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We set up recursion relations for calculating all even moments of the end-to-end distance of Porod-Kratky
wormlike chains inD dimensions. From these moments we derive a simple analytic expression for the
end-to-end distribution in three dimensions valid for all peristence lengths. It is in excellent agreement with
Monte Carlo data for stiff chains and approaches the Gaussian random-walk distributions for low stiffness.
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I. INTRODUCTION

The statistical properties of stiff polymers can be studied
with the help of the Kratky-Porod wormlike chain modelf1g,
whose properties are explained in detail in the Yamakawa’s
textbooks f2,3g and in a recent article by Chirikjian and
Wang f4g. Expanded possibilities of doing experiments with
individual polymers using laser tweezers have led to in-
creased theoretical interest in this model.

An important observable quantity of a stiff polymer is the
end-to-end distribution defined inD dimensions by the path
integral f2–5g

PLsRd ~E dDubE dDuaE DDudsDdSR −E
0

L

dsussdD
3e−sk̄/2de0

Ldsfu8ssdg2, s1.1d

where k is the reduced stiffness related to the persistence
lengthj by

k =
k

kBT
= sD − 1d

j

2
. s1.2d

The unit vectorsussd are the tangent vectors of the space
curve of the polymer parametrized by the length parameters.
A Fourier representation of thed function brings this to the
form

PLsRd ~ E
−i`

i` dDl

2pi
ek̄lR/2E dDubE dDuasubLuua0dl,

s1.3d

where

subLuua0dl ; E
us0d=ua

usLd=ub

DDue−sk̄/2de0
Ldshfu8ssdg2+l·ussdj

s1.4d

coincides with the Euclidean path integral of a point particle
of massM =k moving on a unit sphere in an external electric
field l.

Sinceussd are unit vectors, the path integral is not solv-
able exactly, except for zerol. It is easy, however, to find
arbitrarily high even moments of the end-to-end distance of
the distributionPLsRd

kR2nl ; E dDRR2nPLsRd. s1.5d

The 2nth moment of the chain can be obtained directly from
the expansion coefficient in powers ofl of the integral over
s1.3d.

In natural units withk=1, the path integrals1.4d solves
the Schrödinger equation in Euclidean timef2–5g

S−
1

2
Du +

1

2
l ·u +

d

dt
Dsutuua0dl = 0, s1.6d

whereD is the Laplacian on a unit sphere. The external elec-
tric field l may be assumed to point in thez direction, or the
Dth direction inD dimensions. In the distributions1.3d, only
the integrated expression

csz,t;ld ; E dDuasutuua0dl s1.7d

appears, which is a function ofz=cosu only, whereu is the
angle betweenu and the electric fieldl. The function
csz,t ;ld satisfies the simpler differential equation

Ĥcsz,t;ld = −
d

dt
csz,t;ld, s1.8d

where

Ĥ ; Ĥ0 + lĤI

= −
1

2
D +

1

2
lz

= −
1

2
Fs1 − z2d

d2

dz2 − sD − 1dz
d

dz
G +

1

2
lz. s1.9d

The desired momentss1.5d can be obtained from the coeffi-
cient of l2n/22ns2nd! in the expansion of the integral over
s1.7d,
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fst;ld ; E
−1

1

dzcsz,t;ld, s1.10d

in powers ofl, evaluated at the Euclidean timet=L.

II. RECURSIVE SOLUTION OF THE SCHRÖDINGER
EQUATION

The functionfsL ;ld has a spectral representation

fsL;ld ; o
l=0

` E
−1

1

dzwsld†szdexps− EsldLdwslds0d

E
−1

1

dzwsld†szdwsldszd
, s2.1d

where wsldszd are the solutions of the time-independent

Schrödinger equationĤwsldszd=Esldwsldszd. Applying the per-
turbation theory to this problem, we start from the eigen-

states of the unperturbed HamiltonianĤ0=−D /2, which are
given by the Gegenbauer polynomialsCl

D/2−1szd with the ei-
genvaluesE0

sld= lsl +D−2d /2 f6g. Next we set up a recursion
scheme for the perturbation expansion of the eigenvalues and
eigenfunctions as described inf7,8g. We begin with a brief
review of the method. The starting point is the usual expan-
sion of energy eigenvalues and states in powers of the cou-
pling constantl

Esld = o
j=0

`

e j
sldl j , s2.2d

uwsldl = o
l8,i=0

`

gl8,i
sld

lial8ul8l. s2.3d

The wave functionswsldszd are the scalar productskzuwsldl.
The index i counts the order of the interaction strengthl.
The lowest expansion coefficients of the energy are of course
e0

sld=E0
sld. In the second line, we have introduced auxiliary

normalization constantsal8 for convenience to be fixed later.
The state vectorsull of the unperturbed system are normal-
ized to unity, but the state vectorsuwsldl of the interacting
system will be normalized in such a way, thatkwsld u ll=al

holds to all orders, implying that

gl,i
sld = di,0 gk,0

sld = dl,k. s2.4d

Inserting the above expansions into the Schrödinger equa-
tion, projecting the result onto the base vectorkkuak, and
extracting the coefficient ofli, we obtain the relation

gk,i
slde0

skd + o
j=0

`
a j

ak
Vk,jg j ,i−1

sld = o
j=0

i

e j
sldgk,i−j

sld , s2.5d

whereVk,j =lkkuzu jl are the matrix elements of the interaction
between unperturbed states. Fori =0, Eq. s2.5d is satisfied
identically. Fori .0, it leads to the following two recursion
relations, one fork= l:

ei
sld = o

n=1
gl+n,i−1

sld Wn
sld, s2.6d

the other forkÞ l:

gk,i
sld =

o
j=1

i−1

e j
sldgk,i−j

sld − o
n=1

gk+n,i−1
sld Wn

sld

e0
skd − e0

sld , s2.7d

where onlyn=−1 andn=1 contribute to the sums overn
since

Wn
sld ;

al+n

al
klzul + nl = 0, for n Þ 1. s2.8d

The vanishing ofWn
sld for nÞ1 is due to the band-diagonal

form of the matrix of the interactionz in the unperturbed
basisull. It is this property that makes the sums ins2.6d and
s2.7d finite and leads to recursion relations with a finite num-
ber of terms for allei

sld andgk,i
sld. To calculateWn

sld, it is con-
venient to expresskl uzul +nl as matrix elements between un-
normalized noninteracting statesul8j as

kl uzul + nl =
hl uzul + nj

Îhl uljhl + nul + nj
, s2.9d

where

hkuFszdulj ; E
−1

1

dzCk
D/2−1szdFszdCl

D/2−1szds1 − z2dsD−3d/2,

s2.10d

yielding f9g

hl ulj =
24−DGsl + D − 2dp

l!s2l + D − 2dGsD/2 − 1d2 . s2.11d

Expanding the numerator ofs2.9d with the help of the recur-
sion relation for the Gegenbauer polynomialsf10g

sl + 1dul + 1j = s2l + D − 2dzulj − sl + D − 3dul − 1j,

s2.12d

we find the only nonvanishing matrix elements to be

hl + 1uzulj =
l + 1

2l + D − 2
hl + 1ul + 1j, s2.13d

hl − 1uzulj =
l + D − 3

2l + D − 2
hl − 1ul − 1j. s2.14d

Inserting these together withs2.11d into s2.9d gives

kl uzul − 1l =Î lsl + D − 3d
s2l + D − 2ds2l + D − 4d

, s2.15d

and a corresponding result forkl uzul +1l. We now fix the nor-
malization constantsal8 by setting

W1
sld =

al+1

al
kl uzul + 1l = 1 s2.16d

for all l, which determines the ratios
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al

al+1
= kl uzul + 1l =Î sl + 1dsl + D − 2d

s2l + Dds2l + D − 2d
. s2.17d

Setting furthera1=1, we obtain

al = Fp
j=1

l
s2l + D − 2ds2l + D − 4d

lsl + D − 3d G1/2

. s2.18d

Using this we find froms2.8d the remaining nonzeroWn
sld for

n=−1

W−1
sld =

lsl + D − 3d
s2l + D − 2ds2l + D − 4d

. s2.19d

We are now ready to solve the recursion relationss2.6d and
s2.7d for gk,i

sld andei
sld order by order ini. For the initial order

i =0, the values of thegk,i
sld are given by Eq.s2.4d. The coef-

ficients ei
sld are equal to the unperturbed energiese0

sld=E0
sld

= lsl +D−2d /2. For eachi =1,2,3,…, there is only a finite
number of nonvanishinggk,j

sld ande j
sld with j , i on the right-

hand sides ofs2.6d and s2.7d, which allows us to calculate
gk,i

sld and ei
sld on the left-hand sides. In this way it is easy to

find the perturbation expansions for the energy and the wave
functions to high orders.

Inserting the resulting expansionss2.2d ands2.3d into Eq.
s2.1d, only the totally symmetric parts inwsldszd will survive
the integration in the numerators, i.e., we may insert only

wsymm
sld szd = kzuwsymm

sld l = o
i=0

`

g0,i
sldlikzu0l. s2.20d

The denominators of s2.1d become explicitly
Sl8,iugl8,i

sld
al8u

2l2i, where the summation overi is limited by
power of l2 up to which we want to carry the perturbation
series; alsol8 is restricted to a finite number of terms only,
because of the band-diagonal structure of theg

l8,i
sld .

Extracting the coefficients of the power expansion inl
from s2.1d we obtain all desired moments of the end-to-end
distribution, the lowest two being, after reinsertingk from
s1.2d,

kR2l = 2hjL − j2f1 − e−L/jgj. s2.21d

kR4l =
4sD + 2d

D
L2j2 − 8Lj3SD2 + 6D − 1

D2 −
D − 7

D + 1
e−L/jD

+ 4j4FD3 + 23D2 − 7D + 1

D3 − 2
sD + 5d2

sD + 1d2e−L/j

+
sD − 1d5

D3sD + 1d2e−2DL/sD−1djG .

The calculation of higher moments is straightforward with a
MATHEMATICA program, which we have placed on the Inter-
net in notebook formf11g. The above lowest moments agree
with Ref. f12g and the three-dimensional higher moments
with Refs. f13,14g. See also the related three-dimensional
work in Ref. f15g.

III. FROM MOMENTS TO END-TO-END DISTRIBUTION
IND=3 DIMENSIONS

The moments can now be used to recover the experimen-
tally accessible end-to-end distribution of the polymers for
various degrees of stiffness. We parameterize the distribution
with an analytic form

PLsRd ~ rk+2s1 − rbdm, r ; R/L, s3.1d

whose moments are

kR2nl =

GS3 + k + 2n

b
DGS3 + k

b
+ m+ 1D

GS3 + k

b
DGS3 + k + 2n

b
+ m+ 1D . s3.2d

We now adjust the three parametersk, b, and m to fit the
three most important moments of the distribution exactly,
ignoring all others. If the distances were distributed uni-
formly over the intervalr [ f0,1g, the moments would be
kR2nlflat=1/s2n+2d. Comparing our exact momentskR2nlsjd
with the flat ones, we find thatkR2nlsjd / kR2nlflat has a maxi-
mum for n close tonmaxsjd;4j. Accordingly, we have cho-
sen to fitkR2l, kR4l, andkR6l for small persistence lengthj
,1/2. Forj=1/2 wehave started withkR4l, for j=1 with
kR8l, and forj=2 with kR16l, including always the following
two higher even moments. It takesMATHEMATICA f11g less
than 10 s to calculate the required momentsseven much
higher moments such askR32l take only 2 mind.

With these adjustments the resulting distributions are
shown in Fig. 1 for various persistence lengthsj. They are in
excellent agreement with the Monte Carlo datassymbolsd
obtained by Wilhelm and Freyf16g and better than their one-
loop perturbative resultssthin curvesd, which are good only
for very stiff polymers. For the small persistence lengthsj
=1/400,1/100,1/30, the curves are well approximated by
Gaussian random chain distributions on a lattice with lattice

FIG. 1. Distribution of the end-to-end distances of polymer for
different stiffnesses, parametrized by the persistence lengthsj
=1/400,1/100,1/30,1/10,1/5,1/2,1,2. They are compared with the
Monte Carlo calculations of Wilhelm and Freyf16g ssymbolsd and
with his large-stiffness one-loop perturbative resultssthin curvesd.
For the small stiffnessesj=1/400,1/100,1/30, the curves are well
approximated by Gaussian random chain distributions on a lattice
with lattice constantaeff=2j, which ensures thataeff=2j the lowest
momentskR2l=aeffL are properly fittedsdashed curvesd.
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constantaeff=2j, i.e.,PLsRd→e−3R2/4Lj. This ensures that the
lowest momentkR2l=aeffL is properly fitted. In fact, we can
easily check that our fitting program yields for the param-
etersk,b,m in the end-to-end distributions3.1d the j→0 be-
havior: k→−j, b→2+2j, m→3/4j, so thats3.1d tends to
the correct Gaussian behavior.

In the opposite limit of largej, our fits have the limits
k→10j−7/2, b→40j+5, m→10, which has no obvious
analytic approach to the exact limiting behaviorPLsRd

→ s1−rd−5/2e−1/4js1−rd, although the distribution atj=2 is fit-
ted numerically extremely well.
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