 1, z) ~ £ 16A=mnm,1/E=ny). (69)
Also, it is clear from Eq. (67) that the scaling behavior of the mass scale is

My ~ 72/ (6=np) | (70)

The momentum space behavior 6f2 is ~ 1/p3 " and thereforeG® becomes
singular in the ultraviolet if 3- n, < 0. This happens for= 672, Fort = 672 the mass
scale behaves like?/2. This is an important difference between the usual sine-Gordon
model in two dimensions and the CPSG model in three dimensions. The mass scale in the
usual two-dimensional sine-Gordon theory behaves lineartyithen the singular short-
distance behavior is reached. There, this behavior is important for the fermionization of the
model, which establishes the equivalence between the sine-Gordon model and the Thirring
model in two dimensions [40].

From Egs. (69) and (70) we see th@lt) (0, ¢, z) andm, vanish fors = 1. = 1272.
The interpretation of this result closely parallels the one in the usual sine-Gordon model.
For instance, it tells us that at= 7. the operator cag is marginal, and means that
further renormalizations are necessary at z.. The situation exactly parallels the two-
dimensional case where a thorough analysis was carried out by Amit et al. [41]>Fer
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the anomalous sine-Gordon model Eqg. (51) is no longer renormalizable. These results
follow from the observation that the dimension of the operatorcissjust, /2. Thus,

fd3x cosy has dimensiom, /2 — 3, which means that has an effective dimension of

3 — n,/2. Therefore, the interaction is relevant f@y < 6 or ¢ < ¢, thus generating a
mass. It is marginal ify, = 6 and irrelevant for, > 6, ort > t., meaning that the theory

is massless. Hence, there is a phase where the field has a mass and another one where it is
massless, implying the existence of a genuine phase transition in the model Eq. (51). This
follows from the fact that a mass changing from a finite value to zero on a finite interval
of coupling constants must do so in a non-analytic fashion. This conclusion is one of the
main results of this paper. Note, however, that since the above discussion is basically a spin
wave analysis and suffices to show that a phase transition exists, it does not elucidate the
characterof the phase transition. In order to understand the phase transition we have to
account for the topological defects in the theory [42], and this is the purpose of the next
subsection.

4.2. Kosterlitz—Thouless-like recursion relations for the anomalous sine-Gordon model

The above discussion strongly suggests the existence of a phase transition in the model
defined by Eqg. (51). However, as we have already mentioned, the cosine interaction
becomes marginal at=7.. This means that it is not true thgtz) = O for all values
of t. The analysis of the previous subsection is neglecting the monopole fluctuations which
would lead to a renormalization af This situation is well known for the logarithmic
interaction in two dimensions and leads to the KT-recursion relations [42,43]. Similar
arguments can be used in our case.

Let us define the dimensionless coupling: z/u2. Using Eq. (62) we obtain the flow
equation

ay t
—=(-——-3}y. 71
i = (-3 )
The above equation can be derived in another way, which is useful for the purposes of

this subsection. Let us consider again the monopole action in Eq. (49). We can write the
partition function of the monopoles as

ZmonZZeXp[—Zﬂ’zK / d3x / d3x’n(x)G(x—X’)n(X’)], (72)

tn()} |xi|>a |x/|>a

wherea is a short distance cutoff. Using Egs. (54) and (55), we rewrite the above in the
following form

Zmon=Z/eXp|:—27T2K / d3x / d3x' n(x)G(x — x)n(x’)

tn(0)} [xi|>a |x/|>a

+1Inyo / d3xn2(x):|, (73)

|xi|>a
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where

Gy = — i (74)
22 a
The prime on the summation sign in Eq. (73) indicates that the charge neutrality
constraint implied by the large distance limit is enforced. If we assume gmallich

that configurations with zero or one pair of monopoles are dominant, we obtain

1
~ 2 3 3./
lxi|>a |x/|>a
If we change the short-distance cutoff in the integrals:as ab, we see that the form

of Eq. (75) is unchanged providedandx’ are rescaled in such a way as to restore the
previous integration region ang is changed according

y = yob> K. (76)
If we definel = In b, we obtain

dy

— =B —-K)y. 77

i ( )y (77)

Recalling thatr = 472K, we see that Eq. (77) is precisely Eq. (71), except for the
sign, which is due to differences in the cutoff procedure. Eqg. (77) is analogous to the
corresponding flow equation for the fugacity in the ordinary KT transition [42,43]. In that
case we find insteadly/d! = (2 — nw K)y. The factor 2 in the usual KT case reflects the
dimensionality. In our case we have a factor 3 instead (and als&juather thanr K).

It is also possible to derive recursion relations involving the fugacity of the problem in
arbitrary dimensions to lowest orders in the fugacity for dhdimensional Coulomb gas
with a power law interaction

L2 [
vor= o () -1 7

This problem was considered by Kosterlitz [44], who also obtained the flow of the stiffness.
The resultis

dK—1
=y - @K, (79)
% =[d - 272 f(@K]y, (80)
where f(d) = (d — 2)T[(d — 2)/2]/(4m)?/2. For d = 2 this reduces to the KT flow
equations.

However, we see that faf = 3 the recursion relations (79) and (80) do not have a fixed
point and therefore no phase transition happens in this case. In case of Eq. (49), on the
other hand, we have an anomalous Coulomb gas whose potential is logarithmic in three
dimensions. It is thus plausible to conjecture that we would have a flow equation for the
stiffness similar to the& = 2 KT case. As we shall see, this is indeed the case.
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For d = 3, EqQ. (80) coincides with our Eqg. (77). However, since the potentials are
different we should in fact not expect the same recursion relation for the fugacity. This
suggests that the “spin wave” picture of Section 4.1 is not giving the correct flow for the
fugacity. Note that forl = 2 discussed in [41}he spin wave analysis does in fact give the
correct flow for the fugacitysee Appendix B). For a logarithmic potentialdn= 3 there
are some subtleties.

Let us consider a problem with a potential like

Vo= —LET2) [(mfdw - 1]. (81)

 2u(@myder(Fga) [\ a

Here we have taken into account the effect of anomalous scaling due to matter-field
fluctuations in our original problem. A logarithmic interaction corresponds to the case
d =3 andn, = 1, which is the case which eventually will be relevant for us. Strictly
speaking, the duality scenario in Section 3 is valid only at 3. However, as far as the
scaling behavior is concerned, it is useful to continue to the whole dimension interval
(2,4), while keeping the same-tensors. This dimensional continuation procedure is
reminiscent of the one considered in some RG studies of Chern—Simons theories [45].
The recursion relations we obtain are given by (see Appendix B)

dk—1
—— =y Q-d+n)K,
dy -
—=ld-n —27%f@K]y, (82)
wheren, is theanomalous dimensiaof the fugacity which is given by
_na__4-d

and

(d —2—na)T (=514
214 (4m)A20 (1414 /2)

Hence, for the case oflagarithmic interaction in three dimensionshich corresponds to

na = 1, the recursion relations for the fugacity and the stiffness have a similar structure
as the standard Kosterlitz—Thouless recursion relations one obtains in the two-dimensional
case [42,43]. The main difference is in the recursion relation for the fugacity, which has
an anomalous dimensiopy = 1/2. Note that the second term in the equationKor'(1),

which prevents fixed points of Eqgs. (82) from being obtained, is absent for a logarithmic
potential in any dimension.

Whenn4 = 0, which corresponds to neglecting the effect of matter fields in the original
gauge theory, we havg, = 0. Our recursion relations then reduce to the ones given
in Egs. (79) and (80) obtained in [44] by a very different method than we employ in
Appendix B. Moreover, we have also derived Egs. (82) along a different route than that
used in Appendix B, namely by the method employed in [43]. This constitutes an important
consistency check on our calculations. For the case whgte 0, the absence of a phase

fd) = (84)
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transition reflects the permanent confinement of electric test charges in the usual three-
dimensional compact QED [8].

We see that the flow equation for the fugacity obtained in Eq. (82) does not agree with
the result of our “spin-wave” theory, which leads to Eq. (71) or, equivalently, Eq. (77).
The reason for this is that an anomalous scaling dimensiofor the fugacity is induced
by the renormalization of the stiffnedsdeed, in Appendix B we show that a potential
like (78) leads to an additional scaling transformation ineffectivestiffness of the form
K(l) — e@4+t1)lg (1), If n4 # 0, this is compensated in theffectivefugacity by the
scaling transformationy(/) — ¢!y (l). In the case of the Coulomb gas, where= 0,
the spin-wave analysis gives the right answer, Eq. (80), as can easily be seen by working out
a Callan—Symanzik RG analysis in the sine-Gordon theory (15) for arbitrary dimensions.
Thus, deviations from an ordinary type of Coulomb potentialidimensions lead to an
anomalous dimension to the fugacity, Eq. (83), which cannot be obtained by spin-wave
theory.

The important point to note here is that a fixed point of the recursion relations Eqgs. (82)
for d = 3 exists for the stiffness and fugacity in the limit of zero fugacity, so the
problem scales to the weak coupling limit. Hence, the problem is selfconsistently found
to be amenable to a KT-type of phenomenological RG analysis. It is not necessary to
calculate to higher-order i to determine the fixed point. This demonstrates that the
phase transition established above is of the KT type. This has some resemblance with the
results of a rather remarkable paper by Amit et al. [46], which also finds a KT transition
in a three-dimensional Coulomb gas with logarithmic interaction between point charges
(see Appendix A). In their case, the logarithmic interaction between the point charges
in three dimensions did not have its origin in anomalous scaling dynamically generated
by matter-field fluctuations, but originated in anisotropic higher-order derivative terms in
an underlying field theory that were put in by hand. This anisotropy ultimately induces
dimensional reduction.

In four dimensions, we havey = 0 and extrapolating the above results it is clear that
no fixed points of the above recursion relations can be found. Indeed, the above analysis
no longer applies and no KT topological phase-transition occurs. This is so because by
dualizing a compact Maxwell Lagrangian in four dimensions, we obtain a non-compact
Abelian Higgs model [38], which cannot be brought onto the form of a Coulomb gas. The
transition in this case is known to be of more conventional second- or first-order type [5].

Finally, we note that in three dimensions there is a universal jump in the stiffness
parameter at the transition, analogous to what is known in the 2d case [47]. In units of
Egs. (82), this jump is determined by dimensionality and the anomalous scaling of the

fugacity,

. d —ny

Kr=Ilim K(I) = ————. 85
g = lim @) 2227 (d) (85)

5. RG functions of Abelian Higgsmodel and KT transition

In this section we show how the RG functions and fixed points in the Abelian Higgs
model are related to the KT-like transition described in the previous section. In particular,
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we shall use the critical coupling to fix an a priori arbitrary constant that enters into

the computation of the critical exponents for the Abelian Higgs model. This in our view
improves on a scheme previously used [21], where a corresponding constant was fixed by
appealing to numerical results for the value of the Ginzburg—Landau parameteich
separates first- from second-order behabibr.our approach, the parameter (denoted
below) is fixed from our theory of the critical behavior of the compact case, which we have
argued in the introduction to be the same as for the non-compact Abelian Higgs model at
infinite baregauge coupling. Before doing this, however, a few preliminary remarks are in
order.

The Abelian Higgs model is manifestly a two-scale theory. Indeed, the gauge field
becomes massive due to the Higgs mechanism. Thus, in the ordered phase we are left with
two mass scales, the Higgs massand the gauge field mags,. From these two mass
scales we obtain the Ginzburg parametet m/m 4. Due to the existence of two mass
scales in the problem, we have very distinct situations depending on whetket or
k > 1. Fork « 1 vortex lines, which are the topological defects of the matter field, attract
each other. This corresponds to a type | regime, whilecfigr 1 we have repulsive forces
between vortex lines, which corresponds to the type Il regime. This two-scale behavior
survives in the disordered phase, though in this ease- 0.

We shall consider the calculation of RG functions for the massless theory, but using two
renormalization scales [21]. In order to see the influence of the two mass scales appearing
in the ordered phase, on the massless theory, we define the dimensionful couplings at
different renormalization points, at .« ande? at ji. Let us define the ratie = u/fi. By
rewriting ¢2(j1) in terms ofy., we obtain the one-loog-functions for any fixed dimension
d € (2,4] and an order parameter wiffi/2 complex components [50]

Bu = (4—d)[—a +rNA@)?], (86)
N+8 , 5
Be=(4— d){—g + B(d) [—Z(d —Dag + — &t 2(d — Da ] } (87)
where

_ T(—d/Tr?d/2)

Ald) =— (4m)4/21 (d) ’ (88)
_ 2 _

B@d) = rR—d/2rd/2-1 (89)

(4m)4/20(d — 2)

From Eq. (86) we see thatty = r(4—d)N A(d)«. By consideringl/ = 4— ¢ and expanding
for small e, we recover the well-knowa-expansion result [51] if we take= 1. In our
fixed dimension approach is an arbitrary parameter that is usually fixed by imposing

1 In an early Monte Carlo simulation, a tricritical valug; = 0.4/+/2 was found, [48]. This is the value used
in the ad hoc scheme of Ref. [21]. More recently, a large-scale Monte Carlo simulation improved on this value,
finding «yj = (0.76 & 0.04)/+/2, [49]. This is in surprisingly good agreement with an early analytical result
ki = 0.798/+/2, see Ref. [27]. Using this improved value fay; in the -functions of Ref. [21], the critical
exponentv obtained would be = 0.53. This is quite far from the correcZBXY valuevyy = 0.67, as well as
from the D XY one-loop value = 0.625.
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additional conditions [21]. Whed = 3 andN = 2 we have the fixed point, (r) = 16/r.

In the context of the compact Abelian Higgs model we fix the value by demanding
thatK. should correspond tora= r., with K = 1/«, at one-loop. If we use the spin-wave
estimatek,. = 3 (which corresponds tg = 1272), we obtain then that. = 48 and thus

a, = 1/3. On the other hand, if we use the estimate from our KT-like recursion relations,
we haveK,. = 5/2 and therefore,, = 2/5. In order to check the quality of these matchings,
we compute the critical exponents of the three-dimensional Abelian Higgs madiet B

The critical exponent is given by the fixed point value of the RG function

1

Vg = , 90
¢ 2+ Ym ( )
where
alnZz,,
= — Yo, 91
Ym=H—g Yo (91)
with Z,, being the mass renormalization and
aln Z¢
= ) 92
Yo =H—g (92)

At the fixed pointyy gives the value of the critical exponentAt one-loop order, we have

x—g o
When K, = 3, the fixed point for the coupling which corresponds to infrared stability
is given by g, = 2(7 + 24/11)/15. Therefore, we obtaim ~ 0.615 andy = —1/12.
Using K. = 5/2, we obtaing, = 4(6 + +/31)/25. The critical exponents in this case are
v~ 0.61 andy = —1/10. Both estimates are close to the one-loop value okthenodel,
vxy ~ 0.625. From duality arguments we expect indeel 1 value for the exponent
[52].

Ym =

6. Summary and discussion

In this paper, we have considered the Abelian Higgs modekii 2limensions both for
the non-compact and compact cases, with matter fields in the fundamental representation.
We have performed a duality lattice transformation on these models, emphasizing the
features that set them apart as well as those they have in common. A major difference
lies in the fact that in the dual formulation, the hon-compact case has stringent constraints
V -1; = 0 imposed on the topological currents of the system, while in the compact case
V - |; can take any integer value, i.e., the currents are unconstréonéde case where
the matter field is in the fundamental representatibhis effectively makes the dual non-
compact case a much more strongly interacting system of topological currents, and this
is why phase transitions are more easily brought out compared to the compact case. As a
result, we have seen that there is one limit of the LAH model where the non-compact case
exhibits thel XY transition, while the compact case is an exactly soluble discrete Gaussian
model with apparently no phase transition.
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A major part of the paper (Sections 3 and 4) has been devoted to establishing that,
despite the absence of any phase transitions with a local order parameter in the compact
case, a topological phase transition nevertheless is found in the interior of the phase
diagram of the model. A key ingredient is the renormalization of the gauge-field propagator
of the problem due to critical matter field fluctuations, Eq. (46). With no matter fields
present, the topological defects of the gauge field, which are monopole configurations,
interact with a YR potential ind = 3. In the presence of matter fields, taking into
account their critical fluctuations, the resultant effective gauge theory may be described
as an overall neutral plasma of charges that interact with a logarithmic potendiat i),

Eq. (49). Afield-theoretical formulation of the action given in Eq. (49) yieldamomalous
sine-Gordon (ASG) model, Eq. (51). A renormalization group analysis of this model based
on the Callan—Symanzik equations shows that the theory is massive below a critical value
of the coupling constant. This by itself suffices to conclude that a phase transition exists.
We then go on to show that the problem is amenable to an analysis based on KT-like
recursion relations, Egs. (82), derived fad-@imensional gas of point charges interacting
with a pair-potential which in a certain limit is logarithmic. In this limit, the recursion
relations we derive for the stiffness and fugacity of the problem reduce to equations which
are similar in structure to the well-known Kosterlitz—Thouless recursion relations obtained
for the two-dimensional Coulomb gas, but with a modified equation for the fugacity due
to an induced anomalous scaling of it. This anomalous scaling in the fugacity accounts
for deviations from the ordinary Coulomb gas casel/idimensions. The change in the
equation for the fugacity shows that the stiffness and the fugacity of the problem mutually
influence each other under renormalization in a manner which is different from the case of
a logarithmic pair-interaction id = 2. As a consequence of this, the universal jump in the
stiffness at the transition is then given, in appropriate units, by the dimensionality of the
system and the anomalous scaling of the fugacity, Eq. (85).

In Section 5, we have seen that the deconfinement phase transition we find in the
compact case, with a critical coupling, allows us to fix a parameter appearing in
the evaluation of the critical exponents of the non-compact Abelian Higgs model. This
represents an improvement on previous schemes to fix this parameter.

We close with a few remarks on unsolved problems. When only fermionic fields are
coupled to the massless gauge field (spinor @Ehen we again obtain &-function for
the renormalized gauge coupling as given in Eq. (4) )huin the equation now depends
only on one coupling constant, not two as in the bosonic case. Then we do not have the
freedom to tune parameters of the model to drive it through a phase transition of the type
described in Section 4. The analysis of Section 4 may be carried through as before, but
the point is that the fixed point coupling,= «, does not depend on any second coupling
constantg, this simply does not appear in the theory. Instegddepends on the number
of fermion flavoursV only. In principle there thus exists a critical valiye= N, where the
compact version of the model with fermionic matter, also goes through a deconfinement
transition. The confining phase correspondd’te: N,. It is highly controversial what this
critical value is. A simple one-loop renormalization group calculation gNgs- 24 [20]
in agreement with an earlier result by loffe and Larkin obtained by a quite different method
[31]. However, we may in fact expect that the actual value is much smaller than this.
Marston has calculated the same number using one-instanton action and/fiad8.9
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[53]. The important point here is that whatever the precise valu€.d§, the interaction
between the monopoles is always logarithmic.

Also, in the fermionic case there is a subtlety in that another type of instability, absent
in the bosonic case, could intervene to destroy the deconfinement transition. Fermions can
in principle undergo a spontaneous chiral symmetry breakin®e [54]. This happens
when the number of fermion flavours is less than some critical valgigsay. This means
that a fermion mass is dynamically generated o Nch. The precise value oig is
presently also a matter of debate. One estimate from the Schwinger—Dyson equation gives
Neh = 32/72 [55]. This result is confirmed by Monte Carlo simulations findivig, ~ 3.5
[56]. Another analytic calculation givedcn, = 128/372 [57]. A recent estimate based
on a new constraint on strongly interacting systems givgs< 3/2 [58]. This is quite
consistent with the most recent numerical results we are aware of [59], where no signs
of SxySB is found forN > 2. Thus, there is no consensus on the precise valugé:qf
The calculation ofN. assumes that the fermions are massless. Thug, i& 24 as in
Refs. [20,31], then a deconfinement transition will take place since the fermion mass is
generated at a much lower value &f With massive fermions present our anomalous
three-dimensional compact QED scenario does not apply because the Maxwell term does
not become irrelevant anymore. In such a situation the results of Polyakov [8] apply and
there is permanent confinement of electric test charges. This would be the case for the value
N, = 0.9 obtained by Marston [53], which lies below all estimatesvef. In this case the
deconfinement transition does not happen.

Physically, S SB in spinor QER has important consequences in the physics of High-
cuprates. As we mentioned in the introduction, spinor QElith a compact gauge field
emerges as a possible low energy description of the fluctuations around the flux phase in the
guantum Heisenberg antiferromagnet [1]. In this context, the dynamical mass generation
is associated with the spin density wave (SDW) instability. Thus, gauge field fluctuations
could in principle restore the Néel state. The physical number of fermion components in
this case iV = 2. Spinor QER also emerges by considering the low energy physics of
the d-wave superconducting state in the pseudogap phase of the'higiprates [60]. In
this case, however, the gauge field is non-compact and there is an inherent anisotropy in
the Lagrangian. There alsoxSB is responsible for the onset of SDW as half-filling is
approached [61]. The physical number of fermion components in this case ishagaih
Therefore, in these theories it is essential tNat > 2. If the most recent estimate for
Nch is correct [58], this could have serious implications for the validity of the different
spinor QEL} scenarios discussed above. In the case of the spinos@E&Zription of the
pseudogap phase, the inherent anisotropy could possibly affect the valigg éfowever,
results presented thus far indicate that at least weak anisotropy will not Affgobtained
in the isotropic case [62]. Moreover, when studying effective theories of undopedhigh-
cuprates, we have argued in the introduction that the relevant theory to study is fermions
coupled to compadt/ (1) gauge-fields. Hence, it is of importance to revisit the problem
of how monopoles affects &B [63]. Finally, we note that a recent provocative paper
by Wen [64] states that there exists a principleqofantum orderwhich may prevent
fermions from dynamically acquiring a mass even in the presence of strong coupling to
gauge fields. Hence, it seems to us that a renewed effort in numerical computatiyps of
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in (24 1)-dimensional gauge theories coupled to fermionic matter, including the effects of
compactness and anisotropy, would be very timely.
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Appendix A. KT-liketransition in threedimensionsin an anisotropic sine-Gordon
theory

While considering a class of globally symmetric self-ddal models in theN — oo
limit, Amit et al. [46] arrived at the following anisotropic three-dimensional sine-Gordon
action containing higher derivatives:

SANISGZ/dsx[z—Z.(a||2¢)2+ 2—12(3z€0)2—1<305€0:|7 (A1)
Wherea”2 =92+ Byz. As pointed out in Ref. [46], the above model has a KT transition

in three dimensions. Indeed, it is easy to see that the propagator is logarithmic at large
distances. Note, however, that anisotropy and the higher order derivatives in the parallel
direction are essential, and the system effectively shows two-dimensional behavior by
dimensional reduction. This is in contrast with our genuinely three-dimensional KT-like
scenario.

Appendix B. KT-likerecursion relations

In this appendix we derive to lowest order in the fugacity the recursion relations for
the scale-dependent stiffness paramété@n and fugacityy (/) given in Eqgs. (82) for @&-
dimensional plasma where the bare pair-potential is given by Eq. (81), which reduces to a
logarithmic potential whed = 3. The starting point will be a low-density approximation
for a dielectric constant of this system. We closely follow a method for doing this
introduced in [65]. Introducing the solid angledndimensions2; = 279/2/T'(d/2) and
the density of dipoles in the fluid by,, a low-density approximation for the dielectric
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constant is given by
e=1+4+n4840, (B.1)

wherea here denotes the polarizability of the medium, a standard linear-response analysis
givesa = 42K (s?) /d and(s?) is the mean square of the dipole moment in the system. To
compute this, we need the low-density limit of the pair-distribution functidgr) of the
plasma, which is readily obtained from the grand canonical partition fun&iexpanded

to second order in the bare fugacityand replacing the thermal de Broglie wavelength by

a short-distance cutofp, as follows

CZ A7 2
nt(r)= =g kv, (B.2)
"o
In this way, we may now go on to expressaale-dependetielectric constant as follows
422K |
e(r)=1+ an/ds s nE(s). (B.3)

ro
Note however, that in Eqg. (B.3), a mean-field approximation is understood to be used
by replacing the bare potential in n*(r) by aneffective potential/ (). This effective
screened potential must be selfconsistently determined by demanding that it gives rise to
an electric field in the problem given by
oU f@)

—=E(r)=

r sr)rie” (B.4)

wherep =2 —d + n4 and f(d) is defined in Eq. (84). Such a mean-field procedure has
been consistently used with success in the 2d case, and the origin of the success lies in the
long range of the In-interaction. In higher dimensions, such a procedure will work even
better since the logarithmic potential is felt over even longer distances due to extra volume
factors.

Let us introduce a logarithmic length scéle In(r/ro) along with the new variables

__e(roexpl)
T(l) - 47T2K E)
x() =47’ K U (roexpl). (B.5)

Here,x (1) is determined selfconsistently by integrating the effective field). Then we
get from Eqgs. (B.3) and (B.4)

]

Q 2

t(l) =7(0) + ‘ff:z / dv eld+2v=xv), (B.6)
dry

and

P pv
rpe

@) (B.7)

l
x<l>:x(0>+f<d>fdv
0
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From Egs. (B.6) and (B.7), we may derive coupled renormalization group equations for
7(l) andx(l). However, in order to obtain equations that have a form more similar to
equations that have appeared in the literature o/ tdamensional Coulomb gas [44], we
introduce a new variabl& (/) representing a scale dependent stiffness constant, as follows

20)

ool
roe’

Thus, we see that the effect of a nonzeron the stiffness amounts to a scaling change
K (I) — e K (I). Using Eq. (B.7), we have that

K= (B.8)

ax(l ~
);E ) _ 4 F (K (), (B.9)
Differentiating K ~1(/) with respect td and using Eq. (B.6), we obtain
0K (D) -1 2248%  |(as2-p)i-x)]

0
From this expression, we define a scale dependent fuga@itgiven by

. mge[(dJerp)lfx(l)l/Z
y(hy= Jardzor

Thus, we see explicitly that the renormalizationt/) in principle influences the flow
equation fory(/), which is obtained by differentiating with respecttand using Eq. (B.9)
dy () x
= =ld—n -2 f@OKOL O, (B.12)
wheren, = (d — 2+ p)/2. Egs. (B.10) and (B.12) are precisely Egs. (82). On the other
hand, the Callan—Symanzik approach of Section 4.1, which basically ignores the influence
of the renormalization ok (/) on the structure of the flow equation fo¢/), yields as we
have seen Eq. (77). We have already remarked in Section 4.2 that this type of approach
gives the correct answer only if there are no deviations from the Coulomb potential case,
that is, we neeg = 2—d. Note that in the usual KT transition we would have- n, = 0.

(B.11)

Appendix C. Screened effective potential

In this appendix, we derive the asymptotic long-distance behavior of the screened
effective interaction/ () introduced in Appendix B, for the cage= 0, corresponding
tod =3 andn4 = 1. We start from the recursion relations, written on the form
aK-t dy [5
= —=|==K()|y. Cc1
A R0 XD
From Eq. (B.8), we have that —1(/) = z(/) in this case. Next, we introduce the variable
T (1) defined by
51()/2—1 _

5
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where the latter approximation is asymptotically exact close enough to the transition. In
terms of this, the flow equation for the fugacity may be written on the form

ay2(l
yaz( ) (C.3)
On the other hand, we have
2
oT z(l) ~ 5T () agg” — 5T (1)y2(0), (C.4)

and hence we have
y2() — T2(1) = £o?, (C.5)

wherew is some positive number. We are interested in the quantity.ligw (/) for the

case where2(l) — T2(I) < 0, andT (/) < 0, this will be the regime where the fugacity
scales to zero. In this case we choose the negative sign on the r.h.s. in Eqg. (C.5). From the
flow equation fork ~1(/) we find

OTU) 5, 5.,
=3 )= 2[0) T4(D)]. (C.6)

This is solved to obtain, introducing= (5/2)wl + 6,
T () = —wcothu,
w
y() = sinhe’
wherew and @ are integration constants that are uniquely determined from the initial
conditions onc (7) andy(l), i.e., by the bare coupling constants of the problem as follows

(C.7)

Y2(0) = T(0) = —o,
o)
y(©0)
From the expression fdr (/), using Eq. (C.2), we obtain

—cosly. (C.8)

() = é(l—a)cothu). (C.9

Sincet (/) > 0, this puts restrictions on the constaatsand 6, and the most severe
limitations onw in terms ofé is given by

1— wcothd > 0. (C.10)
Using Eq. (B.9) and the fact th&t (/) = 1/ (1), we have
) 5/2
oxt) _ 5 (C.11)

9l ~ 1— wcothu’

From Eq. (C.10), we see that (/) /3l > 0. This is an important result, since itimmediately
reveals that, in the regime?(/) — T2(I) < 0 we consider here, the logarithmic bare
potential V (r) cannot possibly be screened into a power law potenfiat With o > 0,
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since in that case we would ha#e(l)/d] < 0. However, for all we have

2 2
3””:-( Sw/2 ><o. (C.12)

al2 sinhu — w coshu
Introducingw+ =1+ w, Eq. (C.11) is straightforwardly integrated to yield
1 [5 - _
¥ = x(0) = ——| 20l +In[ LT | (C.13)
wrw—| 2 wye 2 4o

From this, it follows that for > rg the effective potential behaves asymptotically as

U(r) ~In(r/ro). (C.14)

Appendix D. Exact equation of statefor the d-dimensional In-plasma

The equation of state foré&dimensional In-plasma with no short-distance cutoff, may
be obtained via a simple scaling argument, previously applied to the two-dimensional case
[66]. The configurational integral in the canonical partition function is given by

QZ/.../ddrl..-derNexp[quiqjIn(rij):|, (Dl)
Vv 14

i<j

whereg; = £1, and we assumed that we havé Particles in the systenmy with charge
gi =1 and N with chargeq; = —1, Zizi’lqi = 0. Here,V = L¢ is the volume of the
system. Introduce new dimensionless varialllgs=r;; /L wherer;; = |r; —r ;|, in which
case the configurational integral is given by

1

1
Q:LZNd/.../dde..-ddRZNexp(quiqjln(RijL)>
0 0

i<j
= LN exp[fqu-qj In(L)]I, (D.2)
i<j

where the integral is independent of volume. Now note that

ZZqzﬂj = Zqz'q]' = (Zj:%’) (Zj:q]) - iZZ:N;qizz —2N.

i<j i#] (D.3)

Then we obtain

From this, we obtain the equation of state involving the pressure

- tN
tpV:ZN—7. (D.5)
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Note that the pressure vanishes whea io = 2d. A prerequisite for the validity of the
above analysis is that the quantitynust be finite, otherwise the scaling of variables that
lead to the equation of state is meaningless. In fais, not always finite. Consider again
the integrand inQ, which is given by a product of factors

of Xi<j4iajn0ij) 1_[ rffiqj, (D.6)
i<j
Any factor withg; = —g; will be singular when;; = 0, which is possible in the absence of

a short-distance cutoff. To investigate whether or not this singularity is integrable, consider
the integral

/dr pd=1p=1 (D.7)
This is finite only if
d—1>0. (D.8)

This means that the equation of state Eq. (D.5) makes sensefor= d, note that for all
dimensions!, 7o = 21,.

In two dimensions, it is known that the negativity of the pressure occurs at a temperature
that coincides with the KT vortex—antivortex unbinding temperature, and that there is a
phase transition at twice this temperature. It is amusing to note here that in the three-
dimensional case, the pressure vanishes-atl2r?, after having reintroduced= ¢ /47 2.

This is precisely the critical coupling we found in Section 4.1 from the Callan—Symanzik
equations. In addition there is again a phase transition at precisely half the value of this
coupling constant, where the pressure becomes that of an ideal géspafticles. In
arbitrary dimensions, this persists, the phase transition to an ideal ¢yagarticles always
happens at half of the value at which the pressure vanishes. This phase transition, which
is a collapse of an overall charge-neutral plasma&/af; = +1 charges and&v' ¢; = —1
charges into an ideal gas of particles, occurs because of the lack of a short-distance
cutoff in the system we consider in this appendix.

Appendix E. Duality in the Abelian compact Higgs model with a Chern—Simons
term

For completeness, we present in this appendix the duality transformation of the LAH
with a Chern—Simons term added [12]. Compact gauge theories with Chern—Simons term
added are relevant in studies of chiral spin liquid states [11] when spinor states have been
integrated out. Such theories have been argued to exhibit a deconfinement transition [67,
68]. The compact LAH mode, i.e4;, € (—x, ), with a Chern—Simons term has the
action

1
Scs= Z[%(V,ﬁi — Ajy = 27ni)% + 503 (€nv VuAis — 27 Niy)?
i
Y

—i—iE(VM@i — Aiu — 27Tniu)(€uv)»vaik — 27'[Niu)i|. (E.l)
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Let us introduce auxiliary fields;, b;, A;,, ando;,, such that

Stg= Z[ﬂat,er pbfﬂ 580+ ki (Vb = Ajy = 2niy, = aiy)

i
+i5iu(€uvkvaiA_ZNNiu_biu):|~ (E2)

Next we introduce integer valued fields,, and};,, via the Poisson formula:

Sés=Z[§az2+—b2+z—az bi +imiy (Vb — Aip — aiy)

, 22
l
+iM;(€pva VoA — biu)] (E.3)
Integration ofy; andA;,, give the constraints enforced by delta of Kronecker
V.m; =0, (E.4)
VxM;=m;. (E-S)
Summing ovem; gives
S¢s= Z[ﬁal,er pb?+z 58 b —i(V xM))-a —iM; ~bi]. (E.6)

1

By integrating outs; andb; we arrive at the action

~ K
SCFEZ[(VxMi)2+ﬁeZM$—ie2yMi-(VxMi)], (E.7)
i
whereK = 4/(y2¢? + 48). Using the Poisson formula to introduce a real lattice figld
and doing an appropriate rescaling of the variables we obtain finally the partition function

Z=20) / [Hdhm:| exd—S3%h;, 1/)], (E.8)

{l:} =
where

K
sdual > > [V xhi)?+ Be?h? —iye?h; - (V x hy)] +i2xl; - by, (E.9)

which should be compared with Egs. (26) and (34). Note the appearance of the cross-term
iye?h; - (V x h;). When theh; are integrated out we are thus left with a partition of the
same form as Eq. (35), but with an asymmetric propagator.

If we were to consider the non-compact LAH with a Chern—Simons term added, and
in the absence of the Maxwell ter? — oo, then this is an effective description of the
fractional quantum Hall effect [37,69]. In this case we obtain

Sgléal_Z[_ﬂ(Vxh)z——h (Vxh)i|+127'[| -h;. (E.10)
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This is essentially the same as Egs. (E.8) and (E.9) for the compact case (with no mass
term for theh; -fields), but we should add an additional constraint in¥hel; = 0 in the
partition function.

One point worth emphasizing here, sometimes overlooked, is that the gaugk;field
is never a compact gauge-field, whether one starts from an original compact or non-
compact gauge theory. In the non-compact Chern—Simons theory, there exists a self-dual
point at a valuey = 1/2x [69,70]. The possibility of self-duality is a consequence of
non-compactness, it can never arise starting from a compact LAH model with Chern—
Simons term added. It is an intriguing question whether the self-duality at the above
particular value ofy in the non-compact case corresponds to a critical point. A candidate
physical interpretation of such a putative phase transition would correspond to statistical
transmutation of the Laughlin quasiparticles of the fractional quantum Hall effect as
magnetic field is varied, since in the context of the FQHE, the paramretiapends on
filling fraction, i.e., magnetic field. It is known that for the half-filled lowest Landau level,
the quasiparticles are fermions [71], while for other filling fractions they are anyons.
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