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Path-integral approach to 't Hooft’'s derivation of quantum physics from classical physics
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We present a path-integral formulation of 't Hooft’s derivation of quantum physics from classical physics.
The crucial ingredient of this formulation is Goztial's supersymmetric path integral of classical mechanics.
We quantize explicitly two simple classical systems: the planar mathematical pendulum and the Rossler
dynamical system.
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I. INTRODUCTION tial [1,12], Nelson’s osmotic potentigP], or Parisi and Wu'’s
) ) _ o fifth-time parametef4,5].

In recent decades, various classical, i.e., deterministic, ap- Another deterministic access to quantum-mechanical sys-
proaches to quantum theory have been proposed. Examplgsms was recently proposed by 't Hoft3,14 with subse-
are Bohmian mechanidd], and the stochastic quantization quent applications in Ref§15-21]. It is motivated by black-
procedures of Nelsof2], Guerra and Ruggier8], and Pa- hole thermodynamicsand particularly by the so-called
risi and Wu[4,5]. Such approaches are finding increasingholographic principle[22,23), and hinges on the concept of
interest in the physics community. This might be partially information loss This and certain accompanying nontrivial
ascribed to the fact that such alternative formulations help igeometric phases are able to explain the observed nonlocal-
explaining some quantum phenomena that cannot be easilly in quantum mechanics. The original formulation has ap-
explained with the usual formalisms. Examples are multiplepeared in two versions: one involving a discrete time axis
tunneling [6], critical phenomena at zero temperat(iid,  [16], the second continuous timgs4]. The goal of this pa-
mesoscopic physics and quantum Brownian oscillafefs ~ Per is to discuss further and gain more understanding of the
and quantum-field-theoretical regularization proceduredtter model. The reader interested in the discrete-time model
which manifestly preserve all symmetries of the bare theory@y find some practical applications in Ref24,25. It is
such as gauge symmetry, chiral symmetry, and supersymm@9t our purpose to dwell on the conceptual foundations of
try [9]. They allow one to quantize gauge fields, both Abelian t HOOft'S proposal. Our aim is to set up a possible useful
and non-Abelian, without gauge fixing and the ensuing cumf’“tﬁrn"’mvf1 formulation of 't Hrc])qfts model and Suantlzau?n
bersome Faddeev-Popov ghokts], etc. scheme that is based on path integfals]. It makes use o

The primary obiective of a reformulation of quantum Gozziet al’s path-integral formulation of classical mechan-
P Yy obj q ics [26,27] which appears to be a natural mathematical

is basicall fold. On the f U'side. it is hooed that thi ¥ramework for such a discussion. The condition of the infor-
Is basically twofold. On the formal side, it Is hoped that this yiion 1oss, which is basically a first-class subsidiary con-

will help in attacking quantum-mechanical problems from Astraint, can then be incorporated into path integrals by stan-

different direction using hopefully more efficient mathemati- 4,4 techniques. Although 't Hooft's procedure differs in its
cal techniques than the conventional ones. Such techniqugs sie rationale from stochastic quantization approaches, we
may be based on stochastic calculus, supersymmetry, or vady,qy that they share a common key feature, which is a hid-
ous new numgncal approachesee, €.9., Refs[.5,;1_] and den BRST invariance, related to the so-called Nicolai map
citations thereiin On the conceptual side, deterministic sce-

; hoped hed iah Id orobl 8]. To be specific, we shall apply our formulation to two
harios are hoped to shed new light on some old problems ofj,qqicq| systems: a planar mathematical pendulum and the
quantum mechanics, such as the origin of the superpositiog,

e f litud d the th ¢ mplest deterministic chaotic system—the Rdssler attractor.
rule for amplitudes and the theory of quantum measuremeng, iiapje choices of the “loss of information” condition then

It may lead to new ways of quanti;ing chaqtic dynamical llow us to identify the emergent quantum systems with a

systems, and _ultlmately a long-awaited cqnsustent thepry ree particle, a quantum harmonic oscillator, and a free par-

quantum gravity. There is, howeV(_ar,_a price to_be paid for;|a weakly coupled to Duffing’s oscillator.

this; such theories must have a built-in nonlocality to escape Our paper is organized as follows In Sec. Il we quantize

problemg with Bell’s inequalities. Nonlocgllty may be incor- 't Hooft's Hamiltonian system by expressing it in terms of a

porated in numerous ways—the Bohm-Hiley quantum poten;,au, integral which is singular due to the presence of second-
class primary constraints. The singularity is removed with
the help of the Faddeev-Senjanovic prescripfid®,30. It is

*Email address: blasone@sa.infn.it then shown that the fluctuating system produces a classical
"Email address: petr@cm.ph.tsukuba.ac.jp partition function. In Sec. Il we briefly review Gozet al.'s
*Email address: kleinert@physik.fu-berlin.de path-integral formulation of classical mechanics in configu-
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ration space. The corresponding phase-space formulation is #=pa—0.~0, ¢#5=p,~0. (5)
more involved and will not be considered here. By imposing ] ] )

the condition of a vanishing ghost sector, which is character he use of the symbok instead of = is due to Diraf32]
istic for the underlying deterministic system, we find that the@nd it has a special meaning: two quantities related by this
most general Hamiltonian system compatible with such symbol are equal after all constraints have been _enforced.
condition is the one proposed by 't Hooft. In Sec. IV we The system has no secondary constrajate Appendix A
introduce 't Hooft's constraint which expresses the property!e matrix formed by the Poisson brackets of the primary
of information loss. This condition not only explicitly breaks constraints,

the BRST symmetry but, when coupled with the Dirac- a b\l — _

Bergmann algorithm, it also allows us to recast the classical {420, £2(0} = = Oa ©
generating functional into a form representing a propemhas a nonzero determinant, implying that all constraints are
guantum-mechanical partition function. Section V is devoteddf the second class. Note that on the constraint manifold the
to application of our formalism to practical examples. WecanonicalHamiltonian(4) coincides with 't Hooft's Hamil-
conclude with Sec. VI. For the reader’s convenience the patonian (1).

per is supplemented with four appendixes which clarify To quantize 't Hooft's system we utilize the general
some finer mathematical points needed in the paper. Faddeev-Senjanovic path integral form(i20,3Q for time

evolution amplitudes
II. QUANTIZATION OF 't HOOFT'S MODEL

Consider the class of systems described by Hamiltonians  (q,,t,|q;,t;) :/\/f Dp Dq\;’|de¢|{¢i,¢j}|||]_[ N o]
of the form i

N i (2 _
H=2 pafa(@). (1) Xexp{g— ft dffpq - H(q,p)]}. (7)
a=1 1

Such systems emerge in diverse physical situations, for eXSI"9 thﬁ ~shorthand  notation ¢={¢1, 3, 4%,
ample, Fermi fields, chiral oscillatof€0], and noncommu-  #2:---»¢1. 2} (i=1,...,2N), Eq. (7) implies in our case
tative magnetohydrodynami¢81]. The relevant example in that
the present context is the use of Ed) by 't Hooft to for-
mulate hisdeterministicproposal[13]. (A2 tolag, ty) =/\/’f Dp Dq Dp Dadlp - qldp]

An immediate problem with the above Hamiltonian is its

unboundedness from below. This is due to the absence of a i [t =
leading kinetic term quadratic in the momemiZ 2M, and xex ﬁf d{pg +pg - H(q,q,p,p)]
we shall dwell more on this point in Sec. IV. The equations 4
of motion following from Eq.(1) are a(tz)=02 _ i (e— .
=Nf Dq Dgex —f L(a,9,9,q)dt
. P ﬁfa(Q) q(tl):ql h ty
Ja= fa(Q)1 Pa=—Pa— - (2
d9, q(tp)=0, )
Note that the equation far, is autonomous, i.e., it is decou- =N attp=a, Dq];[ A0a~ fa(@)], (8)

pled from the conjugate momengg. The absence of a qua-
dratic term makes it impossible to find a Lagrangian via awvhere &[f]=I1;5(f(t)) is the functional version of Dirac’s
Legendre transformation. This is because the system ifinction. This result shows that after quantization the system
singular—its Hess matrix2°= ¢?H/ dp,dp, vanishes. described by the Hamiltoniafl) retains its deterministic
A Lagrangian yielding the equations of motid8) can  character. The paths are squeezed onto the classical trajecto-
nevertheless be found, but at the expense of doubling thees determined by the differential equatiogs=f.(q). The
configuration space by introducing additional auxiliary vari- time evolution amplitud€8) contains a sum over only the
ablesg,(a=1,...,N). Thisextended.agrangian has the form classical trajectories—there are no quantum fluctuations
N driving the system away from the classical paths, which is
T . — precisely what we expect from a deterministic dynamics.
L= g’l [Ga0la = Gafa(a)] ©) The amplitudg8) can be brought to a more intuitive form
by utilizing the identity
and it allows us to define canonically conjugate momenta in

the usual wayp,=dL/dd,, pa=dL/da, A Legendre trans- Jf(a) - g]= &la - dal(detM) ™, ©)
formation produces the Hamiltonian whereM is a functional matrix formed by the second deriva-
o N _ N tives of the actionZ[q,qTEfdtf(q,E,q,aj:
H(Pa, oy Par Ga) = 21 Patla + Palla— L = El afa(@). (4)
a= a=

'other path-integral s of systems with second-class constraints
The rank of the Hess matrix is zero, which gives rise & 2 such as that of Fradkin and Fradkif8] would lead to the same
primary constraints, which can be chosen as result(8).
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_ L (o
Map(t,t') = 52—{ . (10) exp[éft dthf(q)}

5qa(t) 5qb(t,) a=q CRCH
_ _ 1(* .
The Morse index theorem then ensures that for sufficiently = j Dq dq- qc,]expl— —J dt Vaq} . (149
short time intervalg,—t; (before the system reaches its first 2Jy

focal poind, the classical solution with the initial condition we can finally write the amplitude of transition in the sug-
q(ty)=q, is unique. Note, however, that because of the first- gestive form

order character of the equations of motion we are dealing .

with a Cauchy problem, which may happen to possess no a(t2)=az _ _
classical trajectory satisfying the two Dirichlet boundary (2t ) = NV . DqDq dq-qgldd-aql
conditionsq(t;) =gy, q(t,)=q,. If a trajectory exists, Eq(8) a(t)=ay

1 (2 L a(tp)=a, .
can be brought to the form XQXp{_ _f dtvaq] =N Dq Dq
__[altp)=a, 2 ty q(ty)=a,
(A2, tlqp,t) =N Dq &4 - qal, (1) __ [detK(ty)
aty)=ay X 5[q - qcl] é[q__ qcl] : . (15)
detK(ty)

where/T/EN/(detM). We close this section by observing HereK(t) is the fundamental matrix of the solutions of the
that detM can be recast into more expedient form. To do thissystem
we formally write

= _adfy(q)
1a(a(0) . (0
detM = de <<9t62+ L)&(t—t’) _ - _ _
() detK(t) is then the corresponding Wronskian. Note that in
af (q(t) the particular case wheN,f(q)=0, i.e., when the phase
= exp{Tr In <6t52+ E“—)(S(t—t’) ] flow preserves the volume of any domain in tenfigura-
90(D) tion space, the exponential in E(L5) can be dropped Be-
, L ofa(a(t’)) cause the exponent depends only on the end points af the
=exp Tring (525“ —t)+G(t-t') aaqb(t’) variable it can be removed by performing the trace ayer

As a result we can cast the quantum-mechanical partition
function (or generating functionalZ into the form

—exp[Tr(Inat)]ex Trin|[&28(t—t)

ZoN f Dq DT o - 4lod - G

+G(t—

afa(q(t’) H (12

Igp(t") t, _
xexp{ f [J(Hq(t) +J(t)q_(t)]dt}
5]

Here G(t—t’) is the Green’s function satisfying the equation
t

aG(t-t)=ot-t). :Nf DQaé[qa_(qa)cl]eXp|:f dt Ja(t)qa(t):|- 17
t

ChoosingG(t—-t')=#6(t-t’), and noting that the first factor in
Eqg. (12 is an irrelevant constant that can be assimilated int

1

A—|ere the doubled vector notatiap={q,q} and J,={J J_}

N we have was used.
Ill. PATH-INTEGRAL FORMULATION OF CLASSICAL
_ )  9fa(at’) MECHANICS: CONFIGURATION-SPACE
detM = exp[Tr In||828(t—t') + G(t—t') S0t APPROAGH
B . Ifa(q(t) Expressions(11) and (17) formally coincide with the
=exp Tr| ot -t') (1) path-integral formulation of classical mechanics in configu-

. ration space proposed by GoZ26] and further developed

_ 1(2 by Gozzi, Reuter, and Thackg27] (see also Ref[21] for

-exp[ f dthf(q)}. (13 recent applications Let us briefly review aspects of this
which will be needed here. Consider the path-integral of the

In deriving Eq.(13) we have used the fact that due to the generating functional of a quantum-mechanical system with
product of thed function in the expansion of the logarithm, action-Algl:

all terms vanish but the first one. In evaluating the general-

ized functioné(x) at the origin we have used the only con- 2?This corresponds to the situation when there are no attractors in
sistent midpoint rulg¢11]: #(0)=1/2. Using the identity the configuration spack,.
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t
Zow=N J Dq e_iA[q]/heXp[ J J(t)q(t)dt] (18) Zem= f Dq D DcDEexp[iS+ J dtJ(t)q(t)],
51

We assume in this context that there are no constraints that (23
woulq make the measure more compll_cated as m_(lzh. with the new action

Gozzi et al. proposed to describe classical mechanics by a
generating functional of the fornil8) with an obviously . 2 SA
modified integration measure which gives equal weight to all ~ S[9,C,c,\] = f dtat) ———
classical trajectories and zero weight to all others, 4 3q(t

. ty ty — 52./4 ,
Zeow=N J Dq dq —qd]eXP[ f J(t)q(t)dt}- (19 ) 'L dtL dre(® 5qa(t)6qb(t’)cb(t )
(24)

t

Although the form of the partition functiol9) is not de-

rived butpostulated we show in Appendix B that it can be SinceZcy together with the actio24) formally result from
heuristically understood either as the “classical” limit of thethe classical limit of the stochastic-quantization partition
stochastic-quantization partition function, or as a result of théunction, it comes as no surprise théitexhibits BRST(and
classical limit of the closed-time-path integral for transition anti-BRST supersymmetry. It is simple to check thtioes
probability of systems coupled to a heat bath. This, in turnhot change under the supersymmetry transformations
indicates that it would be formally more correct to associate — —  —

Eq. (19 with the probability of transition or (via the %8Rst =€C. Jprsi€=0, dgrsiC=—lek, Jgrsth =0,
stochastic-quantization passageith the Euclideanampli- (25)

tude of transition34]. Albeit Eqg. (19 cannot be generall — .
ris4] d. (19 g y whereeg is a Grassmann-valued paramédtée corresponding

obtained from Eq.(18) by a semiclassical limit as in the ; _ ;
WKB method(which can be recognized by the absence of £21t1-BRST transformations are related with E@S) by

phase factor exp/h.A(qy)] in Eq. (19)) it may happen that _charge conjugatiop Indeed, the variations of the two terms
even ordinary amplitudes of transition possess this form!" Eq. (24) read
This is the case, for instance, when the number of degrees of { t SA
freedom is doubled or when one deals with closed-time-path SBRST f dt)\(t)—]
formulation of thermal quantum theory. Yet, whatever is the t ()
origin or motivation for Eq.(19), it will be its formal struc-

ture and mathematical implications that will interest us here

most. . O0(t) Sgp(t")

To proceed we note that an alternative way of writing Eq.

to )

?f dt f dt'n,(t)
tq tq
PA

Cy(t'), (26)

19 5 Utzcltfzdt_(t)—azd4 (t )]
IC C !
L% fD 5[ 6A}d | 24 ey T suaean)
= e et ————
- e 200 (1) =—i?f ’ dt f tzdt’)x (t)—ng Co(t')
y iy = 504(t) S0p(t)
Xex fJ(t)q(t)dt . (20 . . .
2 2 2
+f dtf dt’f dt’c,(t)
By representing thé functional in the usual way as a func- ty t ty
tional Fourier integral, A
X ec(t")cy(t'). 27
SA (2 SA 301 () S0(t") ()Gl 7
S| — |=| Dhexpli| dtA({t)——], (21)
o t aq(t) The second term on the right-hand side RHS of EY)

) . ) ) vanishes because the functional derivativedas symmetric
and the functional determinant as a functional integral ovef, ¢..p whereas the terne.c, is anti-symmetric. Inserting

two real time-dependent Grassmanngirost variables gt) Egs. (26) and (27) into the action we clearly finbagsrS

andc,(t), =0. As noted in27], the ghost fields andc are mandatory
£A t 6 at the classical level as their role is to cut off the fluctuations
det‘— :JDcD?exp f dtf dt'cy(t) perpendicularto the classical trajectories. On the formal
89,(t) Sgp(t") y Jy a side, ¢ and ¢ may be identified with Jacobi field27,35.

The corresponding BRST charges are related to Poincaré-
> cb(t’)] (22) Cartan integral invariants36].
89,(t) 8gu(t) ’ By analogy with the stochastic quantization the path inte-
gral (23) can, of course, be rewritten in a compact form with
we obtain the help of a superfielf26,34
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D1, 6,6) = (1) +i6c,(t) —i0c,(1) +i10ON(D), (29) - F dmmM[q] 32
t

in which # and # are anticommuting coordinates extending i

the configuration space af, variable to a superspace. The as can be seen from E(R4) after factoring out the second
latter is nothing but the degenerate case of supersymmetrterm. Assuming that =L(q;,q)) (i.e., a scleronomic system
field theory ind=1 in the superspace formalism of Salam and that the Hessian is regular, the conditi8) shows that
and Strathde@37]. In terms of superspace variables we see\c=\(q,G). In addition, it is obvious on dimensional
that grounds thaf\]=[q]. This, in turn, implies thak,=ayq,
where ¢y is some realt-independentmatrix. To determine
the latter we functionally expand in Eq.(32) aroundg, and
compare both sides. The resulting integrability condition
reads

f dodg A[®] = f dt do de Lq(t) +i6c(t)

—i6c(t) +i 06N (1)] sd 24
(8 - ay)——=8(t—t) = ay () —————,
T s(t) 1% oq)(t) 8g;(t")

which is evidently compatible with the conditigB81). When
«;; is diagonalizable we can pass to a polar basis and write

_ _ (33
=fd9d0A[q]+fdtd0d6

. — — _0A
X[i6c(t) —ifc(t) +i00N]——

8q(t) Eq. (32) in more manageable form, namely,
S FA = N SA[]
+ J dt dt'de de 6c,(t) 50, o) (t"). Alql= L dt; aiQi(t)m- (34)

(29) For simplicity, we do not use new symbols for transformed

Using the standard integration rules for Grassmann variable§,S: L _ _
this becomes equal t0iS. Together with the identityDd To proceed we assume that the kinetic energy is quadratic

=Dq Dc Dc DA we may therefore express the classical par" d andq. Then Eq.(34) implies thatl;, must be linear in
tition functions(19) and(20) as a supersymmetric path inte- d- AS such, one can always writenodulo the total deriva-
gral with fully fluctuating paths in superspace tive)

p{ _ — Liin = > Byai(0)g;(1), (39
ZCM:fptb ex —fdedaA[cD](e,e) ¥

with B being an upper triangular matrix. Comparibg,, on

+ f dtde d?F(t,H,E)(I)(t,HE) . (30) both sides of Eq(34) we arrive at the equation
(am— DBy = Bmiam 0 (B—BT)a:B, (36)
Here we have defined the supercurrit, 6, 6) = 66J(t). with no Einstein’s summation convention applied here. Be-

It is interesting to find the most general form of an actioncauseB is upper triangular, the first part of E(B86) implies
A for which the classical path integré80) coincides with  that the only eigenvalues af; are 1 and 0. Thusy can be
the quantum-mechanical path integral of the system, or, imeduced to the block form
other words, for which a theory would possess at the same
time deterministic and quantal character. As already men- a= [0 0]

01 (37)

tioned, the Grassmannnian ghost variables are responsible
for the deterministic nature of the partition function. It is
obvious that if the ghost sector could somehow be factore
out we would extend the path integration to all fluctuating
paths inq space. By formally writing [o Bz}

FA 00

here 1 is arr Xr (r<N) unit matrix. Using the equation
B-BT)aw=B we see thaB has the block structure

(38)
6A
(tl):fkl<tvt,:qm15)a k,I,m,n=1,...,N,

Sqi(t) &g, N whereB, is an(N-r) Xr matrix. To determineg we use the
(31) fact thatea is idempotent, i.ea?=a. Multiplying (B-B")«
=B by a we find
we see that the factorization will occur if and only if the Ba=B BTa=0. (39)

(distribution valued functional Fy(---) is g, independent

when evaluated on shell, i.eF(t,t",gy, 0)=F(t,t"). This  From Ba=B it follows that rankB)=rank«)=r, whereas

is a simple consequence of H0) where the determinantis B'(1-a)=B' implies that rankB")=rank1-a). Utilizing

factorizable if and only if it isq independent ab.A/5q=0. the identity rankB)=rankB") we derive r=rank«)
In order to provide a correct Feynman weight to every=rankK1-a)=(N-r), and thusr=N/2. Thus the condition

path we must, in addition, identify (34) can be satisfied only for an even numbkof degrees of
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freedom. An immediate further consequence of B3§) is o t SA[9,T)
that we can rewrite Eq35) as Alg,q]l= | dtqit)——. (41)
N2 ty aq(t)
I—km E B| (N/2+])q qN/2+J (40)

i,j=1

Denotinganz+, Anizsi @NdN\yz4i (i=1,...,N/2) asa;, g, and -
\i, respectively(hence A=0 andA=q), then Eq(34) reads Here A[q,q]=A[q;,...,%n]-

The result(41) can be obtained also in a different way. Indeed, in Appendix C we show thdB&qs a so-called Euler-like
functional

arg] | dr ) (42

t
Alq]= ftl dt r(t)L(r‘“l(t)ql(t), e, TN ON (), dt . at

with r(t) being an arbitrary function afj, whose variations vanish at the enéist;)=or(t;) =0 if all 5g,’s have this property.
In particular, we may choseto be any finite poweqk’“k (for k=1,...,N), in which case

k k

! d q /qallak ! q /an/ak

Alq]= f dt ’“kL( Eak,...,l,..., SN“,‘ak, (1dt ),...,o,.. ,% : (43)
Ok Ok

Assuming, as before, that the kinetic ternLims quadratic in 't Hooft systems must agree with its canonically quantized
g andq, we arrive atx as in(37), and the actiorg43) reduces counterpart.
again to(41).

One can incorporate the constraints @n(or \;) by in- IV. 't HOOFT'S INFORMATION LOSS AS A FIRST-CLASS

serting a corresponding functional into the path integral PRIMARY CONSTRAINT
(23). This leads to the most general generating functional As observed in Sec. Il, the Hamiltoni&t) is not bounded

with the above-stated property: from below, and this is true for any functiofh. Thus, no
deterministic system with dynamical equatiaps f;(q) can
_ — v ~ describe a physically acceptaldeantum world Its Hamil-
Zcw= | DqDg DN D A . .
M J aPa DA DAININ - 4] tonian would not be stable and we could build a perpetual

motion machine. To deal with this problem we will employ
. [q —_| —5A[q q] 't Hooft's procedurg 13]. We assume that the systéf) has
xXexp| i dt)\
t

n conserved, irreducible charg€s, i.e.,
1

N ] {C,H}=0, i=1,..,n. (45)

to
"‘f dt> J
t

= In order to enforce a lower bound upéh) 't Hooft split the
. k=

Hamiltonian asH=H,—-H_ with both H, and H_ having
t, A[q q] lower bounds. Then he imposed the condition tHashould
= f Dq Dq exp| i f f th Jik i -
t ty

dtg———— be zero on the physically accessible part of phase space, i.e.,
' H.=~ 0. (46)
t R
= f Dq Dq_exp[if 2dt L+ f dt>, quk] _ (44)  This will make the actual dynamics governed by the reduced
ty k=1 HamiltonianH,, which is bounded from below, by defini-

tion.
An irrelevant normalization factor has been dropped. The To ensure that the above splitting is conserved in time one
LagrangianL coincides precisely with the LagrangigB), = must require thafH_,H}={H,,H}=0. The latter is equiva-
and describes therefore 't Hooft's deterministic systemlent to the statement théitl,,H_}=0. Since the charges in
Hence within the above assumptions there are no other sy&q. (45) form an irreducible set, the Hamiltoniaks andH_
tems with the peculiar property that their full quantum prop-must be functions of the charges aHdH.=F.(C,,H) and
erties are classical. Among other things, the latter also indiH_=F_(C,,H). There is a certain amount of flexibility in
cates that the Koopman—von Neumann operatoriafinding F_ and F,, but for convenience’'s sake we confine
formulation of classical mechanid88] when applied to ourselves to the following choice:
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H+> a(t)C; 2 H-> at)C; 2 manifold of initial conditions must b&®-m. We can take
Y [ ' H i ' this submanifold to be a surfa¢g specified by the equations
+ = T = -= T .
42 a(t)C, 42 a(t)C, ¢=0, i=1,.,m,
I |
(47) (,{)k:O, k:l,...,m’,

wherea;(t) are independent af andp and will be specified _ =
later. The lower bound is then achieved by choosing x=0,1=1..m. (50
2;a(t)C; to be positive definite. In the following it will also  The m subsidiary conditionsy, are the sought gauge con-

be important to select the combination@fs in such a way straints. The functiong; must clearly satisfy the condition
that it depends solely o [this condition may not necessar-

ily be achievable for generaf,(q)]. Thus by imposing det{x, @i}l # O, (51)
H_~0 we obtain the weak reduced Hamiltonigt=H, a5 only in such a case can we determine specific values for
~Zia(1)C;. the multipliersv; from the dynamical equation foy, (this is

The constraint46) [or (47)] can be motivated by dissipa- pecause the time derivative of any constraint, and hence also
tion or information los§14,15,19. In Appendix D we show  ,, must be zerp Therefore only when the conditid1) is
that theexplicit constraint(46) does not generate any new satisfied do the constraints0) indeed describe the surface
(i.e., secondanyconstraints when added to the existing con-gf the initial conditions.
straints (5) In addition, this new set of constraints corre- The preceding discussion |mp||es that in our case the sur-
sponds to R second-class constraints awade first-class  faceI™ is defined by
constraint(see also Appendix D It is well known in the

theory of constrained systems that the existence of first-class #(,9,p,p) =0, x(9,9.p,p) =0, (52
constraints signals the presence of a gauge freedom in
Hamiltonian theory. This is so because the Lagrange multi- ¢(9,q,p,p) =0, i=1,...,2N. (53)

pliers affiliated with first-class constraints cannot be fixed . . . .

from dynamical equations alorié2]. The time evolution of 1he explicit form of ¢ is found in Appendix D where we
observabléphysica) quantities, however, cannot be affected SNOW thate=~H-2a,C;. Apart from condition(51) we shall
by the arbitrariness in Lagrange multipliers. To remove thidurther restrict our choice of to functions satisfying the
superfluous freedom that is left in the formalism we mustSimultaneous equations

pipk_ up a gauge, i.e., impose a set of condition_s _that Wi_II {x.¢}=0, i=1,..2N. (54)
eliminate the above redundancy from the description. It is

easy to see that the number of independent gauge conditio§sich a choice is always possilfit least in a weak sense
must match the number of first-class constraints. Indeed, thg0] and it will prove crucial in the following.

requirement on a physical quantityay f) to have a unique In order to proceed further we begin by reexamining Eq.
time evolution on the constraint submanifold, i.e., (44). The latter basically states that
m m’ f J‘tz
: — Zew=| D —(qlex dtq(t)J(t) |. 55
f~ (LA Soffel+ Sudtdd, (49 ou= | Pada-tale | damO]. (9
i=1 k=1
o We may now formally invert the steps leading to E8), i.e.,
implies that we introduce auxiliary momentum integrations and go over
f, o) =0 (49) to the canonical of55). Correspondingly Eq(55) can be
1 ) .

recast into
The constraintsp; and ¢, represent first- and second-class N
constraints, respectively. First-class constraints have, by defi- _ e T _
nition, weakly vanishing Poisson brackets with all other con- Zom = f DpDqDp Dq\"deﬂ{‘f’""’JH”E Al
straints; any other constraint that is not first class is second ) )
class. While the Lagrange multiplietg, can be uniquely ; o —
fixed from the dynamics by consistency conditidgeee Ap- XeXplljt dilpq +pg —H] +£ diqJ+ qJ]} '
pendixes A and Dthis cannot be done for the'’s. In this
way (49) represents an obligatory condition for a quanfity Due to & functions in the integration we could substitute
to be observable. Equatiqd9) can be considered as a set of 't Hooft's HamiltonianH for the canonical HamiltoniaH. It
m first-order differential equations on the constrained surfacghould be stressed that despite its formal appearance and the
with the relation{¢;, ¢;} =0 serving as the integrability con- phase-space disguise, the latter is still the classical partition
ditions [32,39.Thus, f is uniquely defined by its values on function of Gozziet al.
the the submanifold of the initial conditons f¢49). As a To include the constraint$?2) into Eq.(44) we must be a
result, the above initial value surface describes the true debit cautious. A naive intuition would dictate that the func-
grees of freedom. By denoting the dimension of the condtional § functions § x] and § ¢] should be inserted into the
straint manifold aD we see that the dimension of the sub- path-integral measure fd&,,. This would be, however, too

1 1
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simplistic as a mere inclusion @ functions intoZ,, would  so we have dropped on the RHS's(6)—(63) the vanishing
not guarantee that the physical content of the theory thaterms. The infinitesimal gauge transformations described
resides in the generating functiori&,, is independent of the hitherto clearly show thaZ), is dependent on the choice of
choice y. Indeed, utilizing the fact that the generators of y [the term with|1+Tr(A)| does not get cancel¢dlo ensure
gauge transformations are the first-class constrg8fswe  the gauge invariance we need to factor out the “orbit vol-
can write that ume” from the definition oZq),. This will be achieved by a

_ . procedure that is akin to the Faddeev—Popov-De Witt trick.

x=elx.et+Co = elx. ¢} (56 We define the functional

Heree is an infinitesimal quantity. The corresponding gauge

generatore generates the infinistesimal canonical transfor- 1 g

mations (A)™"= | Dg X, (64)
q—a+éq, p—p+p, q={ep,q}, P={se.p}, with x9 representing the gauge transformgdThe super-
o _ scriptg in Eq. (64) denotes an element of the Abelian gauge
q—q+&], p—p+p, M={ee.dl, p={se.p}. group generated by. We point out that the function64) is

(57) manifestly gauge invariant since

It follows immediately that the corresponding generating . )
function is (Ayw)t= f Dg Jx° 9] = f D(g'g)dlx? 91=(A) ™"
G(0,q,P.P) =P + QP + e+ 0(&?). (58) (65)
The canonical transformatiotS7) result in changinge and  The second identity holds because of the invariance of the
i by group measure under composition, i.2g=D(g'g). Equa-
So=Agp, (59)  tions(64) and(65) allow as to write “1” as
o¢i = e{pi, 0} =Bip + Djj . (60) 1=Adx] J Dg. (66)

HereA,B;,C andD;; are some phase-space functions of or-
dere. Note that in our case the gauge algebra is Abelian. Ao find an explicit form ofA[ y] we can apply the infinitesi-

a consequence of Eq&9) and (60) we find mal gauge transformatiof56). Then
Aol — |1+Tr(A)|_15[§D]1 (61) xX=x+e{x,o} +Co
[T o] — [1+TO)[ T 1], (62) O (A= f De dx + e{x, ¢} + Cg]
et g}l - 11+ TiO)\[defin 4] (63 0 (&) =ldeix oI, (67

[here T(A)=3,A(t), etc]. In (63) we have used the fact that with the obvious notation dfty(t),(t")}|=IT{x(t), ¢(t)}.
in the path-integral measure are presént] and § ¢;], and  Upon insertion of Eq(66) into Z¢), we obtain

2N

tz . _ t2 J—
Zew= | DquDﬁDq_ldetl{X,<p}|||\"|de¢|{¢i,¢j}|||6[x]6[so]_l_[6[¢i]exp[i | atpa -+ | dt[qu‘JJ}
i=1 tl t

1

(68)

wheré€ the group volumeS,=/Dg has been factored out as defl{x. ¢}l — [1 + Tr(A)Jdetl{x + ox. ¢}l (69)
desired. The partition functiof68) is now clearly(locally)

independent of the choice of the gauge constraintehis is  and hence the partition functicfry as obtained by Eq68)
because under the transformati@® we have takes the same form as the untransformed one, but yith
replaced byy+ dy. Because we deal with canonical transfor-
mations it is implicit in our derivation that the action in the
% F is any phase-space function thes,,s,]7= 8,8,F/  new variables is identical, to within a boundary term, with
-68,0,F=e{F {¢,¢}}=0. the original action. In path integrals this might be invalidated
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by the path roughness and related ordering probﬂem - - b
simplicity’s sake we shall further assume that the latter are Zgy = f DP DQ exp, if dfPQ-K ]+f dtQj |.
absent or harmless. This happens, for instance, when canoni- ! 4
cal transformations are linear. In such cases an infinitesimal (73)
change iny does not alter the physical content of the theory J—— _ R
present inZqy. This conclusion may generally not be true HereK'(P,Q)=K(P,Q,Q;=Q;(P,Q)). In view of Eq.(D7)
globally throughout phase space. Global gauge invarianceye can alternatively writ&c)y, as
however, is mandatory in our case since we need a global t _ 6
equivalence between the partition functiofgy, and Zgy, - D O ; DA pay
and not mere perturbative correspondence. Thus therotenti- Zem IDP PR expllft d{PQ —H.] +Jt dt QJ]’
ality of Gribov’s copies must be checked in every individual
problem separately.

In passing we may notice that if we arrange the Con'whereH::H+(E,6,Q1:Q§(E,6),Pa:O,Q1+i:O). In pass-

straints in one s ={x, e, ¢;} we can write Eq(68) as . . — . :
Sra=x 0, i} a(68) ing we may notice thaP, and Q, are true canonical vari-

ables on the submanifold” of the initial conditions for Eq.

1 1

(74)

2N+2 (49). Indeed, in terms of a noncanonical system of variables
- s AT Bl
Zew= f Dp Dq Dp Dav|det{ 7, mll !Il LA {&3={¢; x: #i;Q;P} the Poisson bracket of any twabserv-
. t_ able quantities(sayf andg) on the constraint manifold is
2 . 2 —
X exp[iJ di{pq + pq - H]+f difqJd +q_J]} af dg — — of" a9
{fyg} = E{g vg}__ :E{PvQ}_—_—
E E < b s M e IP; 9Q;
(70) I
af" g
. _ . => Qjj——, (75)
By comparison with Eq(7) we retrieve a well known result i 7Q; 99

[39,41], namely, that the sdtp,} of 2N+2 constraints canbe . _ _
viewed as a set of second-class constraints. Thus, by fixing &ith {Q;}={Q;P} and with
gauge we have effectively converted the original system of

2N second-class andne first-class constraints intoNa2 f(Q,P)=f(¢=0,x=0,4=0,Q,P),
second-class constraints.
In view of Eqgs.(6) and(54), we can perform a canonical 9*(6,5) =g(¢=0,y=0, = 065)

transformation in the full phase space in such a way that the

new variables aré®;=y, Q.= by, Pisi=dy_1;i=1,...,N .  representing the physical quantities.¢. The latter depend

After a trivial integration ovelP, andQq,; we find that only on the canonical variabled and P, which are the in-
dependent variables dfi. In deriving Eq.(75) we have used
the fact that various terms are vanishing on account of Egs.

%H ‘ ) (49 and (54). So, for instance, [{¢,}df!d¢] v

1

=0{¢,P}}=0,{¢;,Q}=0,[{x, £} 9f/ 9] ,=0, etc. The ma-

de

Zew= f DP DQ Dol( el

(e —— [ trix €);; stands for thed2N-2) X (2N-2) symplectic matrix.
xexp 'f difPQ - K] +f dtQj [, (71 Zcw as defined by Eqg73) and (74) does not generally
h 4 represent dclassical deterministic system. This is because
the constraintp=0 explicitly breaks the BRST invariance of
whereP, andQ, are the remaining canonical variables span-Zcum: Which (as illustrated in Sec. lJlis key in preserving the
ning the(2N-2)-dimensional phase space. To within a time ¢lassical nature of the partition function. Indeed, using the

derivative term the new Hamiltonian is done by the prescriprelations{x, pa}={x, pa~0a}=0 we immediately obtain

tlon K(PerQl):H(E!Q!P1:01Q11Q1+i:0!Pl+i:0)' Th_e { }_E &_X ﬂ_i-(?_(P _ﬂa_(P (76)
sourceg are correspondingly transformed sourdeand J. Xoer= 0a\dpa 90z IPadbal’
Utilizing the identity

J

we can finally write

a

which implies that

¢

o R
|| ZAQ-QArR.QL (72 {x,qo}lM,aazxa:E{ii—ii}z{x.go}.
1

a aqa ‘”‘a a)\a &Qa

el

(77)

Here the notationsy (q,\)=x(q,p=\,q=\,p=0) and

¢ (q,N)=¢(q,\,\,0) were used. We also took advantage of
“In the literature this phenomenon frequently goes under the namthe fact thaig=A\ as indicated in Sec. lll. So the generating

of the Edwards-Gulyaev effe¢#0]. functional (73) [or (74)] can be rewritten as
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_ ) . . plane pendulum equation with the pendulum constdgt
ZeylI=0]= f Dq D\ De DeexdiS]dole Jolx ] =1. The Lagrangiati3) reads
X|det{x", ¢ }ll, (78) L =%k +Yy +Xy - yX. (82)

where the integration over the ghost fields was reintroduceg is well known [42] that the system has twdunctionally

for convenience. By reformulatingcy in terms ofg,N,c  independent constants of motion—Casimir functions. For
andc we can now easily check the BRST invariance. TheEgq. (81) they read

BRST transformation§25) imply that

Ci=x2+y% Co=Xpt+ypy. (83

*
*

. 0p —
OgrsT @ = ﬁ—(g_sci =~ 8Ex, grer @ The chargeC, corresponds to the conserved radius of the
! orbit while C, is the Noether charge of dilatation invariance
of the Lagrangian (82) under the transformations
:_&isa:_ggx_ o (79) (X,y,x,y)—(e7%x,e7%,€e%,e%). As only C, is p indepen-
e QO BRST dent, the function§, andF_ of this system are according to
h Eqg. (47) chosen as

*

OBRST ¢

Here£y and£y - represent the Lie derivatives wit
Q BRST Q BRST

respect to flows generated by the BRST and anti-BRST _(H+a,Cy)? _(H-a,Cy)?
charges, respectively. Analogous relations hold alsoyfor += 4a,C, ' - 4a,C, (84)
Correspondingly, to the lowest order énwe can write
R R HenceH_=0 implies thatH,~a,(x*+y?). Herea, is some
- -1
Ax1— 1 Tr(S_EXQ BRST)| Ax 1, constant to be specified later. The ensuing first-class con-
straint is

9f @ 3l = 2~ TreEg oo lldetin’ ¢ 3l (80 @ =Xpy — YR~ X’ — &gy’ — Py + 281X + PyX+ 2a1pyy
The transformations (80) show that the term ~ H-a,C,. (85)
Ax det{x", ¢}l in Eq. (78) is the BRST invariantas, of
course, are both the integration measure and the effectivEBhe gauge condition can then be chosen in the form
actionS). However, because the variatidgrstdl¢'] is not  x=py—y. Indeed, we easily find that
compensated in Eq78) we have in generabgrsiZemld

=0]# 0. An analogous result applies also to the anti-BRST er=pc—x# 0,
transformation.
We should note that the conditiofgrstZepm[J=0]# 0 {x,¢}=0,i=1,...,4. (86)

only indicates that thelassicalpath-integral structure is de- . . L .
stroyed; it does not, however, ensure that the ensiing Th_e advanta_lge_ pf our choice gfis _that it W_|II not run into
can be recast into a form describing a proper quantum®MPov ambiguities, i.e.,the equatiap=0 will have a glo-
mechanical generating functional. The straightforward pathPally unique solution foQ, onI™. This should be contrasted
integral such a$73) emerges only after the gauge freedom With such choices as, e.g¢=p, or x=p,, which also satisfy
inherent in the “information loss” conditiow is properly  the conditions86), but lead to two Gribov copies each.
fixed via the gauge constraint Let us finally emphasize ~ With the above choice ok we may directly write the
once more that the partition functid3) [or (74)] has arisen  ¢anonical transformations

as a consequence of the application of the classical Dirac- P. = y=Dom _

Bergmann algorithm for singular systems to the classical 1ZX=PYs Qu=hy

path integral of Gozzet al.

V. EXPLICIT EXAMPLES — _
A. Free particle

Although the preceding construction may seem a bit ab- E=H——x Q=p.. (87)
stract, its implementation is quite straightforward. Let us o X

now illustrate this with two systems. As a warm-up examplejt might be checked that the transformation Jacobian is in-

we start with the Hamiltonian deed 1. In the new canonical variables the Hamiltorkan
reads
H=Ls=xp,~ypo (81)
which is known to represent the angular momentum with K(P,Q,Q;) =H(P,Q,P,=0,0,,Q,=0,Q;=0) = - PQ;.
values unbounded from below. Alternatively, E§1) can be (89)

regarded as describing the mathematical pendulum. This is
because the corresponding dynamical equai®rior q isa  The functionals function (72) has the form
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8Q;- Qy(P,Q)1=dQ; + &P, (89) {x.¢} = 2px—2x-2dp, # 0,

and henceK*(E,g):H:(E,a):al_Ez. Let us now seta; nd1=0, i=1,..,4. (96)
=1/2mh. After changing variableQ(t) to Q(t)/% we obtain

not only the correct “quantum-mechanical” path-integra
measure

(In addition, we shall see that E(P5) guarantees the unique
global solution of the equatiop=0 for Q; onI'" (hence it
avoids the undesired Gribov ambigyity

S dQ(t)dP(t) The canonical transformation discussed in Sec. IV now
PQDP~[[|————"]). (90)  takes the form

i 27h

but also the prefactor %/in the exponent. So Eq74) re- Pi=x=py+dpc=y, Qi=py,
duces to the quantum partition function for a free particle of

massm. As the constana, represents the choice of uniisr Po=p—X Q=px

scale factorfor C; we see that the quantum scélés imple-

mented into the partition function via the choice of the “loss P.=D.—V. -
3=Py Y, Qs=py

of information” constraint.

B. Harmonic oscillator P=py+ dp, - %, Q=p,, (97)
The systen{81) can also be used to obtain the quantized

linear harmonic oscillator. This is possible by observing that®
not only isC,=x?+y? a constant of motion fof81) but also S Ao =
C,=x?+y?+c with ¢ being anyg- and p-independent con- K(P,Q,Q) =~ PQ, +dQ; - Q.
stant. So in particuIaLwe can choasec(q). The functional  The functionals function (72) now has the form
dependence of on g cannot be, however, arbitrary. The L
requirement that 't Hooft's constraint should not generate —O0'(P.O)=6l 0O, - =P 99
any new(i.e., secondanyconstraint represents quite a severe AQ - QuP.Q)] @ 2d |’ °9

restriction. Indeed, in order to satisfy H@p?2) the following L o N .
condition must holdsee Appendix D This finally implies that the Hamiltonian on the physical

N space I'" has the form K'(P,Q)=H.(P,Q)=—(1/4d)P?
> el{d,Hl = - > a{Ci,pHpaHl = > ai@akm -dQ? By choosingd=-nvi/2 and transformin@+— Q/# in
i=0 ai ika 90, 0, the path integra(73) (or (74)) we obtain the quantum parti-
(91) tion function for a system described by the Hamiltonian
. _ o _ (1/2m)P?+(m/2)@?, i.e., the linear harmonic oscillator with
which for the system in question is weakly zero only if unit frequency. This is precisely the result which in the con-
_oc(q) _ac(q) text of the systent81) was originally conjectured by 't Hooft
X—— -y—— =0. (92)  in Ref.[14]. Note again that the fundamental scé&egges-
tively denoted a%) was implemented into the theory via the
The latter equation has the solutiémodulo an irrelevant “loss of information” condition.
additive constant c(q)=d?(x*+y?). Here d? represents a

multiplicative constant. Hence we have tl@t has the gen- C. Free particle weakly coupled to Duffing’s oscillator
eral form

nd the HamiltonialK reads

(98)

ay X

There is no difficulty, in principle, in carrying over our
Ci=x2+y2+d2(x2+Yy?). (93 procedure to nonlinear dynamical systems. As an illustration
we will consider here the Rossler system. This is a three-
dimensional continuous-time chaotic system described by
the three autonomous nonlinear equations

It will be further convenient to choossg =-1/2d.The result-
ing first-class constraint then reads

1 1 d do —
=xp, —yp + —x2+ —y2— —x2— —yZ—yp+ dx
®=XPy~ YR ZdX 2dy 2X Zy YPxt+ Xpy a:_y_z,
S s
d Px dypy XPy + Aypy dy
—=X+Ay,
H = C (94) a
= + — .
2d *
dz
If we choose the gauge condition to be at =B+xz-Cz (100
=py+dpc-y, 95 . .
X= Py ARy ©9 whereA,B, andC are adjustable constants. The associated
it ensures that 't Hooft Hamiltonian reads
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H=-p(y+2) +p/(x+Ay) +p(B+xz-C2, (101 P, =(pdd-Zd)/\2, Q= (2dp,-pdc+x/c)2,
and the LagrangiafB) has the form
J— —_ — ’/_ - — —
L=XX+yy+Zz+X(y +2) = y(x+ Ay) —= (B + xz+ C2). P,=(2cp—pAd+Zd)/N2, Q,=(x/c—pgc)/\2.
(102 (107

The Rossler system is considered to be the simplest possibi¢erec andd represent arbitrary real constants to be specified
chaotic attractor with important applications in far-from- later. The transformatiofl07) secures the unique global so-
equilibrium chemical kinetic§43]. It also frequently serves |ution Q, for ¢=0 onI". To show this it is sufficient to
as a playground for studying, e.g., period-doubling bifurca-observe thafH-a,C, -
tion cycles or Feigenbaum’s universality theory. For the sake

of an explicit analytic solution we will confine ourselves = A — (O —ONODP.
only to tﬁe specia>ll case wheA=B=C=0. With such a [H = a1Cy 3Gl =126 QuQ = v20(Q1 = Q2IQoPy

choice of parameters the Réssler system can be expressed in +dic(Py + Py)P; — A(P,)?
a scalar form a§=yy+yy—y which ensures its integrability T o
[44]. The latter implies that in this regime Rdssler’s system - B P1(Q,)? - C(Qy)*4, (108

does not posses chaotic attractors.

To proceed further, we should realize that becaDisare  with A=2d%(4a,+a,), B=-82a,dc?, andC=4a,c* As a re-
supposed to be independent their finding is equivalent to sult
specifying the first integrals of the systeit00) [i.e., func-

tions that are constant along lines 6f,y,z) satisfying K*(P.O)=H (P.0) = A(P)2 + B P:(0,)2 + C(O,)*.
(100)]. In other words, the differential equatiof00) rep- (P.Q) {P.Q) (P 1Q2) (Q)
resent a characteristic system for the differential equation (109

{H,C;}=0. It is simple to see that the first integrals of the . . . .
above Rossler system axé+y2+2z andze?; hence we can Inserting this into Eq(73) [or Eq.(74)] and integrating over

identify C, and C, with P, and P, we obtain the following chain of identities:

C,=(X%+y?+222% C,=7¢e?, (103 _ b .
ZCM = f DP DQ ex |f dt[PQ - A(Pl)z
t

The previous choice provides indeed positive and irreducible

charges. The first-class constraipthen reads
@ == Py +2) + px+ pxz—a, (@ + Y2+ 22)? - a,7%e ¥ - BP1(Q,)* - C(Q)*+ Q] ]}
~ Y + 2= dagx(x® + Y2 + 22)] + pyf X+ dagy (X2 + y?
+22) - 28,7°€ Y] + X - 2x + 43, (X + y* + 22) f DQIDQ; ﬂQz]exp{ J dt _[Ql BQF
+2a,26 ¥ =~ H-2a,C; — a,C,. (104) -
Explicit values ofa; anda, will be fixed in footnote® below. ~C(Q)*+Q } }
,SAellggtee ;Igfsrpirgsfahn()cv;s ;gat the gauge conditigncan be - L L L
’ ’ . = lim JDleQzeXp{if dt _(Q1)2+ —(Q)?
X=P- Y- (109 0 -
Such a choice satisfies the necessary conditions - 361(62) } exp{ - C)
et =pytpztx#0, {x,¢}=0, i=1,..,6. ?
(106) X(Qp)*+Qj } } : (110
The abovey also allows us to perform the following linear
canonical transformation: As an explanatory step we should mention that the formal
Pi=x=p—y. Qi=p, :inrﬁ:_sstiirceeldnf?r?nsecond equality of Ej10 has the explicit
TR S pQ,PQ,~ 1 ( \dﬁl(t) sz(t)) (112
i

P3=py—Y Q3=TFya

. . while in the third equality the shorthand notatithSlDaz
Ps=p,=z, Qs=pz; stands for
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()

The symbole represents the infinitesimal width of the time
slicing. During our derivation we have used the Fresnel in
tegral

J dx e—iax2+ix§ - \Eewgzla—w)m - . %ei§2/(4a), a>0

(113

dQl(t ) sz(t )

— (112
VamieA \r47'r|a6

DQ;DQ, =

and the ensuing representation of the Digftinction:

1 2
|| giaa) — g
4dima (9.

In the following we perform the scale transformation
Q,/a—\2m,Q, and setA=1/(2m;),3=1/(ym;my), and
C=1/m,. ®The resulting partition function then reads

lim
a—0,

(114)

Zey= Iim fDleQzeXD{ f dt _(Q1)2+_(Q) ]

=

_9(62)4 + 6] 1 ,

m1m2

QuUQy?

(119

where we have set g:\s’ﬁa. The system thus obtained

describes a pure anharmoni®uffing’s) oscillator (62
oscillatoy weakly coupled through the Rayleigh interaction

with a free particle(Q, particle. Alternatively, whenm,
=m,=m we can interpret the Lagrangian in E{.15 as a
planar system describing a particle of massn a quartic

scalar potentiab®(Q)=mg?/4(Q,)* and a vector potential
eA= (gm\1/2( 2)2,0) (i.e., in the linear magnetic field
B3: E3ij &IA] = _g m\“‘EQzle).

It is preferable to set, — m;z andm,—my,/#A. The latter
corresponds to the scale factoes=1/(2m;2) and a;

=1/(8m%). After rescaling Q4(t)— Qq(t)/# the partition
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and with 1/ in the exponent. Hence, just as found in the
previous two cases, the choice of 't Hooft's condition ensures
that the Planck constant enters the partition func(®) in

a correct quantum-mechanical manner. In tdrenters only
via the scale factors; and a, (the factorsd andc are 7
independentand hence it represents a natural scale on which
the “loss of information” condition operates. In other words,
whenever one would be able to “measure” or determine from
“first principles” the “loss of information” condition one
could, in principle, determine the value of the fundamental
quantum scalé.

As a final note we mention that the 't Hooft quantization
procedure can be straightforwardly extended to other nonlin-
ear systems and particularly to systems possessing chaotic
behavior(e.g., strange attractgrdn general cases this might
be, however, hindered by our inability to find the correspond-
ing first integrals(and henceC;’s) in the analytic form. It is
interesting to notice that machinery outlined above allows to
find the emergent quantistic system for the configuration-
space strange attractors. This is because in 't Hooft’s “quan-
tization” one only needs the dynamical equations indbe-
figuration space. The latter should be contrasted with the
Hamiltonian(or symplecti¢ systems where strange attractors
cannot exist in th@hase spacen account of the Liouville
theorem[45].

3 dQu(t) _ dQu(t)

\27i eh/my \ 2 eilm,

) (116)

VI. CONCLUSIONS AND OUTLOOK

In this paper we have attempted to substantiate the recent
proposal of 't Hooft in which quantum theory is viewed as
not a complete final theory, but as in fact an emergent phe-
nomenon arising from a deeper level of dynamics. The un-
derlying dynamics are taken to be classical mechanics with
singular Lagrangians supplied with an appropriate informa-
tion loss condition. With plausible assumptions about the ac-
tual nature of the constraint dynamics, quantum theory is
shown to emerge when the classical Dirac-Bergmann algo-
rithm for constrained dynamics is applied to the classical
path integral of Gozzet al.

There are essentially two different tactics for implement-
ing the classical path integrals in 't Hooft's quantization sce-
nario. The first is to apply the configuration-space formula-
tion [26]. This is suited to situations when 't Hooft's systems

function (115 boils down to the usual quantum-mechanical gre phrased through the Lagrangian description. The alterna-

partition function with the path-integral measure

®This choice is equivalent to the solution:

1
2v2a,m;

1
4] :
Vapimy,
Without loss of generality we can sét1/2; then

1 4
— c= +23/4 ﬁ
m,’ Vm,

1

)
a;=—,
17 g

d=

c=z

tive approach is to start with the phase-space vergh

The latter provides a natural framework when the Hamil-
tonian formulation is of interest or where the language of
symplectic geometry is preferred. It should be, however,
stressed that it is not merely a matter of a computational
convenience which method is actually employed. In fact,
both approaches are mathematically and conceptually very
different (as they are also in conventional quantum mechan-
ics [11,4€]). Besides, the methodology for handling singular
systems is distinct in Lagrangian and Hamiltonian formula-
tions(see Refs[39,41] and citation’s therein In passing, we
should mention that the currently popular Hamilton-Jacobi
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[47] and Legendre-Ostrogradski8] approaches for a treat- clear if this connection has more direct physical interpreta-
ment of constrained systems, though highly convenient irion (although various proposals exist in the literature
certain caseée.g., in higher-order Lagrangian systenteve  [14,19,24). Such an understanding would not only help to
not found as yet any particular utility in the present context.develop this approach for more complicated physical situa-

Throughout this paper we have considered only thdions but also allow affiliation i_n a systematic fashjon of a
configuration-space formulation of classical path integralsduantum system to an underlying classical dynamics. Work
(Incidently, the phase-space path integral which appears ialong those lines is currently in progress.

Sec. IV[after Eq.(55)] is not the phase-space path integral To illustrate the presented ideas we have co__nsidered two
of Gozzi, Reuter, and Thacke27] but rather Gozzi's simple systems; the planar pendulum and the Rdssler system.

. : : : In the pendulum case we have taken advantage of free choice
nfiguration- 26] integral with extra degrees of free- o X S
gzm)gtéat((:)hogf;\itriw[ ?]0 wo?k within such a fgramework we of an additive constant in the char@e. This in turn, allowed
havé beyen able t?) render a number of formal steps mor s to impose’t Hooft’s constraints in two distinct ways. In the

= ) . ase of Rdssler's system twp-independent, irreducible
tractable(e.g., BRST analysis is reputed to be simpler in theChargescl andC, exist. For definiteness sake we have con-

configuration space, uniqueness proof for 't I—!oqft SYStemS I§trcted in the latter case the “loss of information” condition
easy and transparent in the Lagrange description). §the  \yith the additive constant set to zero. With this we were able
key advantage, however, lies in two observations. First, thg, convert the corresponding classical path integrals into path
position-space path integral of Gozi al. provides a con-  jntegrals describing a quantized free particle, a harmonic os-
ceptually clean starting point in view of the fact that it rep- gjllator, and a free particle weakly coupled to Duffing’s os-
resents the classical limit of both the stochastic-quantizatiogillator. As a by-product we could observe that our prescrip-
path integral and the closed-time-path integral for the transition provides a surprisingly rigid structure with rather tight
tion probability of systems coupled to a heat bath. Such ananeuvering space for the emergent quantum dynamics. In-
connection is by no means obvious in the canonical pathedeed, when the classical dynamics is fixed, the 't Hooft con-
integral as both the Parisi-Wu stochastic quantization and thdition is formulated via linear combination of charg€s
Feynman-Vernon formalisnwith ensuing closed-time-path which correspond to the first integrals of the autonomous
integra) are intrinsically formulated in the configuration dynamical equations fou, i.e., Eq.(2). Due to the explicit
space. Second, according to 't Hooft's conjecture the “loss oform of 't Hooft's Hamiltonian the constraint is of the first
information” condition should operate in the position spaceclass and so we must remove the redundancy in the descrip-
where it is supposed to eliminate some of the transient traion by imposing the gauge conditign By requiring that the
jectories leaving behind only stabler near to stableorbits ~ consistency conditioné51) and (54) are satisfied, that the
[14]. Hence working in configuration space may allow one tochoice ofx does not induce Gribov ambiguity, and that the
probe the plausibility of 't Hooft's conjecture. The price that canomca}l transformations defined in Sec. IV are linear, we
has been paid for this choice is that the configuration spacgubstantially narrowed down the class of possible emergent
must have been doubled. This is an unavoidable step whegua@ntum systems. Note also, that when we start with the
ever one wishes to obtain first-order autonomous dynamicdl-dimensional classical systefq variables, the emergent
equations directly from the Lagrange formulati@fact well — quantum dynamics ha®N-1) dimensiongQ variables. In-
known in the theory of dissipative systef@9]). Our analy- deed, by introducing the auxiliary degrees of freedgm
sis in Appendix B suggests that the auxiliary coordinajes we obtain N-dimensional phase space which is constrained
may be related to relative coordinates on the backwardby 2N+2 conditions(¢;, ¢, and x), which leaves behind
forward time path in the Feynman-Vernon approa@uch  (2N-2)-dimensional phase spad@,P. This disparity be-
coordinates also go under the nanfast variables[50] or  tween the dimensionality of the classical and emergent quan-
quantum noise variablei$1].) On the formal side, the aux- yym systems vindicates in part the terminology “information
iliary variablesq; are nothing but Gozzi's Lagrange multipli- |oss” used throughout the text.
ers)\; (in our case denoted as). An important conclusion of this work is that 't Hooft's

In order to incorporate the “loss of information” into our quantization proposal seems to provide a tenable scenario
scheme, we have introduced in Sec. IV an auxiliary momenwhich allows for deriving certain quantum systems from
tum integration to go over to the canonical representationclassical physics. It should be stressed that although we as-
Such a step, though formal, allowed us to treat our consumed throughout that the deeper level dynamics is the clas-
strained system via the standard Dirac-Bergmann procedursical (Lagrangian or Hamiltonignone, there is in principle
It should be admitted that such a choice is by no meanso fundamental reason that would preclude starting with
unique, e.g., methodologies for treatment of classical conmore exotic premises. In particular, our conceptual reasoning
strained systems in configuration space do €89i41. The  would go unchanged if we had begun with Lagrangians op-
decision to apply the Dirac-Bergmann algorithm was mainlyerating over coordinate superspadgseudoclassical me-
motivated by its conceptual simplicity and direct applicabil- chanics[52]) or with the currently much discussed discrete
ity to path integrals. On the other hand, we do not expect thatlassical mechanicé.e., having foam-, fractal-, or crystal-
the presented results should undergo any substantial chandés configuration spagg 53], etc. The only prerequisite for
when some other scheme would be utilized. It should besuch approaches is the possibility of formulating a corre-
further emphasized that while we have established the mattsponding variant of Gozzi's path integral, and a method for
ematical link[Egs. (52) and (D7)] between the “loss of in- implementing the “loss of information” constraint in such
formation” condition and first-class constraints, it is not yetintegrals.
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There are many interesting applications of the abovdransformations linegrand not explicitly time dependent, it
method. Applications to chaotic dynamical systems espeean be showri29,60,6] that the anomaly is absent. It was
cially seem quite pertinent. After all, central to our reasoningprecisely for this reason that more general transformations
is a (doubled set of real first-order dynamical equatiBns were not considered in the present paper. Clearly, both men-
which, under favorable conditions, may by associated with d@ioned points are of key importance for further development
chaotic dynamics in the configuration space. We should emef our procedure and, due to their delicate nature, they de-
phasize that the reader should not confuse the above with treerve a separate discussion.
extensively studied but unrelated notion of chaos in Hamil- Let us end with the remark that the notorious problem
tonian systems—we do not deal here with dynamical equawith operator ordering known from canonical approaches has
tions on symplectic manifolds. This is important, as Hamil-an elegant solution in path integrals. The ordering is there
tonian systems forbiger sethe existence of attractive orbits naturally generated by the necessary physical requirement
which are otherwise key in 't Hooft's proposal. In this re- that path integrals must be invariant under coordinate trans-
spect our approach is parallel with some more conventiondormations[65].
approaches. Indeed, a direct “quantization” of the equations
of the motion—originally proposed by Feynma&b4]—is ACKNOWLEDGMENTS
one of the techniques for tackling quantization of dissipative
systemg55,56. In field theories this line of reasoning was  M.B. and P.J. are grateful to the ESF network COSLAB
recently extended by Bird, Miller and Matiny4m9] who  for funding their stay at FU, Berlin. One of (B.J) acknowl-
demonstrated that quantum gauge field theories can emergélges very helpful discussions with R. Banerjee, G. Vitiello,
in the infrared limit of a higher-dimensional classi¢abn-  and Y. Satoh, and thanks the Japanese Society for Promotion
Abelian gauge field theory, known to have chaotic behaviorof Science for financial support.

[57].

We finally wish to comment on two more points._Fir;t, ir_1 APPENDIX A
cases where one strives for an explicit reparametrization in- _ _
variance(or general covariangeof the emergent quantum  In this appendix we show that the syst&in has no sec-

system the presented framework is not very suitable. Th@ndary constraints. In contrast to the primary constraints
absence of explicit covariance in both Dirac-Bergmann andvhich are a consequence of the noninvertibility of the veloci-
Fadeev-Senjanovic algorithms makes the actual analysfées in terms of thep’s andq's, secondary constraints result
very cumbersome or even impossible. In fact, expression§om the equations of motion. To show their absence in 't
(68) and(70) are evidently not generally covariant due to the Hooft's system we start with the observation that the time
presence of time-independent constraints in the measure. Aflerivative of any functiorf(q,p) is given by[39]

though generalizations that include covariant constraints do . -

exist[33,58,59 they result in gauge fixing conditions which f~{f,H}+u{f, &}. (A1)
depend not only on the canonical variables but also on thgjare 2 are the Lagrange multipliers to be determined by the
Lagrange multlpllers(o_r expllcn_ tlme: Such gauge con- conqjstency conditions

straints are, however, incompatible with our Poisson bracket

analysis used in Sec. IV and Appendixes A and D. Hence, if 0~ ¢ ~{¢,H}+ u{e, ¢y} (A2)

the emergent quantum system is supposed to be reparametri-

zation invariant(e.g., relativistic particle, canonical gravity, The latter is nothing but the statement that constrajats
relativistic string, etd.a new framework for the path-integral functions ofq andp) must hold at any time. If alt/ could
implementation of 't Hooft's scheme must be sought. Sechot be determined from the consistency conditié2) then
ond, the formalism of functional integrals is sometimes de-we would have the so-called secondary constraints. In our
ceptive when taken too literally. The latter is the case, forcase we have

instance, when gauge conditions are imposed and/or canoni- —

cal transformations performed. The difficulty involved is {¢aﬁ}=_ﬁ;}go

known as the Edwards-Gulyaev effddtl,40,44 and it re- o %

sides in the exact nature of the limiting sequence of the finite

dimensional integrals which constitute the path integral. As a {qﬁg,ﬁ} =—f(q#0, {4 ¢g} == 5. (A3)

result the classical canonical transformation does not leave,

in general, the measure of the path integral Liouville invari-ysjng the fact tha{d)i,ﬁ}aﬁo and det{¢;, ¢;}|=1, the inho-
ant but instead induces an anoma6,6q. Thus, for our mogeneous system of linear equati¢Ag) can be uniquely

construction to be meaningful it should be shown that thgegolved with respect ta, thus implying the absence of
canonical transformations in Sec. IV are unaffected by th%econdary constraints.

Edwards-Gulyaev effect. Fortunately, in cases when the gen-

erating function is at most quadratignaking canonical
APPENDIX B

®Nontrivial are only the equations over actual configuration space. We show here that Gozzi’s configuration-space path inte-
The dynamical equations for the auxiliary variablgare linear and  gral results from the “classical” limit of the stochastic-
hence they are not relevant in this connection guantization partition function, i.e., the limit where the width
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of a noise distribution tends to zero. For this purpose we start (0]
with the form of the partition function for stochastic quanti- Zsd(J,h) — f Dq dq-g-lex JJ(X)Q(X)dX :

zation as written down by Zinn-Justj84,62: (88

ZsdJd) = f Dq Dc Dc DA exp{— S[g,c,c,\]
Choosing a special sourcdéx)=J(t)5(7) we can sum in the
+ f IXqO0dx |, (B1) path mtegr_al soI_er over conflguratlons witkit,0)=q(t) as
other configurations will contribute only to an overall nor-
malization constant. Thus we finally obtain

where
aq(x oA _ .
=-w\)+ f xm(ﬂ - —)dx— f dx dx'c,(x) lim Zs(3,4) = Zcm(J). (B9)
aT 89(x) h—0*
d , A , Next we show that Gozzi's configuration-space partition
X [9_75ab5(x_x )+ 50X 50 (X) Co(X') (B2)  function (19) results from the “classical” limit of the closed-
é time-path integral for the transition probability of a system
and coupled to a thermal reservoir at some temperafuigy the
classical limit we mean the high temperature and weak heat
- _ bath coupling limit.
exfw(r)] = f Dyexp{ o(v) + f dXMX)V(X)}' The path-integral treatment of systems that are linearly

(B3) coup_led to a thermal bath of harmonic oscillators was _first
considered by Feynman and Vernd@8]. For our purpose it

with Dv ex—o(v)] being the functional measure of noise. Will be particularly convenient to utilize the so-called Ohmic

Here x=(t,7) and dx=dt dr where 7 is the Parisi-Wu ficti- limit version, as discussed in Refs1,64:

tious time. The dynamical equation fgfx) is described by

the Langevin equation

Jq(x)  8Ald]
ar aq

with the initial conditionq(t,0)=q(t). For Gaussian noise of
variance 2, the noise measure is

Drvexd-o(v)] = 11 dv@exp(— % f dx vz(x)),

Zpy[34,-]= f Dq+Dq_exp{'%[A[q+] - Alq-]]
=v(x), (B4)
g=q(x)

+ J dt[J+(t)Q+(t)—J-(t)Q—(t)]}

My _
xexp{—l o fdt[qu(t) q-(t]

ix 2Vmh X[1.(0) +q_<t>]R}
(B5)
and(B1) takes the form xexp{—% f dtJ dt'[g.(t) = g_(t)]
B dq S6A[q] J ,
ZsJd) = f Dq Dv 5(5 + —5q - v)de\{ E_ﬁabﬁ(x -X') XK(4,t)[g.(t") = g-(t)] (. (B10)
PA

+—————||ex —O'(V)+fJ(X) (x)dx}
5a(X) 50(X') p{ q
ward and backward movement of the particles in time. The

—fDq Dy da-q*ex o(») +fJ(x)q(x)dx superscripR indicates anegativeshift in the time argument
(B6) of the velocities with respect to positions. The latter ensures
the causality of the friction forcg$4]. In addition,m repre-

where 8 f(q)]=11, ,8(f(q(t, 7)) and ql”(x) is a solution of  sents the particle magfor simplicity we assume here that all
Eq. (B4). Using the representation system particles have the same mags=1/T, and vy is the
friction constant(or thermal reservoir coupling The func-
tion K(t,t’) is the bath correlation function. As argued in
[11,64], at high temperatureK(t,t’) = 8(t—t’). Introducing
the new set of variableg=[g,+q-]/2 and g=[g,—q-]
we get in the limit of zero distribution widtlii.e., #—0,) (i.e.,the center-of-mass arfdst coordinates we can in the
that high-temperature case rec#BtL0) into

} Here the pathg,(t) and q_(t) are associated with the for-

8(x) = lim XN (B7)

1—0, 2V 7
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Zn[3,3]= f Dq Daexp{i—[fl[q +0/2] - Alq-a/2]] + f df(ta(t) -J_(t)a(t)]}

xexp{—l—Jdtq(t)[q(t)]R—— dt?(t)} (B11)

Here the self-explanatory notatide=[J,—-J_] andJ=—[J++J_]/2 was used. Let us now defire=2my/ 8, integrate over,
and go to the classical limig— 0. Then we obtain the following chain of equations:

ETOZFV[J,J_]: m Dq Dq exp{ f dtqt) %—m'y[q(t)]RHﬁJ_(t)] —%2 f dtaz(t)}exp{ f dtJ(t)q(t)}

2
:IyiTofDq exp{——f M—my[q(t)]RHhJ(t)} fdtJ(t)q(t)}

2
=lim fDq j[q]exp{——fdt{——myq(t)ﬂhJ(t)} JdtJ(t)q(t)}
y—0 a(t)

6A  —
:fDq 5{5+|ﬁ\] J[q]exp{fdtJ(t)Q(t)}

=fDq iq—q[”]exp“ dtJ(t)q(t)}. (B12)

The Jacobia/[q] results from transition to the “unretarded” SA[r%qg ]
iti i ici J dtdt’r(t)—ql =0 (C2
velocities and its explicit form read$4] o)
Jlq]=de St—t')+ FA (B13) This simply expresses the fact that the functiadat“iq;] is
Oan 89, St || linear inr(t). The right-hand side of EqC1) has then pre-

. 0] . , cisely the Euler form(42).
The coordinates'~" are solutions of the equation of the mo-  Te reverse direction is proved in the following way: We

tion first recast Eq(42) in the general form
SAlql _  — _
o O (B14) J dtr(tL(q(v),q(t) = f dt L(ri(t)q;(t), d(r*(t)g(t)/dv).
In the limit y— 0, we find again the Gozat al. partition (C3
functi
unction Applying the variationfdt 6/ &r(t) to Eq. (C3) we obtain
I|m ZFV[J 0] = limlim 2e[3,3] = Zey[J].  (B15) AL
h—0y—0 r o= 1
Alq)= f th asf q.(t)(—ar 0
d aL
APPENDIX C =2
dta[d(r“ia)qi(t))/dt])' (4

In this appendix we prove that E(R4) is a special case of . ] )
the Euler-like functional§42). Let us first show that Eq34) ~ This relation must hold for alf(t), and hence by choosing
can be replaced by an action of the fofd?). Indeed, be- (t)=1 we arrive at the required result
cause of the homogeneity of E(4), we can immediatley Alq]

replace it by Alq] :J th aq,(t)m (CH

SA[rig]
Alrai f dt o;r%i(t) gt
[rig] = E CL Uy
APPENDIX D
ALr g ]
= [ dt r(t)&—(t)- (Cy Here we prove the fact that inclusion of the subsidiary
constraint(46) in the primary constraints) does not pro-
Since this is true for any(t), we see that duce any secondary constraints. The secondary constraints
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result from the consistency conditiori®2) or, in other 2N ac;
words, occur when existing constraints are incompatible with >, e{¢;,H} = 2 a,(t)fa(q)— E a(t){H,C}=0.
the equation of motion. i=0 9a =1

We first observe that the conditidgth. =0 can be equiva- (D4)

lently represented by the conditith—EiaCi)E¢0~O. If
we now add the subsidiary constraiy to the remaining R
constraints¢; and again require that the constraigisre-  As the latter is zergeven strongly there is no new con-

main (weakly) zero at all times we have straint condition generated by inclusion & in the original
: - o set of (primary) constraints. Note that the key in obtaining
0= ¢ ={gH+u{di ¢}, 1,j=0,1L...2N. (D1)  (D4)was the fact that th€;’s arep-independent constants of

Since there is an odd number of constraints and becaudgotion.

{¢, ¢} is an antisymmetric matrix we have that The rank of{¢;, ¢} being N means that there is one
det|{¢,,¢,}||—0 From the analysis in Appendix A it is clear relation

that the rank of the matrifp;, ¢;} is 2N and hence it has one

null eigenvector, sag. Thus, Eq(D1) implies the constraint "

g e{¢H} ~ 0. (D2) g ef{di ¢}~ 0. (D5)
=0

If the latter represented a new nontrivial constrdirg., a

constraint that cannot be written as a linear combination ofAny linear combination of the constraing; is again a con-
constraints¢;) we would need to include such a new con- straint. So, particularly if we defing=2;e ¢;, we obtain that
straint (the so-called secondary constraiit the list of ex- ¢ has weakly vanishing Poisson brackets with all constraints,
isting constraints and go again through the consistency con-€.,

dition (D1). Fortunately, the conditiofD2) is automatically

satisfied and hence it does not constitute any new constraint.

Indeed, by choosing {o,}= 0, i=1,...,2N. (D6)
1
1 fa(q) Thus, according to Dirac’s classificati¢see, e.g., Ref32])
a ddo ¢ is a first-class constraint. The remainin§y Zonstraints
{¢o, 42} B H (which do not have vanishing Poisson brackets with all other
{#%, do} N constraintgare of the second class. Note particularly that the
{0 ¢2} fo(@) explicit form for ¢ reads
€= b = 0"¢0 ’ (D3)
{¢11 ¢0} -
. &qb
: . 2N n ¢
: 0
(o, S} <p:2e.¢i:<H—Ea1-ci) 2P~ (D7)
{¢N ba) fn(@) i=0 i=1 a=1  90a
2 _ 9%
B 90y which is clearly weakly identical té1-X;,C;. Observe that
and using{¢y,H}=0 together with(A3) we obtain it is H and notH that is present in EqD7).
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