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Abstract
We present a method for evaluating divergent series with factorially growing
coefficients of equal sign. The method is based on an analytic continuation
of variational perturbation theory from the regime of alternating signs. We
demonstrate its power first by applying it to the exactly known partition
function of the anharmonic oscillator in zero space–time dimensions (the
simple integral). Then we consider the quantum-mechanical case of one
space–time dimension and derive the imaginary part of the ground-state energy
of the anharmonic oscillator for all negative values of the coupling constant
g, including the non-analytic tunnelling regime at small −g. As a highlight
of the theory we extract, from the divergent perturbation expansion, the action
of the critical bubble and the contribution of the higher loop fluctuations
around the bubble.

PACS numbers: 03.65.−w, 03.65.Xp, 03.75.Lm

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Most of the presently known resummation schemes [1, 2] rely on Borel summability. Typical
perturbation series of quantum field theory possess factorially growing expansion coefficients
with alternating or equal signs. If the signs are alternating and if the underlying functions
are free of special difficulties like renormalons [3], there exist well-developed resummation
techniques. For equal signs, these techniques fail. This happens for all tunnelling phenomena,
where physical amplitudes have cuts whose imaginary parts have such divergent expansions.
In this paper we show that these can be summed up by an analytic continuation of variational
perturbation theory from the regime of opposite coupling constants where the signs of the
expansions coefficients alternate.

In the path integral approach, tunnelling processes are dominated by non-perturbative
contributions coming from nontrivial classical solutions called critical bubbles [4, 5] or
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bounces [6], and fluctuations around these. Our method will enable us to derive such
nonperturbative contributions from perturbation expansions. It will work reliably only if
amplitudes are not strongly influenced by extra singularities in the complex Borel plane such
as those caused by renormalons.

Variational perturbation theory has a long history [7–10]. It is based on the introduction of
a dummy variational parameter � on which the full perturbation expansion does not depend,
while the truncated expansion does. An optimal � is selected by the principle of minimal
sensitivity [11], requiring the quantity of interest to be stationary as a function of the variational
parameter. The optimal � is usually taken from a zero of the derivative with respect to �. If
the first derivative has no zero, a zero of the second derivative is chosen. For Borel-summable
series, these zeros are always real, in contrast with statements in the literature [12–15], which
have proposed the use of complex zeros. Complex zeros produce, in general, wrong results
for Borel-summable series, as was recently shown in [16].

In this paper we show that there does exist a wide range of applications of complex
zeros if one wants to resum divergent series whose coefficients have equal signs, which have
so far remained intractable. These arise typically in tunnelling problems, and we shall see
that variational perturbation theory provides us with an efficient method for evaluating these
series, rendering their real and imaginary parts with any desirable accuracy, if only enough
perturbation coefficients are available. An important problem which had to be solved is the
specification of the proper choice of the optimal zero from the many possible candidates
existing in higher orders. The series to be summed are associated with functions which have
an essential singularity at the origin in the complex g-plane, which is the starting point of
a left-hand cut. Near the tip of the cut, the imaginary part of the function approaches zero
rapidly like exp(−α/|g|) for g → 0−. If the variational approximation is plotted against g with
an enlargement factor exp(α/|g|), oscillations become visible near g = 0. The choice of the
optimal complex zeros of the derivative with respect to the variational parameter is fixed by the
requirement of obtaining, in each order, the least oscillating imaginary part when approaching
the tip of the cut. We may call this selection rule the principle of minimal sensitivity and
oscillations.

In section 2, we will explain and test the new principle on the exactly known partition
function Z(g) of the anharmonic oscillator in zero space–time dimensions. In section 3, we
apply the method to the critical-bubble regime of small −g of the anharmonic oscillator and
find the action of the critical bubble and the corrections caused by the fluctuations around
it. In section 4 we present yet another method of calculating the properties of the critical-
bubble regime. This method is restricted to quantum mechanical systems. Its results for
the anharmonic oscillator give more evidence for the correctness of the general method of
sections 2 and 3.

2. Test of resummation

The partition function Z(g) of the anharmonic oscillator in zero space–time dimensions is

Z(g) = 1√
π

∫ ∞

−∞
exp(−x2/2 − gx4/4) dx = exp(1/8g)√

4πg
K1/4(1/8g), (2.1)

where Kν(z) is the modified Bessel function. For small g, the function Z(g) has a divergent
Taylor series expansion, to be called weak-coupling expansion,

Z
(L)
weak(g) =

L∑
l=0

alg
l with al = (−1)l

�(2l + 1/2)

l!
√

π
. (2.2)
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For g < 0, the expansion coefficients have equal signs which make resummation difficult. For
large |g| there exists a convergent strong-coupling expansion

Z
(L)
strong(g) = g−l/4

L∑
l=0

blg
−l/2 with bl = (−1)l

�(l/2 + 1/4)

2l!
√

π
. (2.3)

As is obvious from the integral representation (2.1), Z(g) obeys the second-order differential
equation

16g2Z′′(g) + 4(1 + 8g)Z′(g) + 3Z(g) = 0, (2.4)

which has two independent solutions. One of them is Z(g), which is finite for g > 0 with
Z(0) = a0. The weak-coupling coefficients al in (2.2) can be obtained by inserting the Taylor
series into (2.4) and comparing coefficients. The result is the recursion relation

al+1 = −16l(l + 1) + 3

4(l + 1)
al. (2.5)

A similar recursion relation can be derived for the strong-coupling coefficients bl in
equation (2.3). We observe that the two independent solutions Z(g) of (2.4) behave like
Z(g) ∝ gα for g → ∞ with the powers α = −1/4 and −3/4. The function (2.1) has
α = −1/4. It is convenient to remove the leading power from Z(g) and define a function
ζ(x) such that Z(g) = g−1/4 ζ(g−1/2). The Taylor coefficients of ζ(x) are the strong-coupling
coefficients bl in equation (2.3). The function ζ(x) satisfies the differential equation and initial
conditions

4ζ′′(x) − 2xζ′(x) − ζ(x) = 0 with ζ(0) = b0 and ζ′(0) = b1. (2.6)

The Taylor coefficients bl of ζ(x) satisfy the recursion relation

bl+2 = 2l + 1

4(l + 1)(l + 2)
bl. (2.7)

Analytic continuation of Z(g) around g = ∞ to the left-hand cut gives:

Z(−g) = (−g)−1/4ζ((−g)−1/2) (2.8)

= (−g)−1/4
∞∑
l=0

bl(−g)−l/2 exp

[
− iπ

4
(2l + 1)

]
for g > 0, (2.9)

so that we find an imaginary part

Im Z(−g) = −(4g)−1/4
∞∑
l=0

bl(−g)−l/2 sin

[
− iπ

4
(2l + 1)

]
(2.10)

= −(4g)−1/4
∞∑
l=0

βl(−g)−l/2, (2.11)

where

β0 = b0, β1 = b1, βl+2 = − 2l + 1

4(l + 1)(l + 2)
βl. (2.12)

It is easy to show that
∞∑
l=0

βlx
l = ζ(x) exp(−x2/4), (2.13)
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so that

Im Z(−g) = − 1√
2
g−1/4 exp(−1/4g)

∞∑
l=0

blg
−l/2. (2.14)

From this we may re-obtain the weak-coupling coefficients al by means of the dispersion
relation

Z(g) = − 1

π

∫ ∞

0

Im Z(−z)

z + g
dz (2.15)

= 1

π
√

2

∞∑
j=0

bj

∫ ∞

0

exp(−1/4z)z−j/2−1/4

z + g
dz. (2.16)

Indeed, replacing 1/(z + g) by
∫∞

0 exp(−x(z + g)) dx, and expanding exp(−xg) into a power
series, all integrals can be evaluated to yield

Z(g) = 1

π

∞∑
j=0

2jbj

∞∑
l=0

(−g)l�(l + j/2 + 1/4). (2.17)

Thus, we find for the weak-coupling coefficients al an expansion in terms of the strong-coupling
coefficients

al = (−1)l

π

∞∑
j=0

2jbj�(l + j/2 + 1/4). (2.18)

Inserting bj from equation (2.3), this becomes

al = (−1)l

2π3/2

∞∑
j=0

2j(−1)j

j!
�(j/2 + 1/4)�(l + j/2 + 1/4) = (−1)l

�(2l + 1/2)

l!
√

π
, (2.19)

coinciding with (2.2).
Variational perturbation theory is a well-established method for obtaining convergent

strong-coupling expansions from divergent weak-coupling expansions in quantum-mechanical
systems such as the anharmonic oscillator [5, 17] as well as in quantum field theory [2, 18].
We have seen in equation (2.8) that the strong-coupling expansion can easily be continued
analytically to negative g. This continuation can, however, be used for an evaluation only if |g|
is sufficiently large, where the strong-coupling expansion converges. In the tunnelling regime
near the tip of the left-hand cut, the expansion diverges. In this paper we shall see that an
evaluation of the weak-coupling expansion according to the rules of variational perturbation
theory but with an accompanying analytic continuation into the complex plane gives extremely
good results on the entire left-hand cut with a fast convergence even near the tip at g = 0.

The Lth variational approximation to Z(g) is given by (see [2, 18])

Z(L)
var (g, �) = �p

L∑
j=0

( g

�q

)j

εj(σ), (2.20)

with

σ ≡ �q−2(�2 − 1)/g, (2.21)

where q = 2/ω = 4, p = −1 and

εj(σ) =
j∑

l=0

al

(
(p − lq)/2

j − l

)
(−σ)j−l. (2.22)
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Figure 1. Result of the first- and second-order calculation for the region g < 0 where coefficients
have equal signs and the function has a cut with non-vanishing imaginary part: imaginary (left)
and real parts (right) of Z

(1)
var(g) (– – –) and Z

(2)
var(g) (——) are plotted against g and compared with

the exact values of the partition function (· · · · · ·). The root of (2.21) giving the optimal variational
parameter � has been chosen to reproduce the weak-coupling result near g = 0.

To apply the principle of minimal sensitivity, the zeros of the derivative of Z(L)
var (g, �) with

respect to � are needed. They are given by the zeros of the polynomials in σ:

P(L)(σ) =
L∑

l=0

al(p − lq + 2l − 2L)

(
(p − lq)/2

L − l

)
(−σ)L−l = 0, (2.23)

since it can be shown1 that the derivative depends only on σ:

dZ(L)
var (g, �)

d�
= �p−1

( g

�q

)L

P(L)(σ). (2.24)

Consider in more detail the lowest nontrivial order with L = 1. From equation (2.23)
we obtain

σ = 5
2 corresponding to � = 1

2 (1 ±
√

1 + 10g). (2.25)

To ensure that our method reproduces the weak-coupling result for small g, we have to take
the positive sign in front of the square root. In figure 1 we have plotted Z(1)

var(g) (dashed
curve) and Z(2)

var(g) (solid curve) and compared these with the exact result (dotted curve) in the
tunnelling regime. The agreement is quite good even at these low orders2. Next we study the
behaviour of Z(L)

var (g) to higher orders L. For selected coupling values along the left-hand cut,
g = −0.01, −0.1, −1, −10, we will see the error as a function of the order. We will find from
this model system the rule for selecting systematically the best zero of P(L)(σ) solving equation
(2.23), which leads to the optimal value of the variational parameter �. For this purpose we
plot the variational results of all zeros. This is shown in figure 2, where the logarithm of the
deviations from the exact value is plotted against the order L. The outcome of different zeros
cluster strongly near the best value. Therefore, choosing any zero out of the middle of the
cluster is reasonable, in particular, because it does not depend on the knowledge of the exact
solution, so that this rule may be taken over to realistic cases.

We wish to emphasize that for large negative coupling constants, say g > 0, variational
perturbation theory has the usual fast convergence in this model. In fact, for g = 10,
probing deeply into the strong-coupling domain, we find rapid convergence like �(L) �
0.02 exp(−0.73L) for L → ∞, where �(L) = log |Z(L)

var − Zexact| is the logarithmic error as a

1 This was proved in [19] for p/q = 1 (see also [5], appendix 5A), but can easily be generalized to hold for arbitrary
p and q.
2 The low-order results were first obtained by Kleinert [20] and extended by Karrlein and Kleinert [21].
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Figure 2. Logarithm of deviation of the variational results from exact values log|Z(L)
var − Zexact|

plotted against the order L for different values of g < 0 along the left-hand cut. All complex
optimal �s have been used.

∆ (L)

L10 20 30

−10

−20

−30

Figure 3. Logarithm of deviation of variational results from exactly known value �(L) =
log|Z(L)

var − Zexact|, plotted against the order L for g = 10 in the regime of equal signs of the
expansion coefficients. The real positive optimal � have been used. There is only one real zero of
the first derivative in every odd order L and none for even orders. There is excellent convergence
�(L) � 0.02 exp(−0.73L) for L → ∞.

function of the order L. This is shown in figure 3. Furthermore, the strong-coupling coefficients
bl of equation (2.3) are reproduced quite satisfactorily. Having solved P(L)(σ) = 0 for σ, we
obtain �(L)(g) by solving equation (2.21). Inserting this and (2.22) into (2.20), we bring
g1/4 Z(L)

var (g) into a form suitable for expansion in powers of g−1/2. The expansion coefficients
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Figure 4. Relative logarithmic error �r = log|1 − b
(L)
l /b

(exact)
l | on the left, and the absolute

logarithmic error �a = log|b(L)
l − b

(exact)
l | on the right, plotted for some strong-coupling

coefficients bl with l = 0, 4, 8, 12, 16, 20 against the order L.

g−.014 −.012 −.01 −.008

−.75

−.7

−.65

−.6
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E F

Figure 5. Normalized imaginary part Im[Z(16)
var (g) exp(−1/4g)] as a function of g based on

six different complex zeros (thin curves). The fat curve represents the exact value, which is
Zexact(g) � −0.7071 + 0.524g − 1.78g2. Oscillations of varying strength can be observed near
g = 0. Curves A and C carry most smoothly near up to the origin. Evaluation based on either
of them yields equally good results. We have selected the zero belonging to curve C as our best
choice to this order L = 16.

are the strong-coupling coefficients b
(L)

l to order L. In figure 4 we have plotted the logarithms
of their absolute and relative errors over the order L, and find very good convergence, showing
that variational perturbation theory works well for our test-model Z(g).

A better selection of the optimal � values comes from the following observation. The
imaginary parts of the approximations near the singularity at g = 0 show tiny oscillations.
The exact imaginary part is known to decrease extremely fast, like exp(1/4g), for g → 0−,
practically without oscillations. We can make the tiny oscillations more visible by taking this
exponential factor out of the imaginary part. This is done in figure 5. The oscillations differ
strongly for different choices of �(L) from the central region of the cluster. To each order,
L we see that one of them is smoothest in the sense that the approximation approaches the
singularity most closely before oscillations begin. If this �(L) is chosen as the optimal one,
we obtain excellent results for the entire region of negative coupling constant. As an example,
we pick the best zero for the order L = 16. Figure 5 shows the normalized imaginary part
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log (−g)0 −2 −4 log (−g)0 −2 −4
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1.1

−.7
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−.5

Figure 6. Normalized imaginary part Im[Z(16)
var (g) exp(−1/4g)] to the left and the real part

Re[Z(16)
var (g)] to the right, based on the best zero C from figure 5, are plotted against log|g| as

dots. The solid curve represents the exact function. The dashed curve is the order L = 16 of the
strong-coupling expansion Z

(L)
strong(g) of equation (2.3).

calculated to this order, but based on different zeros from the central cluster. Curve C appears
optimal. Therefore, we select the underlying zero as our best choice at order L = 16 and
calculate with it real and imaginary parts for the region −2 < g < −0.008, to be compared
with the exact values. Both are shown in figure 6, where we have again renormalized the
imaginary part by the exponential factor exp(−1/4g). The agreement with the exact result
(solid curve) is excellent as was to be expected because of the fast convergence observed in
figure 2. It is indeed much better than the strong-coupling expansion to the same order, shown
as a dashed curve. This is the essential improvement of our present theory as compared with
previously known methods probing into the tunnelling regime (see footnote 2).

This regime will now be investigated for the quantum-mechanical anharmonic
oscillator.

3. Tunnelling regime of quantum-mechanical anharmonic oscillator

The divergent weak-coupling perturbation expansion for the ground-state energy of the
anharmonic oscillator in the potential V(x) = x2/2 + gx4 to order L:

E
(L)
0,weak(g) =

L∑
l=0

alg
l, (3.1)

where al = (1/2, 3/4, −21/8, 333/16, −30885/128, . . .) cannot be summed by available
methods for g < 0. It may be treated in the same way as Z(g) of the previous model, making
use as before of equations (2.20)–(2.23), provided we set p = 1 and ω = 2/3, so that q = 3,
accounting for the correct power behaviour E0(g) ∝ g1/3 for g → ∞. According to the
principle of minimal dependence and oscillations, we pick a best zero for the order L = 64
from the cluster of zeros of PL(σ), and use it to calculate the logarithm of the normalized
imaginary part:

f(g) := log[
√

−πg/2E
(64)
0,var(g)] − 1/3g. (3.2)

This quantity is plotted in figure 7 against log(−g) close to the tip of the left-hand cut for
−0.2 < g < −0.006. Comparing our result with older values from semi-classical calculations
(see [22]; the first 10 coefficients of (3.3) are calculated)

f(g) = b1g − b2g
2 + b3g

3 − b4g
4 + · · · , (3.3)
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−.8

−.4

l(g)

0

−2 −3 −4 −5 log (−g)

Figure 7. Logarithm of the imaginary part of the ground-state energy of the anharmonic oscillator
with the essential singularity factored out for better visualization, l(g) = log[

√−πg/2 E
(64)
0,var(g)]

−1/3g, plotted against small negative values of the coupling constant −0.2 < g < −0.006, where
the series is not summable by standard methods. The thin curve represents the divergent expansion
around a critical bubble of Zinn-Justin [22]. The fat curve is the 22nd-order approximation of the
strong-coupling expansion, analytically continued to negative g in the sliding regime calculated in
chapter 17 of the textbook [5].

with

b1 = 3.95833, b2 = 19.344, b3 = 174.21, b4 = 2177, (3.4)

shown in figure 7 as a thin curve, we find very good agreement. This expansion contains the
information on the fluctuations around the critical bubble. It is divergent and not summable
for g < 0 by standard methods. In appendix A we have re-derived it in a novel way which
allowed us to extend and improve it considerably.

Remarkably, our theory allows us to retrieve the first three terms of this expansion from
the perturbation expansion. Since our result provides us with a regular approximation to the
essential singularity, the fitting procedure depends somewhat on the interval over which we fit
our curve by a power series. A compromise between a sufficiently long interval and the runaway
of the divergent critical-bubble expansion is obtained for a lower limit g > −0.0229 ± 0.0003
and an upper limit g = −0.006. Fitting a polynomial to the data, we extract the following first
three coefficients:

b1 = 3.9586 ± 0.0003, b2 = 19.4 ± 0.12, b3 = 135 ± 18. (3.5)

The agreement of these numbers with those in (3.3) demonstrates that our method is capable
of probing deeply into the critical-bubble region of the coupling constant.

Further evidence for the quality of our theory comes from a comparison with the
analytically continued strong-coupling result plotted to order L = 22 as a fat curve in figure 7.
This expansion was derived by a resummation procedure developed in chapter 17 of the
textbook [5]. It was based on a two-step process: the derivation of a strong-coupling expansion
of the type (2.3) from the divergent weak-coupling expansion, and an analytic continuation
of the strong-coupling expansion to negative g. This method was applicable only for large
enough coupling strength where the strong-coupling expansion converges, the so-called sliding
regime. It could not invade into the tunnelling regime at small g governed by critical bubbles,
which was treated in [5] by a separate variational procedure. The present work fills the missing
gap by extending variational perturbation theory to all g arbitrarily close to zero, without the
need for a separate treatment of the tunnelling regime.
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log(−g)−2 −3 −4 −5

−.8

−.6

−.4

−.2

0
8 324 16

Figure 8. Logarithm of the normalized imaginary part of the ground-state energy
log(

√−πg/2 E
(L)
0,var(g)) − 1/3g, plotted against log(−g) for orders L = 4, 8, 16, 32 (curves). It

is compared with the corresponding results for L = 64 (points). This is shown for small negative
values of the coupling constant −0.2 < g < −0.006, i.e. in the critical-bubble region. Fast
convergence is easily recognized; lower orders oscillate more heavily. Increasing orders allow
closer approach to the singularity at g = 0−.

It is interesting to see how the correct limit is approached as the order L increases. This
is shown in figure 8, based on the optimal zero in each order. For large negative g, even the
small orders give excellent results. Close to the singularity the scaling factor exp(−1/3g) will
always win over the perturbation results. It is surprising, however, how fantastically close to
the singularity we can go.

4. Dynamic approach to the critical-bubble regime

Regarding the computational challenges connected with the critical-bubble regime of small
g < 0, it is worth developing an independent method to calculate imaginary parts in the
tunnelling regime. For a quantum-mechanical system with an interaction potential gV(x),
such as the harmonic oscillator, we may study the effect of an infinitesimal increase in g upon
the system. It induces an infinitesimal unitary transformation of the Hilbert space. The new
Hilbert space can be made the starting point for the next infinitesimal increase in g. In this
way, we derive an infinite set of first-order ordinary differential equations for the change of
the energy levels and matrix elements (see appendix B for details):

E′
n(g) = Vnn(g), (4.1)

V ′
mn(g) =

∑
k �=n

Vmk(g)Vkn(g)

Em(g) − Ek(g)
+
∑
k �=m

Vmk(g)Vkn(g)

En(g) − Ek(g)
. (4.2)

This system of equations holds for any one-dimensional Schrödinger problem. Individual
differences come from the initial conditions, which are the energy levels En(0) of the
unperturbed system and the matrix elements Vnm(0) of the interaction V(x) in the unperturbed
basis. A truncation is necessary for a numerical integration of the system. The obvious way
is to restrict the Hilbert space to the manifold spanned by the lowest N eigenvectors of the
unperturbed system. For cases like the anharmonic oscillator, which are even, with even
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g−.3 −.2 −.1

−.2

−.1

Figure 9. Imaginary part of the ground-state energy of the anharmonic oscillator as solution of
the coupled set of differential equations (4.1), truncated at the energy level of n = 64 (points),
compared with the corresponding quantity from the order L = 64 of variational perturbation theory
(curve), both shown as functions of the coupling constant g.

perturbation and with only an even state to be investigated, we may span the Hilbert space by
even basis vectors only. Our initial conditions are thus for n = 0, 1, 2, . . . , N/2:

E2n(0) = 2n + 1/2, (4.3)

V2n,2m = 0 if m < 0 or m > N/2, (4.4)

V2n,2n(0) = 3(8n2 + 4n + 1)/4, (4.5)

V2n,2n±2(0) = (4n + 3)
√

(2n + 1)(2n + 2)/2, (4.6)

V2n,2n±4(0) =
√

(2n + 1)(2n + 2)(2n + 3)(2n + 4)/4. (4.7)

For the anharmonic oscillator with a V(x) = x4 potential, all sums in equation (4.1) are finite
with at most four terms due to the near-diagonal structure of the perturbation.

To find a solution for some g < 0, we first integrate the system from 0 to |g|, then around
a semi-circle g = |g| exp(iϕ) from ϕ = 0 to π. The imaginary part of E0(g) obtained from a
calculation with N = 64 is shown in figure 9, where it is compared with the variational result for
L = 64. The agreement is excellent. It must be noted, however, that the necessary truncation of
the system of differential equations introduces an error, which cannot be made arbitrarily small
by increasing the truncation limit N. The approximations are asymptotic sharing this property
with the original weak-coupling series. Its divergence is, however, reduced considerably,
which is the reason why we obtain accurate results for the critical-bubble regime, where the
weak-coupling series fails completely to reproduce the imaginary part.

Appendix A

We determine the ground-state energy function E0(g) for the anharmonic oscillator on the cut,
i.e. for g < 0 in the bubble region, from the weak-coupling coefficients al of equation (3.1).
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The behaviour of the al for large l can be cast into the form

al/al−1 = −
L∑

j=−1

βjl
−j. (A.1)

Theβj can be determined by a high-precision fit to the data in the large l region of 250 < l < 300
to be

β−1,0,1,... =
{

3, −3

2
,

95

24
,

113

6
,

391691

3456
,

40783

48
,

1915121357

248832
,

10158832895

124416
,

70884236139235

71663616
,

60128283463321

4478976
,

286443690892

1423
,

144343264152266

43743
,

351954117229

6
,

2627843837757582

2339
,

230619387597863

10
,

12122186977970425

24
,

41831507430222441029

3550
, . . .

}
, (A.2)

where the rational numbers up to j = 6 are found to be exact, whereas the higher ones are
approximations.

Equation (A.1) can be read as recurrence relation for the coefficients al. Now we construct
an ordinary differential equation for E(g) := E

(L)
0,weak(g) from this recurrence relation and find

(g
d

dg

)L

+ g

L+1∑
j=0

βL−j

(
g

d

dg
+ 1

)j


E(g) = 0. (A.3)

All coefficients being real, real and imaginary parts of E(g) each have to satisfy this equation
separately. The point g = 0, however, is not a regular point. We are looking for a solution,
which is finite when approaching it along the negative real axis. Asymptotically, E(g) has to
satisfy E(g) � exp(1/gβ−1) = exp(1/3g). Therefore we solve (A.3) with the ansatz

E(g) = gα exp

(
1

3g
−
∑
k=1

bk(−g)k

)
, (A.4)

to obtain α = −1/2 and

b1,2,3,... =
{

95

24
,

619

32
,

200689

1152
,

2229541

1024
,

104587909

3072
,

7776055955

12288
,

9339313153349

688128
,

172713593813181

524288
,

1248602386820060039

139886592
,

14531808399402704160316631

54391637278720
,

12579836720279641736960567921

1435939224158208
,

109051824717547897884794645746723

348951880031797248
,

45574017678173074497482074500364087

3780312033677803520
. . .

}
. (A.5)

This is in agreement with equation (3.4) and an improvement compared with the WKB results
of Zinn-Justin [22]. Again, the first six rational numbers are exact, followed by approximate
ones.
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Appendix B

Given a one-dimensional quantum system

(H0 + gV )|n, g〉 = En(g)|n, g〉 (B.1)

with Hamiltonian H = H0 + gV , eigenvalues En(g) and eigenstates |n, g〉, we consider
an infinitesimal increase dg in the coupling constant g. The eigenvectors will undergo a
small change

|n, g + dg〉 = |n, g〉 + dg
∑
k �=n

unk|k, g〉 (B.2)

so that
d

dg
|n, g〉 =

∑
k �=n

unk|k, g〉. (B.3)

Given this, we take the derivative of (B.1) with respect to g and multiply by 〈m, g| from the
left to obtain

〈m, g|V − E′
n(g)|n, g〉 =

∑
k �=n

unk〈m, g|H0 + gV − En(g)|k, g〉. (B.4)

Setting now m = n and m �= n in turn, we find

E′
n(g) = Vnn(g), (B.5)

Vmn(g) = unm(Em(g) − En(g)), (B.6)

where Vmn(g) = 〈m, g|V |n, g〉.
Equation (B.5) governs the behaviour of the eigenvalues as functions of the coupling

constant g. To have a complete system of differential equations, we must also determine how
the Vmn(g) change, when g changes. With the help of equations (B.3) and (B.6), we obtain

V ′
mn =

∑
k �=m

u∗
mk〈k, g|V |n, g〉 +

∑
k �=n

unk〈m, g|V |k, g〉, (B.7)

V ′
mn =

∑
k �=m

VmkVkn

Em − Ek

+
∑
k �=n

VmkVkn

En − Ek

. (B.8)

Equations (B.5) and (B.8) together describe a complete set of differential equations for the
energy eigenvalues En(g) and the matrix-elements Vnm(g). The latter determine via (B.6)
the expansion coefficients umn(g). Initial conditions are given by the eigenvalues En(0) and
the matrix elements Vnm(0) of the unperturbed system.
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