Reentrant Phenomenon in Quantum Phase Diagram of Optical Boson Lattice
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We calculate the location of the quantum phase transitions of a gas of bosons trapped in an
optical lattice as a function of effective scattering length aeg and temperature 1'. Knowledge of
recent high-loop results on the shift of the critical temperature at weak couplings is used to locate
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a nose in the phase diagram above the free Bose-Einstein critical temperature 7! ), thus predicting
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the existence of a reentrant transition above TC( ), where a condensate should form when increasing
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1) Optical lattices offer the possibility to investi-
gate the properties of Bose-Einstein condensates (BECs)
at varying interaction strengths [1, 2]. If bosons of
mass M are trapped in a three-dimensional cubic pe-
riodic potential V(x) of lattice vectors 6, i.e., V(x) =
Vo 2?21 sin?(g;z;) with ¢; = 7/6, the wave vector q de-
fines an energy scale E, = h’q? /2M. 1If the individual
potential wells are deep, i.e., Vo > E,, the single parti-
cle Wannier functions w(x) in the nearly harmonic wells
are given by oscillator ground-state wave functions at
the lattice sites § with size Ag = \/h/Mwy and energy

fiwo = 2E, (Vo/ E,n)l/ 2. The lowest energy band arising
due to Bloch’s theorem reads, up to a trivial additive
constant,
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e(k) =27 > [1 -~ cos(k:d)] . (1)
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Here J follows from the tight-binding approximation as
J = [ @rw(x)[~h*V?/2M +V (x)]Jw(x+8) and is equal

to [3]
g (8w [2()] e

Due to the low-density of the system, a repulsive po-
tential V(x) = ¢6®)(x) with the coupling constant
g = 4m2h%a /M approximates well all relevant spherically
symmetric short-range two-particle interactions, where
a is the s-wave scattering length. In an optical lattice,
this gives rise to an effective repulsive é-function interac-
tion with strength [2, 3] geg /62 =U = g [ dPzw'(x) =
(ajag)2hwo/V2r = (2ma/N\)\/8/7E,(Vo/E,)**. The
importance of the interactions between the particles in
the periodic traps is measured by the ratio v = U/J
between interaction energy U = gegn with geg =
42 h e /Mg and kinetic energy J = h*n?/3/2M.g,
where n is the particle density (= f/82 for filling fac-
tor f). This leads to v = 8maeg n'/>.

The experimental optical lattice of Ref. [4] is made of
laser beams with wavelength A = 26=852 nm and con-
tains about 2 x 10° atoms 3"Rb with a ~ 4.76 nm [5]. Its
energy scaleis E, ~ i x 20kHz =~ kg x 150 nK and V,/ E,
is raised from 12 to 22. In this range, J/E, drops from
0.014 to 0.002, U/ E, increases from 0.36 to 0.57, hiwg/ E;

increases from 0.36 to 0.57. Expanding the small-k be-
havior of the band energy (1) as h’k?/2Mg + ..., the
band width 4. defines an effective mass Mg of the par-
ticles Mog = h2/2J52. In a typical BEC with acg of the
order of A and n~'/3 of a few thousand A, their ratio
is extremely small. For the particles tightly bound in
an optical lattice, however, aeg n'/3 can be made quite
large. In the experiment [4] for temperatures near zero
we have v = 0.0248 exp(2+/Vo/E,.), so that the increase
of the potential depth Vy/FE, from 12 to 22 raises aegnt/3
from 1 to 11.7.

Above the quantuin phase transition, the excitation en-
ergies of the bosons acquire a gap which pins the atoms
to their potential wells. Expressed differently, the Gold-
stone modes of translations have become massive and the
associated phase fluctuations decoherent, in accordance
with the criterion found in Ref. [6].

For increasing temperatures, we expect the critical
aognl/? to decrease until it hits zero as T reaches
roughly the free BEC critical temperature TC(O) =
21h? /Megk[C(3/2)/n]?/? with ((3/2) ~ 2.6124. In the
above experiment where V;/E,. is raised from 12 to 22,
the temperature TC(O) drops from 14.2 nK to 1.93 nK,
implying that TC(O) /E, drops from 0.094 to 0.013. Hence
J and kT (kp = Boltzmann constant, 7" = tempera-
ture) are much smaller than 7wy, so that we can ignore
all higher bands.

The purpose of this note is to derive the full tempera-
ture dependence of this transition, thereby predicting a
surprising reentrant phenomenon [7].

2) We begin by considering a D-dimensional Bose gas
in the dilute limit where the two-particle d-function in-
teraction is dominant. In the grand-canonical ensemble
it is described by the Euclidean action

hp
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where p is the chemical potential, and 8 = 1/kgT. To de-
scribe the phase transition in this gas we calculate its ef-
fective energy. We expand the Bose fields ¥ (x, 7) around
a constant background VU, ie. ¥(x,7) = U + §(x,7),
and perform the functional integral for the partition func-
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FIG. 1: Phase diagram of Bose-Einstein condensation in vari-
ationally improved one-loop approximation without (dotted)
and with properly imposed higher-loop slope properties at
TC(O) (dashed length increasing with order of variational per-
turbation theory). Short solid curve starting at T is due to
Arnold et al. [22]. Dashed straight line indicates the slope of
our curve extracted either from Monte-Carlo data [18, 19] or
recent analytic results [20, 21]. Diamonds correspond to the
Monte-Carlo data of Ref. [17] and dots stem from Ref. [23],
both scaled to their critical value aeg (1= 0) ~ 0.63.

tion including only the harmonic fluctuations in ¢ (x, 7).
This yields the one-loop approximation to the effective
potential

* geff n
V(U 0) =V (—pl U+ 7|\IJ|4) + 2> B(K)
k

+% Zk:ln[l — e PEM)] (4)

with quasiparticle energies

B(k) = /{e(l) — 1+ 20| WPY — g1, (5)

An expansion parameter = 1 has been introduced
whose power serves to count the loop order. The ex-
tremum of the effective potential (4) with respect to the
condensate density ng = W*V yields the grand-canonical
potential Q(p, T). The chemical potential p is fixed by
the total particle density n(u,T) = =V 19Q(u, T')/Op.
Eliminating p in favor of the condensate density ng via
no = |¥|? = p/get + O(n), and keeping only terms of or-
der O(n) on the right-hand side of Eq. (4), the so-called
Popov approximation [8], we find for the particle density

n €(k> + gefino
n—mg = —
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This result is derived only for a small right-hand side
where n &~ ng. A standard way to extend such a relation
to n > ng is by making the equation self-consistent, re-
placing ng by n on the right-hand side. Thus we obtain
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FIG. 2: Phase diagram of the superfluid-Mott insulator tran-
sition for increasing hopping order (right to left). The quan-
tity «y is the ratio U/.J.

for the physical value n =1
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The location of the quantum phase transition for all 7" is
obtained by solving this equation for ng = 0 [13, 14]. The
evaluation will be discussed in in the next two paragraphs
for different one-particle spectra e(k).

Note that a more satisfactory approach to derive the
self-consistent Eq. (7) from (6) proceeds by applying
variational perturbation theory to according to the rules
developed in [9, 10], and applied successfully to critical
phenomena in [11] as well as many other strong-coupling
problems [11, 12]. In V(¥, ¥*) one introduces a dummy
variational parameter i by replacing p — f + nr with
r = (u— @)/n, and re-expand V consistently at fixed
r up to the first power in 1. After this one re-inserts
r = (u — 1)/n and extremizes the resulting expression
with respect to g and YW*. The result turns out to be
precisely Eq. (7).

3) We first discuss the formation of a condensate for
the free-particle spectrum e(k) = h’k?/2M.g, where the
sum in (7) reduces to Y, — V [dPk/(27)P . The in-
tegral of the zero-temperature contribution can now be
evaluated analytically, and we obtain in D = 3 dimen-
sions the following equation for the transition curve in
the T' — acg plane [7]:

Ja 2/3 o 1/3
e M [1 + 6 I(a)] <64> . (8)

Here I(«) abbreviates the integral

ra+ 8

I(w) :/ dx ,
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and « is the dimensionless parameter
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with ¢ = T/TC(O) being the reduced temperature. The
result is shown in Fig. 1. For small temperatures, the
transition curve behaves like

aeﬂ'nl/3 =ag+ajx—+ CLQCYZ + 0O ((13) 5 (11)

with the dimensionless expansion coefficients ag =
(97/64)Y/3 ~ 0.762, a; ~ —0.3132, and ay ~ 0.1996. The
interaction causes an upward shift of the critical temper-

ature from t(o) =1to

- 4 277 1/3
te = 1+ 353 gy Ve 340 (an'?) . (12)

This has the square-root behavior found before in Ref.
[15, 16], with the positive sign agreeing with Ref. [16].

As announced in the abstract, the phase diagram in
Fig. 1 has the interesting property that there exists a
reentrant transition above the critical temperature TC(O)
of the free system, which shows up as a nose in the tran-
sition curve, where a condensate can be produced by in-
creasing aeg, which disappears upon a further increase
of aegr. Our curves agree qualitatively with early Monte-
Carlo simulations [17] as shown in Fig. 1.

Recent Monte-Carlo simulations [18, 19] and precise
high-temperature calculations [20, 21] indicate, however,

that the approximation (12) is unreliable near TC(O), the
leading critical temperature shift being linear in the scat-
tering length aeg:

te =1+ craean'/? + O (agﬂn2/3) ; (13)

with a coefficient ¢; ~ 1.3.

It is possible to improve our self-consistent approxima-
tion (8) to accommodate the high-loop result (13). This
can be done with the help of variational perturbation
theory [9, 11, 12, 24]. For this we use the expansion
(11) with a few exact coefficients and add two more trial
coefficients to enforce the behavior (13). This produces
a sequence of improved transition curves shown in Fig.
1 as dashed curves [7].

4) We now consider the true band spectrum (1) where
the wave vectors k are restricted to the Brillouin zone
k; € (—m/0,7/6), and the sum in (7) reduces to the inte-

gral >, — V]_[Z 1 fﬁ/rt/s& dk;/2m. The integral is eval-

uated using the hopping expansion [25], in which one
expands the integrand in powers of the cosines in (1).
By doing so, we express the result in terms of the lat-
tice interaction U = gegn. The transition curve is now
determined by the implicit equation

Fp (kBTC U) =0, (14)
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FIG. 3: Convergence of hopping expansion for the critical
value of U/J at the zero-temperature quantum phase transi-
tion. The limiting value is (U/J)T=° ~ 30.8.

where in zeroth hopping order

D? + Dy
4\/D2+D +y+2D
4\/D2+D —y—2D

The resulting transition curve for D = 3 and the next
three approximations coming from successive hopping or-
ders are shown in Fig. 2. A fast convergence is ob-
served, with the approximation sequence of transition
transition points at 7' = 0 corresponding to (U/J)}=0 =
6(3 + 2v/3) ~ 38.8, 34.1, 32.2, 31.8, 31.6 ... which con-
verge to roughly 30.8, as shown in Fig. 3.

Thus our value is smaller than the mean-field result
(U/J)I=0 ~ 34.8 derived from Bose-Hubbard model
[1, 26 28] and the experimental number (U/J)I=0 ~ 36
[4]. The associated hopping sequence of transition tem-

F () = - (15)

peratures at U = 0 converges to TC(O) ~ 3.6 J/kp.
The higher-loop slope for the lattice spectrum of e(k) is

unknown, so that we cannot improve the result near TC(O)
in the same way as for the free-particle spectrum. By
analogy, we may, however, assume that the characteris-
tic reentrant transition will also here survive higher-loop
corrections.

For the experimentalist it is important to know
whether this phenomenon persists if the optical lattice
is stabilized by an overall weak magnetic trap of a typ-
ical frequency werap & 27 X 24 Hz which is necessary
to prevent the particles from escaping the optical lat-
tice. According to the result of Ref. [29], the nose in
the transition curve could disappear since for the free-
particle spectrum an external trap causes a reversal of
the slope of the transition curve at 70 [30, 31], the shift
(13) becoming

te ~ 1-3.427 \/ri xraXaegn®/® = 1-0.136 \/ryxrax U/ J,

(16)
where r = kBTc(O)/27rhwtmp and ry = 1/)\wtmpn1/3 is
the ratio between the length scale §/f/3 and the width

of the trap A.,., = \/h/Mcgwirap. These numbers



have the ranges m € (0.27,2.0) and ro € (0.52,1.4)
so that 0.136 x /r1 X ra lies between 0.037 and 0.27,
experimentally.

Note added in proof: After this paper appeared on
the Los Alamos server, P.J.H. Denteneer drew our
attention to a preprint of his written with D.B.M.
Dickerscheid, D. van Oosten, and H.T.C. Stoof (eprint:
cond-mat/0306573) in which they also found a nose in
the phase diagram (see their Figure 6). According to
his private communication they did not, however, inter-
pret their nose as a signal for a reentrant transition but

considered it as an artefact of their slave boson approach.
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