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Abstract

We attribute the gravitational interaction between sources of curvature to the world being a crystal which has undergone
a quantum phase transition to a nematic phase by a condensétitislocations. The model explains why spacetime has no
observable torsion and predicts the existence of curvature sources in the form of world sheets, albeit with different high-energy
properties than those of string models.

0 2004 Elsevier B.V. All rights reserved.

1. Introduction two decades. In 1987, he proposed a simple three-
dimensional Euclidean world crystal model of gravita-
tion in which dislocations and disclinations represent
curvature and torsion in the geometry of spacetime [5].
A full theory of gravity with torsion based on this pic-
ture is published in the textbook [6] (see also [7,8]).

Present-day string models of elementary particles
are based on the assumption that relativistic physics
will prevail at all energy scales and, moreover, show

recurrent particle spectra at arbitrary multiples of the The simole 1987 model had th h
Planck mass. Disappointed by the failure of these € simpie model had the somewhat unaes-

models [1] to explain correctly even the low-lying ex- thetlg feature.that the grystal possessed only second-
citations, and the apparent impossibility of ever ob- gradient elasticity to deliver the correct forces between
serving the characteristiecurrences, an increasing the sources of curvature, which for an ordinary first-

number of theoreticians is beginning to suspect that gradient elast|C|ty_ grow "”ef”“'y with the d'Stan.@
God may have chosen a completely different exten- and are thus confining. In this Letter we would like to
sion of present-day Lorentz-invariant physics to ex- point out that the correct/R-behavior can also be ob-

tremely high energies [2-4]. This philosophy has been taine_d_in an ordinar_y world crystt_:\I with _first-gradient
advocated by one of the authors (H.K.) for almost elasticity by assuming that the dislocations have pro-
liferated. This explains also why the theory of general

relativity requires only curvature for a correct descrip-
" Corresponding author. tion of gravitational forces, but no torsion. Such a state
E-mail addresskleinert@physik.fu-bein.de (H. Kleinert). of the world crystal bears a close relationship with the
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nematic quantum liquid crystals of condensed matter
physics, first suggested by Kivelson et al. [9], and be-
lieved to be of relevance both for the quantum Hall

effect [10] and in high#, superconductors [11].

Our model will be formulated as before in three
euclidean dimensions, for simplicity. The generaliza-
tion to four dimensions is straightforward. The elastic
energy is expressed in terms of a matedeplace-
ment fieldy; (X) as

E :/d3 [Mu,j(x)—l— Zu,,(x)] (1.1)
where

1
uij(X) = é[aiuj(x)+8juj(x)] (1.2)

is thestrain tensorandu, v are the elastic shear mod-
uli. The elastic energy goes to zero for infinite wave
length since in this limit; (x) reduces to a pure trans-
lation under which the energy of the system is in-

variant. The crystallization process causes a sponta-

neous breakdown of the translational symmetry of the

system. The elastic distortions describe the Nambu—

Goldstone modes resulting from this symmetry break-
down. Note that so far the crystal has an extra longi-
tudinal sound wave with a different velocity than the
shear waves.

A crystalline material always contains defects. In
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The densities satisfy the conservation laws
9;0i; =0. (1.6)

Dislocation lines are eittr closed or they end in
disclination lines, and disclination lines are closed.
These are Bianchi identities of the defect system.

An important geometric quantity characterizing
dislocation and disclination lines is tircompatibility
or defect density

i ik = —€kmnOmn,

0ij (X) = €1k1€ jomn Ok Ot (X). (1.7)
It can be decomposed into disclination and dislocation
density as follows [6]:

1
i (X) = 01 (X) + = O [€minctjn(X) + (i < J)

— €ijinUmn (X)] (1.8)

This tensor is symmetric and conserved

9inij(x) =0, (1.9)

again a Bianchi identity of the defect system.

It is useful to separate from the dislocation density
(1.4) the contribution from the disclinations which
causes the nonzero right-hand side of (1.6). Thus we

define apure dislocation density
ol (X) = 0t (X) — o7 (%), (1.10)

which satisfies); a = 0. Accordingly, we split

their presence, the elastic energy depends only on the

difference of the total dlstortlon from the so-called
plastic d|stort|onu?(x). If u” (X) denotes theplastic
part of the strain tensor, the energy reads

A p

E = /d?’x |:/L(u,~j — u?j)2+ 2(u,~,- - u)2:| (1.3)

12
In general, the crystal may contain a grand-canoni-
cal ensemble of line-like defects with a dislocation
density

o1 = €j 0 0pu} (X) = 8; (%; L) (by + €19r 24 x7), (1.4)
and adisclination density

0i1 = Eijkajepmn [811”5: (X) — Oty (X)]

=8;(x; L)§2;, 1.5)

whereb; and$2; are the so-called Burgers and Franck
vectors of the defects arti(x; L) = fL dx; §(x — x)
ares-functions on the lineg..

nij (%) =n; () + 1] (), (1.11)
where
N (X) = [emma () + (i < ) — €ijneth, 0],

(1.12)
and the pure disclination part of the defect tensor looks
like (1.8), but with superscript® onn;; ando;;.

The tensors;;, 6;;, andn;; are linearized versions
of important geometric tensors in tRéemann—Cartan
spaceof defects, a non-Euclidean space with curvature
and torsion. Such a space can be generated from a flat
space by a plastic distortion, which is mathematically
represented by aonholonomianapping [7,8]x; —

x; + u;(X). Such a mapping is nonintegrable. The
displacement fields and their first derivatives fail to
satisfy the Schwarz integrability criterion:

(9;0; — 9;0;)u(X) #0,

(0 3j — ajai)akul(X) #* 0. (1.13)
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The metric and the affine connection of the geometry pstress, pdef_ /d?’x[i(Gf/ Y Gfl)

in the plastically distorted space agg; = 8;; + 4\ Y 1+v

diuj + dju; and Ijj; = 9;0;u;, respectively. The _— 115
noncommutativity of the derivatives in front af (x) i | (1.15)

implies a nonzero torsion, the torsion tensor being
Sijk = (Ijx — I'jir)/2. The dislocation density;; is
equal too;; = €k Sk - nij = 77;? + amfmina?n- (1.16)
The noncommutativity of the derivatives in front
of dxu;(x) implies a nonzero curvature. The discli-

where the defect tensor (1.8) has the decomposition

The defects have also core energies which has been ig-
X . . . . nored so far in this continuum formulation of defects.
r11at|on densf|ty9i{- IS the Einstein tensaf;; = Rji — They can properly been taken into account only in a
3¢ji R of this Einstein—Cartan defect geometry. The |,4ice formulations. It has been shown in the textbook
tenson;;;, finally, is the Belinfante symmetric energy—  (g] that these give rise to leading quadratic terms in
momentum tensor, which is defined in terms of the jig|ncation and disclination densities. If we focus at-
canonical energy-momentum tensor and the spin deNn-yanion on the dislocation part of the defect density
sity by a relation just like (1.8). For more details on (1.16), which is relevant for the phase transition to be

the geometric aspects see Part IV in Vol. Il of [6],  gy,djed, their fluctuations are governed by an energy
where the full one-to-one correspondence between de-

fect systems and Riemann—Cartan geometry is devel- pdisl _ . 3 (. b Cc b2
oped as well as a gravitational theory based on this =i /d x<6’m”amh”aj” 3 (@) ) (&.17
analogy. We now assume that the world crystal has undergone
Let us now show how linearized gravity emerges 3 transition to a phase in which dislocations are con-
from the energy (1.3). For this we eliminate the densed. Actually, to reach such a state, whose exis-
jumping surfaces in the defect gauge fields from the tence was conjectured for two-dimensional crystals
partition function by introducing conjugate variables jn Ref. [12], without a simultaneous condensation of
and associated stress gauge fields. This is done bygijsclinations in a first-order melting transition, the

rewriting the elastic action of defect lines as model requires a modification by an additional higher-
gradient rotational energy. This was shown in [13] and

s [ 1/ Vo5 verified by Monte Carlo simulations in [14]. The three-
E= /d x[@ (Gij 1+ V%') dimensional extension of the extended model is de-

scribed in [6]. The expressions are to long to be writ-
(1.14) ten down in the Letter, and their explicit forms are not
relevant for the present discussion. Here we only need
) ) ) the outcome of such a construction that it is possible
wherev = 4/2(1 + p) is Poisson’s ratio, and form- 4 have an elastic plus plastic energy which allows for
ing the partition function by integrating the Boltz- 4 hhase transition in which only dislocations condense
mann factore™#/%sT over oj;, u;, and summing \hile the disclinations remain dilute.
over all jumping surfacesS in the plastic fields. The condensed phase is described by a partition
The integrals overu; yield the conservation law  fnction in which the discrete sum over the pure
d;0;; = 0. This can be enforced as a Bianchi iden- igjocation densities ine’ is approximated by an
tity by introducing a stress gauge fietd; and writ- ordinary functional integral. This has been shown in
ing 0ij = Gij = €€ jmnddmhin. The double curl et [7]. The general integration rule is
on the right-hand side is recognized as the Einstein
tensor in the geometric description of stresses, ex- fd318(3 . I)exp(ﬁ +i|a) =exp<_—a%)
pressed in terms of a small deviatidf = g;; — 6;; 2 28 )’
of the metric from the flat-space form. Insertiy; (1.18)
into (1.14) and using (1.7), we can replace the en- wherear has the components
ergy in the partition function byg = EStess pdef
where ari = —ie;jdjar/y —92.

+iojj (u,'j — u?j)i| ,
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In the non-relativistic context, a dislocation con-
densate is characteristic for a nematic liquid crystal,
whose order is translationally invariant, but breaks ro-
tational symmetry (see [6,12] in the two dimensions
and [15] in the(2 + 1)-dimensional quantum theory).

1 1 The Burgers vector of a dislocation is a vectorial topo-
+ 2¢, Y _—32GU]' logical charge, and nematic order may be viewed as an

o _ ) ~ordering of the Burgers vectors in the dislocation con-
The second term implies a Meissner-like screening gensate. Such a manifest nematic order would break
of the initially confining gravitational forces between ihe jow energy Lorentz-invariance of spacetime. We
the disclination part of the defect tensor to Newton- may, however, imagine that the stiffness of the direc-
like forces. For distances longer than the Planck scale, iona| field of Burgers vectors is so low that, by the cri-
we may ignore the stress term and find the effective terjon of Ref. [16], they have undergone a Heisenberg-
gravitational action for the disclination part of the type of phase transition into a directionally disordered
defect tensor: phase in an environment with only a few disclinations.
s (1 1 I In three dimensions, dislocations (and disclinations)
Ex /d x<2—€CGij_—32Gij +ihij '75,;)- are line-like. This has the pleasant consequence, that
A path integral overh;; and a sum over all line

they can be described by the disorder field theories de-
veloped in [17] in which the proliferation of disclina-
ensembles applied to the Boltzmann factof/" isa  tions follows the typical Ginzburg—Landau pattern of
simple Euclidean model of pure quantum gravity. The the field expectation acqiig a honzero expectation
line fluctuations ofy? describe a fluctuating Riemann  vajue. A cubic interaction becomes isotropic in the
geometry perforated by a grand-canonical ensemble continuum limit [18] (this is the famous fluctuation-
arbitrarily shaped lines ofurvature. As long as the  induced symmetry restoration of the Heisenberg fixed

The Boltzmann factor resulting in this way from
ES"®SSplus (1.17) has now the energy

1 v
’ 3 2 2
E —_fdx[4_<G"f_1 UG,.,.>

G (1.19)

(1.20)

loops are small they merely renormalize the first term
in the energy (1.20). Such effects were calculates in
closely related theories in great detail in Ref. [21].
They also give rise to post-Newtonian terms in the
above linearized desctipn of the Riemann space.

We may now add matter to this gravitational en-
vironment. It is coupled tdi;; by the usual Einstein
interaction
ENt / d3x hi T, (1.21)
where T/ is the symmetric Belinfante energy—mo-
mentum tensor of matter. Inserting f6%; the double-
curl of h;; we see that the energy (1.20) produces the
correct Newton law if the core energy és = 87 G,
whereG is Newton’s constant.

point in a¢*-theory with O(3)-symmetric plus cubic
interactions [19]). The isotropic phase is similar to the
topologicalform of nematic order identified by Lam-
mert et al. [20] as the Coulomb phase in the gener-
alized Z, gauge theory of nematic order: rotational
(Lorentz) invariance is restored even though there is no
condensate of disclinations. A similar isotropic phase
is also found in the theory of non-relativistic elastic-
ity in 2 + 1 dimensions [15] where one learns that
any microscopic rotational anisotropy will render the
topological order unstable towards a full nematic or-
der. The world crystal should certainly lose all infor-
mation on its crystal axes.

The generalization toour Euclidean spacetime di-
mensions changes mainly the geometry of the defects.
In four dimensions, they become world sheets, and a

Note that the condensation process of dislocations second-quantized disorder field description of surfaces

has led to a pure Riemann space without torsion.

Just as a molten crystal shows residues of the origi-

nal crystal structure only at molecular distances, rem-
nants of the initial torsion could be observed only near

the Planck scale. This explains why present-day gen-

eral relativity requires only a Riemann space, not a
Riemann—Cartan space.

has not yet been found. But the approximation of rep-
resenting a sum over disla@an surfaces in the prolif-
erated phase as an integral as in Eq. (1.18) will remain
valid, so that the above line of arguments will survive,
this being a natural generalization of the Meissner—
Higgs mechanism. The diligation sources of curva-
ture will be world sheets, as an attractive feature for



H. Kleinert, J. Zaanen / Physics

string theorists. However, the high-energy properties
will be completely different. On the one hand, these
surfaces behave nonrelativistically as the energies ap-
proach the Planck scale, on the other hand, they will
not have the characteristic multi-Planck recurrences of
the common strings. Although the latter property may
never be verified in the laboratory, the deviations from
relativity at high energies or short distances may come
into experimentalists reach in the possibly distant fu-
ture.

Note that our model has automatically a vanishing
cosmological constant. Since the atoms in the crystal
are in equilibrium, the pressure is zero. This explana-
tion is similar to that given by Volovik [2] with his
helium droplet analogies.
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