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Abstract

We attribute the gravitational interaction between sources of curvature to the world being a crystal which has un
a quantum phase transition to a nematic phase by a condensation of dislocations. The model explains why spacetime has
observable torsion and predicts the existence of curvature sources in the form of world sheets, albeit with different hig
properties than those of string models.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Present-day string models of elementary partic
are based on the assumption that relativistic phy
will prevail at all energy scales and, moreover, sh
recurrent particle spectra at arbitrary multiples of
Planck mass. Disappointed by the failure of the
models [1] to explain correctly even the low-lying e
citations, and the apparent impossibility of ever o
serving the characteristic recurrences, an increasin
number of theoreticians is beginning to suspect
God may have chosen a completely different ext
sion of present-day Lorentz-invariant physics to
tremely high energies [2–4]. This philosophy has be
advocated by one of the authors (H.K.) for alm
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two decades. In 1987, he proposed a simple th
dimensional Euclidean world crystal model of gravi
tion in which dislocations and disclinations repres
curvature and torsion in the geometry of spacetime
A full theory of gravity with torsion based on this pic
ture is published in the textbook [6] (see also [7,8])

The simple 1987 model had the somewhat una
thetic feature that the crystal possessed only sec
gradient elasticity to deliver the correct forces betwe
the sources of curvature, which for an ordinary fir
gradient elasticity grow linearly with the distanceR
and are thus confining. In this Letter we would like
point out that the correct 1/R-behavior can also be ob
tained in an ordinary world crystal with first-gradie
elasticity by assuming that the dislocations have p
liferated. This explains also why the theory of gene
relativity requires only curvature for a correct descr
tion of gravitational forces, but no torsion. Such a st
of the world crystal bears a close relationship with
.

http://www.elsevier.com/locate/pla


362 H. Kleinert, J. Zaanen / Physics Letters A 324 (2004) 361–365

tter
be-
all

ee
za-
tic

d-
ve
s-
in-
nta-
the
bu–
ak-
gi-

he

In
the

ed

ni-
on

ck

n
ed.

ng

tion

ity
h
we

oks

s

ure
a flat
lly

he
to
nematic quantum liquid crystals of condensed ma
physics, first suggested by Kivelson et al. [9], and
lieved to be of relevance both for the quantum H
effect [10] and in high-Tc superconductors [11].

Our model will be formulated as before in thr
euclidean dimensions, for simplicity. The generali
tion to four dimensions is straightforward. The elas
energy is expressed in terms of a materialdisplace-
ment fieldui(x) as

(1.1)E =
∫

d3x

[
µu2

ij (x) + λ

2
u2

ii (x)

]
,

where

(1.2)uij (x) ≡ 1

2

[
∂iuj (x) + ∂j uj (x)

]
is thestrain tensorandµ, ν are the elastic shear mo
uli. The elastic energy goes to zero for infinite wa
length since in this limitui(x) reduces to a pure tran
lation under which the energy of the system is
variant. The crystallization process causes a spo
neous breakdown of the translational symmetry of
system. The elastic distortions describe the Nam
Goldstone modes resulting from this symmetry bre
down. Note that so far the crystal has an extra lon
tudinal sound wave with a different velocity than t
shear waves.

A crystalline material always contains defects.
their presence, the elastic energy depends only on
difference of the total distortion from the so-call
plastic distortionup

i (x). If u
p
ij (x) denotes theplastic

part of the strain tensor, the energy reads

(1.3)E =
∫

d3x

[
µ

(
uij − u

p
ij

)2 + λ

2

(
uii − u

p
ii

)2
]
.

In general, the crystal may contain a grand-cano
cal ensemble of line-like defects with a dislocati
density

(1.4)αil = εijk∂j ∂ku
p
l (x) = δi(x;L)(bl + εlqrΩqxr),

and adisclination density

θil = εijk∂j εpmn

[
∂nu

p
m(x) − ∂mu

p
n(x)

]
(1.5)= δi(x;L)Ωl,

wherebl andΩl are the so-called Burgers and Fran
vectors of the defects andδi(x;L) ≡ ∫

L
dx̄i δ(x − x̄)

areδ-functions on the linesL.
The densities satisfy the conservation laws

(1.6)∂iαik = −εkmnθmn, ∂iθil = 0.

Dislocation lines are either closed or they end i
disclination lines, and disclination lines are clos
These are Bianchi identities of the defect system.

An important geometric quantity characterizi
dislocation and disclination lines is theincompatibility
or defect density

(1.7)ηij (x) = εiklεjmn∂k∂mu
p
ln(x).

It can be decomposed into disclination and disloca
density as follows [6]:

ηij (x) = θij (x) + 1

2
∂m

[
εminαjn(x) + (i ↔ j)

(1.8)− εijnαmn(x)
]
.

This tensor is symmetric and conserved

(1.9)∂iηij (x) = 0,

again a Bianchi identity of the defect system.
It is useful to separate from the dislocation dens

(1.4) the contribution from the disclinations whic
causes the nonzero right-hand side of (1.6). Thus
define apure dislocation density

(1.10)αb
ij (x) ≡ αij (x) − αΩ

ij (x),

which satisfies∂iα
b
ij = 0. Accordingly, we split

(1.11)ηij (x) = ηb
ij (x) + ηΩ

ij (x),

where

(1.12)

ηb
ij (x) = 1

2

[
εminαb

jn(x) + (i ↔ j) − εijnα
b
mn(x)

]
,

and the pure disclination part of the defect tensor lo
like (1.8), but with superscriptsΩ onηij andαij .

The tensorsαij , θij , andηij are linearized version
of important geometric tensors in theRiemann–Cartan
spaceof defects, a non-Euclidean space with curvat
and torsion. Such a space can be generated from
space by a plastic distortion, which is mathematica
represented by anonholonomicmapping [7,8]xi →
xi + ui(x). Such a mapping is nonintegrable. T
displacement fields and their first derivatives fail
satisfy the Schwarz integrability criterion:

(∂i∂j − ∂j ∂i)u(x) �= 0,

(1.13)(∂i∂j − ∂j ∂i)∂kul(x) �= 0.
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The metric and the affine connection of the geome
in the plastically distorted space aregij = δij +
∂iuj + ∂jui and Γijl = ∂i∂j ul , respectively. The
noncommutativity of the derivatives in front oful(x)

implies a nonzero torsion, the torsion tensor be
Sijk ≡ (Γijk − Γjik)/2. The dislocation densityαij is
equal toαij = εiklSklj .

The noncommutativity of the derivatives in fro
of ∂kul(x) implies a nonzero curvature. The disc
nation densityθij is the Einstein tensorθij = Rji −
1
2gjiR of this Einstein–Cartan defect geometry. T
tensorηij , finally, is the Belinfante symmetric energy
momentum tensor, which is defined in terms of
canonical energy–momentum tensor and the spin
sity by a relation just like (1.8). For more details
the geometric aspects see Part IV in Vol. II of [6
where the full one-to-one correspondence between
fect systems and Riemann–Cartan geometry is de
oped as well as a gravitational theory based on
analogy.

Let us now show how linearized gravity emerg
from the energy (1.3). For this we eliminate t
jumping surfaces in the defect gauge fields from
partition function by introducing conjugate variabl
and associated stress gauge fields. This is don
rewriting the elastic action of defect lines as

E =
∫

d3x

[
1

4µ

(
σ 2

ij − ν

1+ ν
σ 2

ii

)

(1.14)+ iσij

(
uij − u

p
ij

)]
,

whereν ≡ λ/2(λ + µ) is Poisson’s ratio, and form
ing the partition function by integrating the Bolt
mann factore−E/kBT over σij , ui , and summing
over all jumping surfacesS in the plastic fields.
The integrals overui yield the conservation law
∂iσij = 0. This can be enforced as a Bianchi ide
tity by introducing a stress gauge fieldhij and writ-
ing σij = Gij ≡ εiklεjmn∂k∂mhln. The double curl
on the right-hand side is recognized as the Eins
tensor in the geometric description of stresses,
pressed in terms of a small deviationhij ≡ gij − δij

of the metric from the flat-space form. InsertingGij

into (1.14) and using (1.7), we can replace the
ergy in the partition function byE = Estress+ Edef

where
Estress+ Edef ≡
∫

d3x

[
1

4µ

(
G2

ij − ν

1+ ν
G2

ii

)

(1.15)+ ihij ηij

]
,

where the defect tensor (1.8) has the decompositio

(1.16)ηij = ηΩ
ij + ∂mεminαb

jn.

The defects have also core energies which has bee
nored so far in this continuum formulation of defec
They can properly been taken into account only i
lattice formulations. It has been shown in the textbo
[6] that these give rise to leading quadratic terms
dislocation and disclination densities. If we focus
tention on the dislocation part of the defect dens
(1.16), which is relevant for the phase transition to
studied, their fluctuations are governed by an ener

(1.17)Edisl = i

∫
d3x

(
εimn∂mhij α

b
jn + εc

2

(
αb

jn

)2
)

.

We now assume that the world crystal has underg
a transition to a phase in which dislocations are c
densed. Actually, to reach such a state, whose e
tence was conjectured for two-dimensional crys
in Ref. [12], without a simultaneous condensation
disclinations in a first-order melting transition, th
model requires a modification by an additional high
gradient rotational energy. This was shown in [13] a
verified by Monte Carlo simulations in [14]. The thre
dimensional extension of the extended model is
scribed in [6]. The expressions are to long to be w
ten down in the Letter, and their explicit forms are n
relevant for the present discussion. Here we only n
the outcome of such a construction that it is poss
to have an elastic plus plastic energy which allows
a phase transition in which only dislocations conde
while the disclinations remain dilute.

The condensed phase is described by a part
function in which the discrete sum over the pu
dislocation densities inαb

jn is approximated by an
ordinary functional integral. This has been shown
Ref. [7]. The general integration rule is

(1.18)

∫
d3l δ(∂ · l)exp

(−βl2

2
+ ila

)
= exp

(−a2
T

2β

)
,

whereaT has the components

aT i ≡ −iεijk∂j ak/

√
−∂2.
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The Boltzmann factor resulting in this way fro
Estressplus (1.17) has now the energy

E′ =
∫

d3x

[
1

4µ

(
G2

ij − ν

1+ ν
G2

ii

)

(1.19)+ 1

2εc

Gij
1

−∂2
Gij

]
.

The second term implies a Meissner-like screen
of the initially confining gravitational forces betwee
the disclination part of the defect tensor to Newto
like forces. For distances longer than the Planck sc
we may ignore the stress term and find the effec
gravitational action for the disclination part of th
defect tensor:

(1.20)E ≈
∫

d3x

(
1

2εc

Gij
1

−∂2Gij + ihij η
Ω
ij

)
.

A path integral overhij and a sum over all line
ensembles applied to the Boltzmann factore−E/h̄ is a
simple Euclidean model of pure quantum gravity. T
line fluctuations ofηΩ

ij describe a fluctuating Rieman
geometry perforated by a grand-canonical ensem
arbitrarily shaped lines ofcurvature. As long as th
loops are small they merely renormalize the first te
in the energy (1.20). Such effects were calculate
closely related theories in great detail in Ref. [2
They also give rise to post-Newtonian terms in
above linearized description of the Riemann space.

We may now add matter to this gravitational e
vironment. It is coupled tohij by the usual Einstein
interaction

(1.21)E int ≈
∫

d3x hij T ij ,

where T ij is the symmetric Belinfante energy–m
mentum tensor of matter. Inserting forGij the double-
curl of hij we see that the energy (1.20) produces
correct Newton law if the core energy isεc = 8πG,
whereG is Newton’s constant.

Note that the condensation process of dislocati
has led to a pure Riemann space without tors
Just as a molten crystal shows residues of the o
nal crystal structure only at molecular distances, re
nants of the initial torsion could be observed only n
the Planck scale. This explains why present-day g
eral relativity requires only a Riemann space, no
Riemann–Cartan space.
In the non-relativistic context, a dislocation co
densate is characteristic for a nematic liquid crys
whose order is translationally invariant, but breaks
tational symmetry (see [6,12] in the two dimensio
and [15] in the(2 + 1)-dimensional quantum theory
The Burgers vector of a dislocation is a vectorial top
logical charge, and nematic order may be viewed a
ordering of the Burgers vectors in the dislocation c
densate. Such a manifest nematic order would b
the low energy Lorentz-invariance of spacetime.
may, however, imagine that the stiffness of the dir
tional field of Burgers vectors is so low that, by the c
terion of Ref. [16], they have undergone a Heisenbe
type of phase transition into a directionally disorde
phase in an environment with only a few disclinatio
In three dimensions, dislocations (and disclinatio
are line-like. This has the pleasant consequence,
they can be described by the disorder field theories
veloped in [17] in which the proliferation of disclina
tions follows the typical Ginzburg–Landau pattern
the field expectation acquiring a nonzero expectatio
value. A cubic interaction becomes isotropic in t
continuum limit [18] (this is the famous fluctuation
induced symmetry restoration of the Heisenberg fi
point in aφ4-theory with O(3)-symmetric plus cubi
interactions [19]). The isotropic phase is similar to t
topologicalform of nematic order identified by Lam
mert et al. [20] as the Coulomb phase in the gen
alized Z2 gauge theory of nematic order: rotation
(Lorentz) invariance is restored even though there i
condensate of disclinations. A similar isotropic pha
is also found in the theory of non-relativistic elast
ity in 2 + 1 dimensions [15] where one learns th
any microscopic rotational anisotropy will render t
topological order unstable towards a full nematic
der. The world crystal should certainly lose all info
mation on its crystal axes.

The generalization to four Euclidean spacetime d
mensions changes mainly the geometry of the defe
In four dimensions, they become world sheets, an
second-quantized disorder field description of surfa
has not yet been found. But the approximation of r
resenting a sum over dislocation surfaces in the prolif
erated phase as an integral as in Eq. (1.18) will rem
valid, so that the above line of arguments will surviv
this being a natural generalization of the Meissn
Higgs mechanism. The disclination sources of curva
ture will be world sheets, as an attractive feature
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string theorists. However, the high-energy proper
will be completely different. On the one hand, the
surfaces behave nonrelativistically as the energies
proach the Planck scale, on the other hand, they
not have the characteristic multi-Planck recurrence
the common strings. Although the latter property m
never be verified in the laboratory, the deviations fr
relativity at high energies or short distances may co
into experimentalists reach in the possibly distant
ture.

Note that our model has automatically a vanish
cosmological constant. Since the atoms in the cry
are in equilibrium, the pressure is zero. This expla
tion is similar to that given by Volovik [2] with his
helium droplet analogies.
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