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We extend field theoretic variational perturbation theory by self-similar approximation theory, which greatly
accelerates convergence. This is illustrated by recalculating the critical exponents ofOsNd-symmetric f4

theory. From only three-loop perturbation expansions in 4−e dimensions, we obtainanalytic resultsfor the
exponents, which are close to those derived recently from ordinary field-theoretic variational perturbational
theory to seventh order. In particular, the specific-heat exponent is found to be in good agreement with
best-measured exponenta<−0.0127 of the specific-heat peak in superfluid helium, found in a satellite experi-
ment. In addition, our analytic expressions reproduce also the exactly known large-N behavior of the
exponents.
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I. INTRODUCTION

The precise calculation of critical exponents of phase
transitions is an important theoretical task. On the one hand,
these exponents provide us with basic information on the
behavior of thermodynamic quantities in the vicinity of criti-
cal points. On the other hand, such calculations require the
development of new mathematical techniques to master the
resummation problem of divergent perturbation expansions
ssee, e.g.,f1,2gd. The comparison of the calculated exponents
with experiment serves as a test for the validity and accuracy
of the mathematical methods.

Recently, a powerful method has been developed by one
of the authors calledfield-theoretic variational perturbation
theory f3–5g, which converts divergent weak-coupling into
convergent strong-coupling expansions. This method pre-
sents a more powerful alternative to the previously used
method of Padé-Borel resummation. The improvement
comes from an efficient use of the knowledge on the ap-
proach of the strong-coupling limit, characterized by the
Wegner exponentsv. Higher accuracy has been amply dem-
onstrated by calculating the critical exponentsf1,4,6g, in par-
ticular by predicting the most accurately known exponent
a<−0.0127f5g of the specific-heat peak in superfluid he-
lium, found in a satellite experiment with a temperature reso-
lution of nanoKelvin.

An important feature of any resummation method is the
convergence of the renormalized sequence of approximants.
This can be studied by considering the analytic properties of
the sought function with respect to coupling and by involv-
ing the corresponding dispersion relationsf1,7g. The field-
theoretic variational perturbation theory was shown to pos-
sess an exponentially fast convergencessee the detailed
proof in f8gd.

In an independent development, the other of the authors
has set up a general resummation scheme calledself-similar

approximation theoryf9–13g. This method also exhibits a
fast convergence, which has been demonstrated for a variety
of problems in quantum mechanics, statistical physics, and
mathematical financessee the review-type papersf14,15gd.
The aim of the present joint paper is to combine the two
approaches. The combination is expected to have the fastest
convergence available so far.

In Sec. II, we give a brief reminder of the basic formulas
of field-theoretic variational perturbation theory, which will
be used as a basis for a further acceleration of the conver-
gence via self-similar approximation theory to be reviewed
in Sec. III. In Sec. IV, we develop the combination of the two
methods, which is then applied in Sec. V to calculate the
critical exponents of theOsNd-symmetricf4 field theory.

II. FROM WEAK TO STRONG COUPLING

Physical quantities of interest are usually derived from
theories as divergent series in powers of some bare coupling
constantgB. These provide us with reliable results only for
very small gB. Critical phenomena, however, take place at
infinitely largegB in comparison with the mass, the inverse
length scale of the fluctuationsf1g. In order to overcome this
difficulty, one has to reorganize the divergent weak-coupling
series into a convergent strong-coupling expansion. Such a
reorganization is provided by the field-theoretic variational
perturbation theoryf3–5,8g, briefly summarized in this sec-
tion to recall the principal formulas needed in what follows.

Consider a real functionfsgBd of a realgB, whose limit
fs`d we want to find from a divergent weak-coupling expan-
sion up to orderL,

f sLdsgBd = o
n=0

L

fngB
n sgB → 0d, s1d

with L=1,2,3, . . .enumerating the maximally available or-
der. Our aim is to find the behavior offsgBd at gB→`. The
expansion coefficients grow factorially withn so that the
seriess1d could make sense only for very smallgB.
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Field-theoretic variational perturbation theory is based on
the introduction in Eq.s1d of a variational parameterK by
the identical replacement

gB → gB

sK2 + gBrdq, r ;
1 − K2

gB
, s2d

whereq is a parameter related to the critical Wegner expo-
nents v, which in the renormalization-group approach to
critical phenomena governs the approach to scaling. The pa-
rameterq in this paper corresponds toq/2 in the original
work f3g. After the replacement, the seriess1d is reexpanded
in powers ofgB at fixedr, and at the endr is again replaced
by s1−K2d /gB. This procedure introduces an artificial depen-
dence on the dummy parameterK which is fixed by search-
ing for a plateau inK which becomes flatter and flatter for
increasing order. The plateau is horizontal only for the cor-
rect choice ofq, and this condition will determine the Weg-
ner coefficientv f16g.

In the upcoming calculations, we shall work with a
slightly different but completely equivalent replacement

gB → s

s1 − gBrdq, r ;
s

gB
, s3d

wheres is defined as a function ofgB,

s ; ssgBd ; 1 −S s

gB
D1/q

. s4d

Following the rules of field theoretic variational perturbation
theory, we have to form the functions

FsLdsgB,s,qd ; f sLdS s

s1 − gBrdqD s5d

to be calculated with the prescription that the termsgB
n

;sn/ s1−gBrdnq in the truncated seriess1d are reexpanded
systematically in powers ofgB up to gB

L−n. After this, we
replace againr →s /gB and optimize the resulting function in
the variational parameters. Using the binomial expansion

s1 − sdp . o
m=0

L−n

Cm
p s− sdm,

Cm
p ;

Gsp + 1d
Gsm+ 1dGsp − m+ 1d

, s6d

we obtain explicitly

FsLdsgB,s,qd = o
n=0

L

o
m=0

L−n

Cm
−nqs− sdmfns

n. s7d

This must be optimized ins, yielding an order-dependent
function ssLdsgBd and an associated ssLdsgBd;1
−fssLdsgBd /gBg1/q.

Note that Eqs.s2d and s3d are identities and not directly
related to the functions appearing in the Symanzik-type
transformationsf17g, in spite of a certain similarity.

Our aim is to find the behavior of Eq.s7d in the strong-
coupling limit gB→`. From Eqs. s3d we observe that

s→1 asgB→` since, as we shall see, the optimals is finite.
This allows us to calculate from Eq.s7d as a finite approxi-
mantFsLds` ,s,qd. In what follows, we limit ourselves to the
approximants of third order, since then all calculations can
be done analytically. The first three approximants are explic-
itly

Fs1ds`,s,qd = f0 + f1s, s8d

Fs2ds`,s,qd = Fs1ds`,s,qd + qf1s+ f2s
2, s9d

Fs3ds`,s,qd = Fs2ds`,s,qd +
1

2
qs1 + qdf1s+ 2qf2s

2 + f3s
3.

s10d

The optimal valuesssLd=ssLds`d are found either by ex-
tremization

U ]

]s
FsLds`,s,qdU

s=ssLd
= 0, s11d

or, when the latter has no real solutions, from the turning
points

U ]2

]s2FsLds`,s,qdU
s=ssLd

= 0. s12d

To second order, there exists an extremum at

ss2d = − s1 + qd
f1

2f2
. s13d

To third order, there can be two possibilities. There is an
optimal extremums=ss3d at one of the roots of the cubic
equation

3f3s
2 + 2s1 + 2qdf2s+

1

2
s1 + qds2 + qdf1 = 0 s14d

and a turning point at

ss3d = − s1 + 2qd
f2

3f3
. s15d

Usually, conditionss11d ands12d yield optimal values ofssLd

alternatively for odd and even ordersL, respectivelyssee
f1,3–6,8,18gd, and this will be the case in the upcoming ap-
plications of this paper.

After determiningssLd, we obtain the optimized approxi-
mants

FsLdopts`,qd ; FsLds`,ssLd,qd. s16d

To second order, this is

Fs2dopts`,qd = f0 − s1 + qd2 f1
2

4f2
, s17d

and to third order, withss3d of Eq. s15d ssee Ref.f4gd,
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Fs3dopts`,qd = f0 − s1 + qds1 + 2qds2 + qd
f1f2

6f3

+ s1 + 2qd3 2f2
3

27f3
2 . s18d

For each approximants16d, we must also specify the pa-
rameterq. If the Wegner exponent were known from other
sources, we could use this. Otherwise we must determine it
order by order, which yields anL-dependent resultq=qsLd, so
that the final approximants will be

FsLdopt ; FsLdopts`,qsLdd. s19d

The determination ofqsLd proceeds as follows. If we ex-
pect the functionfsgBd to be finite in the strong-coupling
limit, which is the case for the critical exponents, then the
logarithmic derivative, to be referred to as ab function f1g,

bsgBd ;
d log fsgBd

d log gB
, s20d

must tend to zero forgB→`: bs`d=0. From the expansion
s1d, it is straightforward to derive

bsLdsgBd = o
n=0

L

bngB
n . s21d

Depending on whetherf0 is nonzero or zero, the coefficients
bn, up to third order, are given either by

b0 = 0, b1 =
f1

f0
, b2 = 2

f2

f0
−

f1
2

f0
2 , s22d

b3 =
f1
3

f0
3 − 3

f1f2

f0
2 + 3

f3

f0
sf0 Þ 0d, s23d

or by equations

b0 = 1, b1 =
f2

f1
, b2 = 2

f3

f1
−

f2
2

f1
2 , s24d

b3 =
f2
3

f1
3 − 3

f2f3

f1
2 + 3

f4

f1
sf0 = 0d. s25d

Now we treat the expansionsbsLdsgBd in the same way as
beforef sLdsgBd. We form the approximantsBsLdopts` ,qd simi-
lar to the way of deriving Eq.s16d. This is setBsLdopts` ,qd
equal to zero to ensurebs`d=0 in each approximation. This
determines the proper parametersq=qsLd. For instance,

qs2d = 2Îb0b2

b1
2 − 1. s26d

Note that the logarithmic derivative for determiningqsLd

can be formed from any function ofgB with a constant
strong-coupling limitf19g, i.e., from any critical exponent,
not just from the functionfsgBd we want to resum at the
moment. Usually, the functiongRsgBd relating gB to the
renormalized coupling constantgR is most convenient, since
it is known to highest order.

III. SELF-SIMILAR APPROXIMATION THEORY

Self-similar approximation theoryf9–13g is based on con-
structing a sequence of optimized approximants, which con-
tain instead of a variational parameter atrial function. The
general idea of deriving convergent sequences of optimized
approximants with the help of trial control functions has
been suggested inf20g. The first step in the optimization
procedure is reminiscent of the Euler-Lagrange variational
method. But while the latter is a single-step proceduref21g,
the optimized perturbation theory runs via a sequence of bet-
ter and better approximants.

In the last section, we have shown how to calculate a
sequence of trial functionshFsLdsgB,s,qdj by field-theoretic
variational perturbation theoryfsee Eq.s7dg. From these,s
andq can be determined as functions ofgB by optimization.
In self-similar approximation theoryf9–13g, the approxi-
mants of different order are considered as a flow on the
manifold of approximants, in which orderL of the approxi-
mation plays the role of a discretized pseudotime. In this
interpretation, the sequence of approximations behaves like a
dynamical system. The higher approximations will be ob-
tained by improving the entire control functionsssLdsgBd,
even if we are only interested in the strong-coupling value
fs`d, for which the previous method required only an opti-
mal parameterssLds`d, Thus we have to perform the optimi-
zation procedure for allgB beforegoing to the limitgB→`.
Instead of Eqs.s11d and s12d, we have to solve the full ex-
tremality condition

U ]

]s
FsLdsgB,s,qdU

s=ssLdsgBd
= 0 s27d

and, if this has no real solution, the turning point condition

U ]2

]s2FsLdsgB,s,qdU
s=ssLdsgBd

= 0, s28d

to find the lowest approximation for the trial functionsssLd

=ssLdsgBd. More explicitly, we could also record the param-
eterq at which the optimization is done in the arguments and
write the solution asssLdsgB,qd. But we shall refrain from
doing so to avoid cluttering the notation. For the same reason
we shall omit, for a while, the argumentq in FsLds` ,s,qd.

Starting from the trial functionsssLdsgBd, we construct an
approximation following the general scheme developed in
f9–15g. We define the reonomic functiongB=gB

sLdsfd by the
reonomic constraint

Fs1d
„gB,ssLdsgBd… = f, s29d

whereFs1d is the lowest nontrivial function in the sequence
hFsLdj. Now further define an entire sequence of functions

ysLdsfd ; f sLdsgB
sLdsfd,ssLd

„gB
sLdsfd…d, s30d

with the initial term ys1dsfd=f. The set of all functions
ysLdsfd for L=1,2,3, . . . constitutes a spaceY,ysLdsf ,qd
called approximation space. The pseudotime evolution in
this space forms a group of self-similarity transformations,
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ysL+pdsfd = ysLd
„yspdsfd…. s31d

The property of self-similaritys31d guarantees the existence
of a fixed pointy* =ysLd* f14,15g, which has the property

y* = ysLdsy*d. s32d

More explicitly, the fixed point satisfies

ysLd* ; FsLd*sgB
sLdd ; FsLd*

„gB
sLd,ssLdsgB

sLdd…, L ù 1.

s33d

It defines the desired self-similar approximant

f sLd*sgBd ; FsLd*sgBsfd,ssLd
„gBsfd…d. s34d

In order to find the fixed point, we define a pseudoveloc-
ity of the approximation sequence by the finite difference

vsLdsfd ; FL+1
„gB

sLdsfd,ssLdsfd… − f sLd
„gB

sLdsfd,ssLdsfd….
s35d

If the hysLdj with discreteL=0,1,2, . . .were a flow function
hystdj of a continuous timetù0, it would follow a time evo-
lution equation

]

]t
ystdsfd = vstd

„ystdsfd…. s36d

The integral form of the latter can be presented as the evo-
lution integral

E
ysLd

ysLd* df

vsLdsf,qd
=

1

L
. s37d

If the parameterq is unknown, it must be determined from a
simultaneous treatment of theb function s20d. In this case,
we determine a sequence of optimal parametersq=qsLd* ,
leading to the self-similar approximants

f sLd*sgBd ; FsLd*
„gB,ssLdsgBd,qsLd*

…. s38d

For the purpose of determining critical exponents, we are
only interested infsgBd at gB→` and go to the limit of Eq.
s38d, yielding

f sLd* ; lim
gB→`

f sLd*sgBd. s39d

The self-similar approximants39d replaces the previous op-
timized approximants19d of field-theoretic variational per-
turbation theory.

From the definition of the pseudovelocitys35d, it follows
that for the calculation of theL-order self-similar approxi-
mant f sLd* , we need to knowL+1 orders of the expansion in
Eq. s1d. If L is the last available order, we shall use as an
sL+1dst approximation the average of the previous ones,

f sL+1d* =
1

2
sf sL−1d* + f sLd*d. s40d

This approximation is expected to be reliable if the approxi-
mants tend to the limitL→` in an alternating fashion, once
from above and once from below. This is nota priori en-
sured, but happens in many examples. In the series for the
critical exponents to be treated here, this seems to be true.

Thus Eq.s40d will be used to obtain the highest approximant.
A more refined mathematical foundation for the usage of
Eqs.s39d and s40d is given in Refs.f22,23g.

IV. COMBINING SELF-SIMILAR AND VARIATIONAL
THEORIES

Let us now be explicit and improve the convergence of
the sequencehf sLdoptj of variational perturbation theory de-
rived in Eqs.s16d–s19d by self-similar approximation theory
to obtain a new sequencehf sLd*j. The improvement is most
drastic at the initial stages of the procedure, whenLø3, so
that we shall restrict ourselves to these low orders. An addi-
tional advantage is that all formulas up to third order can be
derived analytically.

Recall that, in contrast to Sec. II, we do not consider from
the beginning the limit ofgB→`, but retain the fullgB de-
pendence of the functionss7d,

Fs1dsgB,s,qd = f0 + f1s, s41d

Fs2dsgB,s,qd = Fs1dsgB,s,qd + qf1ss+ f2s
2, s42d

Fs3dsgB,s,qd = Fs2dsgB,s,qd +
1

2
qs1 + qdf1s2s+ 2qf2ss2

+ f3s
3, s43d

which reduce to Eqs.s8d–s10d for gB→` since thens→1.
For arbitrarygB, we must optimizeFsLd in s. Sinces depends
on s via the relations4d, we may look for the extremum in
the twos ands while satisfying the condition

ds

ds
=

s − 1

qs
. s44d

If this is done with the functionFsLd, we obtain an optimal
function ssLdsgBd. From this we calculate the approximant

FsLdoptsgB,qd ; FsLd
„gB,ssLdsgBd,q…. s45d

To lowest orderL=1, an optimal function usually does not
exist. In this case, we shall use the next higher existing
ss2dsgBd to define the lowest approximant. In principle we
could, of course, form an entire off-diagonal matrix of varia-
tional functions,

FsL,L8dsgB,qd ; FsLd
„gB,ssL8dsgBd,q…. s46d

of which the functionss16d in Sec. II are only diagonal ele-
ments,

FsLdopts`,qd = FsL,Lds`,qd. s47d

The optimal functionss2dsgBd is determined by the extre-
mality conditions27d, which amounts to the equation

s1 + qdf1ssgBd + 2f2s= 0. s48d

From this, we obtain the variational expression
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Fs2doptsgB,qd = Fs2,2dsgB,qd = f0 + f1s
s2d +

1 − q

1 + q
f2s

s2d2.

s49d

In addition, we determine a lowest approximant with a first-
order trial functionss1dsgBd=ss2dsgBd,

Fs1doptsgB,qd = Fs1,2dsgB,qd = f0 + f1s
s2d. s50d

The third-order trial functionss3dsgBd is given by the
extremum-point conditions27d, which yields

1

2
s1 + qds2 + qdf1s2 + 2s1 + 2qdf2sss3d + 3f3s

s3d = 0.

s51d

If Eq. s51d has no real solution, we apply the turning point
condition s28d and solve

s1 + qds2 + qdf1sss − 1d + 2s1 + 2qdf2s
s3dss − 1 +qsd

+ 6f3qss3d2 = 0. s52d

We now construct the approximation cascade following
the rules of Sec. III. Accordingly, we setys1d=Fs1d, ys2d

=Fs2d, andysLd=FsLd for Lù2. Therefore, the reonomic con-
straint s29d reads f0+ f1s=f, which defines the reonomic
function gB

s1dsfd through the relation

ss2d
„gBsfd… =

f − f0

f1
. s53d

The first-order pseudovelocity as defined in Eq.s35d is vs1d

=Fs2,1d−Fs1,1d, which reads explicitly

vs1dsf,qd = A1sf − f0d2, s54d

with

A1 ;
s1 − qdf2

s1 + qdf1
2 . s55d

Using the evolution integrals37d, we find from self-similar
approximants33d the expression

Fs1d*sgB,qd = f0 +
Fs2,2dsgB,qd − f0

1 − A1fFs2,2dsgB,qd − f0g
, s56d

whereFs2,2d of Eq. s45d is given by Eq.s49d. In the strong-
coupling limit gB→`, this reduces to

Fs1d*s`,qd = f0 −
s1 + qd2f1

2

s5 − qd2f2
. s57d

Let us now determine the value of the parameterq, fol-
lowing the procedure described at the end of Sec. II, but with
the difference that now we construct the self-similar approxi-
mants for the expansions21d of theb function, which will be
denoted by BsLd*sgB,qd. These have the same form as
FsLd*sgB,qd, except that the expansion coefficientsfn are re-
placed bybn. The parametersqsLd* are defined by the bound-
ary condition

BsLd*s`,qsLd*d = 0. s58d

To first order, the result is

qs1d* =
Îb0b2s4b1

2 + 5b0b2d − b1
2

b1
2 + b0b2

. s59d

Substituting this into Eq. s56d, we obtain f s1d*sgBd
=Fs1d*sgB,qs1d*d, in agreement with Eq.s34d. The final result
is given by Eq.s39d, that is, by the valuef s1d* = f s1d*s`d.

The second-order velocitys35d is vs2d=Fs3,2d−Fs2,2d,
where

Fs3,2dsgB,qd = Fs2,2dsgB,qd +
s1 + qdf1f3 − 2qf2

2

s1 + qdf1
ss2d3,

s60d

which is valid for anygB, in particular in the limitgB→`,
where

Fs3,2ds`,qd = f0 − s1 + qd3 f1
2

4f2
S f1f3

2f2
2 −

1 − q

1 + q
D . s61d

The explicit form of the velocityvs2d is now

vs2dsf,qd = A2sf − f0d3, s62d

where

A2 ;
s1 + qdf1f3 − 2qf2

2

s1 + qdf1
4 . s63d

From the evolution integrals37d, we find here

Fs2d*sgB,qd = f0 +
Fs2,2dsgB,qd − f0

Î1 − A2fFs2,2dsgB,qd − f0g2
. s64d

The valueqs2d* follows from the strong-coupling condition
s58d, which leads to the equation

s1 + qs2d*d4sb0
2b1b3 − 2b0

2b2
2 + b1

4d + 2s1 + qs2d*d3b0
2b2

2

− 16b0
2b2

2 = 0. s65d

Inserting the appropriate solutionqs2d* into Eq. s64d, we ob-
tain f s2d*sgBd=Fs2d*sgB,qs2d*d. And the limiting values39d is
f s2d* = f s2d*s`d. If only three orders of the expansions1d are
available, thenf s3d* is defined by Eq.s40d, as explained at the
end of Sec. III.

V. APPLICATION TO CRITICAL EXPONENTS

The above theory will now be applied to evaluate the
divergent perturbation expansions of the critical exponents of
theOsNd-symmetricf4 field in 4−e dimensions. The expan-
sions are power series in the bare coupling parametergB/me,
wherem is some mass parameter to makegB/me dimension-
less. They can be found up to six loops in the textbookf1g. In
this field-theoretic context, the parameterq in the transfor-
mations3d is directly related to the Wegner exponentv f24g,
which characterizes the strong-coupling behavior of the
renormalized coupling

gsgBd . gs`d − const3
mv

gB
v/e sgB/me → `d. s66d

The relation is
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v = e/q. s67d

In the sequel, we shall setm=1. The starting point is the
expansionf1g for the renormalized coupling constant, which
we shall limit togB

4 for simplicity,

gRsgBd . gB + c2gB
2 + c3gB

3 + c4gB
4 , s68d

wheregB→0 and the coefficients are

c0 = 0, c1 = 1, c2 = −
N + 8

3e
, c3 =

sN + 8d2

9e2 +
3N + 14

6e
,

c4 = −
sN + 8d3

27e3 −
4sN + 8ds3N + 14d

27e2

−
33N2 + 922N + 2960 + 24s27N + 88dzs3d

648e
, s69d

with zszd being the Riemann zeta function. The logarithmic
derivative of Eq.s68d yields theb function

bs3dsgBd =
d log gsgBd

d log gB
= 1 +b1gB + b2gB

2 + b3gB
3 , s70d

with the coefficients

b1 = c2, b2 = 2c3 − c2
2, b3 = c2

3 − 3c2c3 + 3c4. s71d

In second-order variational perturbation theory, we haveqs2d

given by Eq.s26d, which yields

qs2d = 2Î1 + pe − 1, s72d

where the notation

p ;
3s3N + 14d

sN + 8d2 s73d

is used. The first-order self-similar approximantqs1d* is de-
fined in Eq.s59d, resulting in

qs1d* =
Îs1 + peds9 + 5ped − 1

2 + pe
. s74d

The corresponding Wegner exponents are

vs2d =
e

2Î1 + pe − 1
s75d

in the variational perturbation theory, and

vs1d* =
s2 + pede

Îs1 + peds9 + 5ped − 1
s76d

in the self-similar approximation theory.
The second-order optimized approximant

Gs2dopts`,qd =
3s1 + qd2e

4sN + 8d
, s77d

corresponding to the renormalized couplings68d, with the
parameters72d, becomes

gs2dopt =
3se + pe2d

N + 8
, s78d

according to Eq.s19d. The first-order self-similar approxi-
mant

Gs1d*s`,qd =
3s1 + qd2e

s5 − q2dsN + 8d
, s79d

with qs1d* from Eq.s74d, results ing1
* =G1

*s` ,qs1d*d, as in Eq.
s39d. It turns out that, because of the equality

s1 + qs1d*d2

5 − sqs1d*d2 = 1 + pe, s80d

the valuesgs1d* and gs2dopt coincide. However,gs2d* , follow-
ing from Eq.s64d, is different fromgs3dopt.

We now turn to the perturbation expansions of the critical
exponentsn andg. Other exponents need not be treated since
they can be found from the above using well-known scaling
relationsssee, e.g.,f1,25,26gd. We begin withn−1, for which
we use the expansionf1g up to gB

3,

n−1s3d = f0 + f1gB + f2gB
2 + f3gB

3 , s81d

with the coefficients

f0 = 2, f1 = −
N + 2

3
, f2 =

N + 2

9
SN + 8

e
+

5

2
D , s82d

f3 = −
N + 2

108
F4sN + 8d2

e2 +
2s19N + 122d

e
+ 3s5N + 37dG .

s83d

Following the above procedure, we get the optimized strong-
coupling value

n−1s2d* = 2 − s1 + qd2 sN + 2de
2s2N + 16 + 5ed

, s84d

which, for qs2d from Eq. s72d, gives the variational perturba-
tion resultn−1s2dopt=n−1s2dopts` ,qs2dd. Its self-similar improve-
ment reads

n−1s1d*s`,qd = 2 −
2s1 + qd2sN + 2de

s5 − q2ds2N + 16 + 5ed
. s85d

After insertingqs1d* from Eq. s74d, we obtain

n−1s1d* = 2 −
2sN + 2ds1 + pede

2sN + 8d + 5e
. s86d

Again, it turns out thatn−1s1d* =n−1s2dopt, but n−1s2d* Þns3dopt,
with n−1s2d* defined by Eq.s49d.

Finally, we resum the perturbation expansion for the criti-
cal exponentg=ns2−hd, which reads in the formf1g

gsgBd . f0 + f1gB + f2gB
2 + f3gB

3 , s87d

with the coefficients

f0 = 1, f1 =
N + 2

6
, f2 = −

N + 2

36
F2sN + 8d

e
+ 4 −NG ,

s88d
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f3 =
N + 2

432
F8sN + 8d2

e2 +
4s106 +N − 2N2d

e

+ 194 +Ns2N + 17dG . s89d

Here we find the optimized approximant

gs2dopts`,qd = 1 +
s1 + qd2sN + 2de

4f2sN + 8d + s4 − Ndeg
s90d

and the self-similar approximant

gs1d* = 1 +
sN + 2ds1 + pede

2sN + 8d + s4 − Nde
. s91d

Again gs1d* coincides with the variational perturbation result
gs2dopt=gs2dopts` ,qs2dd, whereasgs2d* does not equalgs3dopt.

By construction, the self-similar approximantsf sLd* ob-
tained from the evolution integrals30d possess the samee
expansion, up to the given orderL, as the optimized approx-
imant f sLdopt of variational perturbation theory. This is evident
from expressionss56d ands64d. For the variational perturba-
tion results, on the other hand, it was shown in Refs.
f4–6,19g that all expansions in powers ofe coincide with the
expansions derived in the renormalization-group approach to
critical phenomenaf1g. As a consequence, also the presently
derived self-similar approximantsf sLd* possess the exacte
expansions. This can easily be verified by an explicit calcu-
lation.

It is interesting to compare the 1/N expansions with the
self-similar approximants for largerN. These expansions for
the critical exponentsv, n, g, andh are presented in Fig. 1,
where they are compared with our self-similar approximants
as well as with the results of the sixth-order variational per-
turbation theoryf1g, and with those of Padé-Borel resumma-
tions f27,28g. Our third-order results have the same accuracy
as those of sixth or higher orders, obtained by other resum-
mation techniques. In the limitN→`, our exponents coin-
cide with the known exact values

a =
D − 4

D − 2
, b =

1

2
, g =

2

D − 2
, d =

D + 2

D − 2
, s92d

n =
1

D − 2
, h = 0, v = 4 −D, s93d

whereD is dimensionality.
Critical exponents for finiteN have been calculated by

Padé-Borel resummation methods based on six- and seven-
loop expansions inD=3 dimensionsf29–32g or in five-loop
expansions in D=4−e dimensions f33–36g. In Refs.
f30–32,36g, Borel-Leroy transformation has been used, com-
bined with a conformal mapping. Different variants of the
optimized perturbation theoryf20g have been usedf37–40g.
Self-similar exponential approximants were given inf41g.
Computer simulations, based on the Monte Carlo lattice
studies, were presented inf42g. The available results have
been reviewed in Refs.f1,43,44g.

A list of our results from the third-order self-similar im-
provements of variational perturbation theory for the critical
exponents is given in Table I. The exponentsn, g, andv are
calculated directly from their series, as is explained in the
text. The other listed exponents are obtained from the scaling
relations

FIG. 1. Solid curves show our third-order approximations to
v ,n ,g ,h. Short-dashed is second-, long-dashed curve is third-order
approximation. Thin dots show sixth-order approximation of the
textbookf1g, fat dots the extrapolations to infinite order. The dash-
dotted lines in the second and third figures are interpolations to the
Padé-Borel resummations off27,28g swherev was not calculatedd.
Their data forh scatter too much to be represented in this way—
they are indicated by small circles in the fourth figure. The dotted
curves show 1/N expansions of all four quantities. Note that our
results lie closer to these than those of S.A. Antonenko and A.I.
Sokolov. The solidh curve was calculated in the textbookf1g ssee
Fig. 20.2d. The exact large-N limits are vN=`=4−D, nN=`=1/sD
−2d, gN=`=2/sD−2d, andhN=`=0. The exact values atN=−2 are
nN=−2=1/2, gN=−2=1, andhN=−2=0 for all D.
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TABLE I. Third-order critical exponents of self-similar variational perturbation results of this paper obtained from three-loop expansions
in 4−e dimensions. Results are compared with the six-loopsfor N.3d exponents and seven-loop exponentssfor N=0,1,2,3d calculated in
three dimensions in Refs.f3–5g and listed in the textbookf1g. We also show the exponents obtained by Padé-Borel resummation in Ref.f28g,
as well as earlier resultssall cited in Notes and Referencesd. They refer to six-loop expansions inD=3 dimensionsf29–32g, or to five-loop
expansions ine=4−D f34,35g. The numbers in parentheses indicate the highest calculated approximationsseventh order forN=0,1,2,3 and
sixth order forN.3d from which the final results were obtained by extrapolation to infinite order. The critical couplingsgc are different for
calculations in 4−e and three dimensions due to different normalizations.

N gc g h n a b v sv6d

−2 0.758±0.037 1 0 1/2 2−D /2 sD−2d /4 0.831±0.077

0 0.578±0.021 1.161±0.004 0.028±0.005 0.588±0.001 0.235±0.001 0.311±0.001 0.812±0.055

1.161s1.159d 0.0311±0.001 0.5886s0.5864d 0.234 0.810s0.773d f5g
1.168s1.159d 0.025s0.0206d 0.592s0.586d 0.810s0.7737d f1g

1.402 1.160 0.034 0.589 0.231 0.305 f27,28g
1.421±0.004 1.161±0.003 0.026±0.026 0.588±0.001 0.236±0.004 0.302±0.004 0.794±0.06f29g
1.421±0.008 1.1615±0.002 0.027±0.004 0.5880±0.0015 0.3020±0.0015 0.80±0.04f30–32g

1.160±0.004 0.031±0.003 0.5885±0.0025 0.3025±0.0025 0.82±0.04 f36g
1 0.510± 1.238±0.004 0.037±0.009 0.630±0.008 0.109±0.012 0.327±0.004 0.808±0.046

1.241s1.236d 0.0347±0.001 0.6310s0.6270d 0.107 0.805s0.772d f5g
1.241s1.235d 0.030s0.0254d 0.630s0.627d 0.805s0.7724d f1g

1.419 1.239 0.038 0.631 0.107 0.327 0.781 f27,28g
1.416±0.0015 1.241±0.004 0.031±0.011 0.630±0.002 0.110±0.008 0.324±0.06 0.788±0.003f29g
1.416±0.004 1.2410±0.0020 0.031±0.004 0.6300±0.0015 0.3250±0.0015 0.79±0.03f30–32g

0.035±0.002 0.628±0.001 0.80±0.02 f33–35g
1.1239±0.004 0.037±0.003 0.6305±0.0025 0.3265±0.0025 0.81±0.04 f36g

2 0.454±0.012 1.310±0.019 0.045±0.012 0.671±0.018 −0.0124±0.0270 0.343±0.009 0.807±0.038

1.318s1.306d 0.0356±0.001 0.6713s0.6652d −0.0129 0.800s0.772d f5g
1.318s1.306d 0.032s0.0278d 0.670s0.665d 0.800s0.7731d f1g

1.408 1.315 0.039 0.670 −0.010 0.348 0.780 f27,28g
1.406±0.005 1.316±0.009 0.032±0.015 0.669±0.003 −0.007±0.009 0.346±0.009 0.78±0.01 f29g
1.406±0.004 1.3160±0.0025 0.033±0.004 0.6690±0.0020 0.3455±0.002 0.78±0.025f30–32g

0.037±0.002 0.665±0.001 0.79±0.02 f33–35g
1.315±0.007 0.040±0.003 0.671±0.005 0.3485±0.0035 0.80±0.04 f36g

3 0.407±0.010 1.378±0.037 0.052±0.015 0.709±0.030 −0.126±0.045 0.359±0.013 0.807±0.031

1.390s1.374d 0.0350±0.0005 0.7072s0.7004d −0.122 0.797s0.776d f5g
1.387s1.372d 0.032s0.0288d 0.705s0.700d 0.797s0.7758d f1g

1.392 1.386 0.038 0.706 −0.117 0.366 0.780 f27,28g
1.392±0.009 1.390±0.01 0.031±0.022 0.705±0.005 −0.115±0.015 0.362 0.78±0.02 f29g
1.391±0.004 1.386±0.004 0.033±0.004 0.705±0.003 0.3645±0.0025 0.78±0.02f30–32g

0.037±0.002 0.79±0.02 0.79±0.02 f33–35g
1.390±0.010 0.040±0.003 0.710±0.007 0.368±0.004 0.79±0.04 f36g

4 0.368±0.008 1.442±0.056 0.057±0.018 0.744±0.043 −0.232±0.064 0.374±0.018 0.809±0.026

1.451s1.433d 0.031s0.0289d 0.737s0.732d 0.795s0.780d f1g
1.375 1.449 0.036 0.738 −0.213 0.382 0.783 f27,28g

5 0.335±0.007 1.501±0.076 0.060±0.019 0.776±0.055 −0.328±0.082 0.388±0.022 0.812±0.022

1.511s1.487d 0.0295s0.0283d 0.767s0.760d 0.795s0.785d f1g
1.357 1.506 0.034 0.766 −0.297 0.396 0.788 f27,28g

6 0.306±0.006 1.554±0.095 0.062±0.020 0.804±0.066 −0.414±0.099 0.399±0.025 0.814±0.019s0.792d
1.558s1.535d 0.0276s0.0273d 0.790s0.785d 0.797s0.792d f1g

1.339 1.556 0.031 0.790 −0.370 0.407 0.793 f27,28g
7 0.282±0.005 1.601±0.112 0.062±0.020 0.829±0.075 −0.489±0.0113 0.409±0.028 0.818±0.016

1.599s1.577d 0.0262s0.0260d 0.810s0.807d 0.802s0.800d f1g
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a = 2 −nD, b =
n

2
sD − 2 +hd, g = ns2 − hd. s94d

The error bars are defined by the difference betweenf sLd* and
f sL−1d* . Our results are compared with those of the field-
theoretic variational perturbation theory based on six-loop
sfor N.3d and seven-loopsfor N=0,1,2,3d expansions cal-
culated in three dimensions in Refs.f3–5g and listed in the
book f1g. We also show the exponents recently obtained by
Padé-Borel resummationf28g, as well as earlier results
f29–36g, based on six-loop expansions inD=3 dimensions
f29–32g and on five-loop expansions inD=4−e dimensions
f33–36g. The numbers in parentheses indicate the highest
calculated approximationsseventh order forn=0,1,2,3 and
sixth order forN.3d, from which the effective extrapola-
tions to infinite order were obtained as described in the book

f1g. Comparing the results, we see that our third-order self-
similar approximants yield the values for the critical expo-
nents, which are close to those derived by other resummation
techniques of sixth or seventh order. In the limiting cases of
N=−2 andN=`, our results coincide with the known exact
values of the critical exponents.

The critical exponents obtained by our method from
three-loop perturbation expansions are all in good agreement
with all experiments. Unfortunately, most of them are not
sufficiently accurate to distinguish between different theoret-
ical approaches. The most accurately known experiment is
the measurement of the specific heat of liquid helium with
nanoKelvin temperature resolution near the lambda point,
which were performed in a satellite orbiting around the Earth
f45,46g. The specific-heat exponent initially extracted from
the data inf45g was a=−0.010 56±0.0004. This differed
slightly from the result of seven-loop variational perturbation

TABLE I. sContinued.d

N gc g h n a b v sv6d

1.321 1.599 0.029 0.811 −0.434 0.417 0.800 f27,28g
8 0.261±0.004 1.643±0.127 0.061±0.019 0.851±0.083 −0.553±0.125 0.416±0.030 0.821±0.014

1.638s1.612d 0.0247s0.0246d 0.829s0.825d 0.810s0.808d f1g
1.305 1.637 0.027 0.830 −0.489 0.426 0.808 f27,28g

9 0.243±0.004 1.680±0.140 0.059±0.019 0.869±0.089 −0.608±0.134 0.422±0.032 0.825±0.012

1.680s1.643d 0.0233s0.0233d 0.850s0.841d 0.817s0.815d f1g
1.289 1.669 0.025 0.845 −0.536 0.433 0.815 f27,28g

10 0.226±0.003 1.713±0.150 0.057±0.017 0.884±0.093 −0.654±0.140 0.426±0.032 0.828±0.010

1.713s1.670d 0.0216s0.0220d 0.866s0.854d 0.824s0.822d f1g
1.275 1.697 0.024 0.859 −0.576 0.440 0.822 f27,28g

12 0.199±0.003 1.765±0.163 0.054±0.015 0.908±0.098 .0726±0.147 0.480±0.032 0.836±0.007

1.763s1.716d 0.0190s0.0198d 0.890s0.877d 0.838s0.835d f1g
1.249 1.743 0.021 0.881 −0.643 0.450 0.836 f27,28g

14 0.178±0.002 1.804±0.170 0.048±0.012 0.925±0.099 −0.777±0.148 0.486±0.031 0.843±0.006

1.795s1.750d 0.0169s0.0178d 0.905s0.894d 0.851s0.849d f1g
1.227 1.779 0.019 0.898 −0.693 0.457 0.849 f27,28g

16 0.160±0.002 1.833±0.172 0.042±0.010 0.938±0.097 −0.814±0.146 0.490±0.030 0.850±0.004

1.822s1.779d 0.0152s0.0161d 0.918s0.907d 0.862s0.860d f1g
1.208 1.807 0.017 0.911 −0.732 0.463 0.861 f27,28g

18 0.146±0.001 1.856±0.171 0.038±0.008 0.946±0.095 −0.840±0.142 0.492±−0.028 0.856±0.003

1.845s1.803d 0.0148s0.0137d 0.929s0.918d 0.873s0.869d f1g
1.191 1.829 0.015 0.921 −0.764 0.468 0.871 f27,28g

20 0.134±0.001 1.873±0.168 0.033±0.006 0.953±0.091 −0.861±0.137 0.493±0.026 0.862±0.002

1.864s1.822d 0.0125s0.0135d 0.938s0.927d 0.883s0.878d f1g
1.177 1.847 0.014 0.930 −0.789 0.471 0.880 f27,28g

24 0.114±0.001 1.898±0.158 0.027±0.004 0.963±0.084 −0.889±0.126 0.429±0.023 0.873±0.001

1.890s1.850d 0.0106s0.0116d 0.950s0.939d 0.900s0.894d f1g
1.154 1.874 0.012 0.942 −0.827 0.477 0.896 f27,28g

28 0.100±0.001 1.915±0.148 0.023±0.002 0.969±0.077 −0.907±0.116 0.427±0.021 0.882±0.000

1.909s1.871d 0.009232
s0.01010d

0.959s0.949d 0.913s0.906d f1g

1.136 1.893 0.010 0.951 −0.854 0.481 0.909 f27,28g
` 0 2/sD−2d 0 1/sD−2d sD−4d / sD−2d 1/2 4−D
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theory obtained from three-dimensionalf4 theory, which
yielded a=−0.0129±0.0006f5g. However, a recently per-
formed reanalysis of the data in Ref.f46g found a
=−0.0127±0.0003, thus confirming with great precision the
theoretical result of Ref.f5g. Our present resulta=−0.0124
obtained in third-order self-similar-improved variational per-
turbation theory is again in perfect agreement with the latest
experimental result. This is quite remarkable since the five-
loop calculations in 4−e dimensions gave the valuea
=−0.013f41g. This illustrates the acceleration of the conver-
gence of variational perturbation theory by the self-similar
improvement developed in this paper. Note that calculating a
small value ofa is a rather complicated task, so that the error
bars fora are usually quite large, which is also the case in
our calculations, where the error bar is about 100% ofa.

The main concern of this paper has been to demonstrate
how the acceleration of the convergence can be achieved by
combining two methods, each of which provides sufficiently
fast convergence. For theN-component field theory, with not
too large N, our third-order results are close to those of
higher orders in other resummation techniques. Under the
order, we mean the number of loops involved in the deriva-
tion of the series, employed in further resummation. Our
results forv andh at intermediateN,5−50 deviate slightly
from those obtained in extrapolating the sixth-order approxi-
mation in the bookf1g. However, these values ofN are less
physically interesting than the lowerN values, where our
results practically coincide with the sixth-order onesf1g.
And, we would like to stress that in the limitN→`, our
results yield the known exact values of the exponents.

The accuracy of our calculations could be improved by
employing the higher-loop expansions for the initial series.

This, however, requires the usage of more complicated nu-
merical calculations, which would be outside the scope of
the present paper. Here we would like to emphasize that the
acceleration of convergence can be achieved already at the
very beginning of the resummation procedure, where the
analytical treatment is still admissible.

In conclusion, we have developed a method for resum-
ming divergent perturbation expansions. It combines field-
theoretical variational perturbation theory with self-similar
approximation theory, and accelerates greatly the conver-
gence of either method by itself. The acceleration is espe-
cially useful if only low-order expansions are available due
to the complexity of the problem. Up to third order, all re-
sults are found analytically. The method was illustrated by
calculating the critical exponents whose third-order approxi-
mants are found to be close to the sixth- or seventh-order
approximants of other resummation techniques. The specific-
heat critical exponenta for N=2 is found to be in perfect
agreement with the most accurately measured experimental
value ofa for superfluid helium.
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