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We present a path-integral formulation of ’t Hooft’s derivation of quantum physics from classical physics.
The crucial ingredient of this formulation is Gozziet al.’s supersymmetric path integral of classical mechanics.
We quantize explicitly two simple classical systems: the planar mathematical pendulum and the Rössler
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DOI: 10.1103/PhysRevA.71.052507 PACS numberssd: 31.15.Kb, 03.65.2w, 45.20.Jj, 11.30.Pb

I. INTRODUCTION

In recent decades, various classical, i.e., deterministic, ap-
proaches to quantum theory have been proposed. Examples
are Bohmian mechanicsf1g, and the stochastic quantization
procedures of Nelsonf2g, Guerra and Ruggierof3g, and Pa-
risi and Wu f4,5g. Such approaches are finding increasing
interest in the physics community. This might be partially
ascribed to the fact that such alternative formulations help in
explaining some quantum phenomena that cannot be easily
explained with the usual formalisms. Examples are multiple
tunneling f6g, critical phenomena at zero temperaturef7g,
mesoscopic physics and quantum Brownian oscillatorsf8g,
and quantum-field-theoretical regularization procedures
which manifestly preserve all symmetries of the bare theory
such as gauge symmetry, chiral symmetry, and supersymme-
try f9g. They allow one to quantize gauge fields, both Abelian
and non-Abelian, without gauge fixing and the ensuing cum-
bersome Faddeev-Popov ghostsf10g, etc.

The primary objective of a reformulation of quantum
theory in the language of classical, i.e., deterministic, theory
is basically twofold. On the formal side, it is hoped that this
will help in attacking quantum-mechanical problems from a
different direction using hopefully more efficient mathemati-
cal techniques than the conventional ones. Such techniques
may be based on stochastic calculus, supersymmetry, or vari-
ous new numerical approachesssee, e.g., Refs.f5,11g and
citations thereind. On the conceptual side, deterministic sce-
narios are hoped to shed new light on some old problems of
quantum mechanics, such as the origin of the superposition
rule for amplitudes and the theory of quantum measurement.
It may lead to new ways of quantizing chaotic dynamical
systems, and ultimately a long-awaited consistent theory of
quantum gravity. There is, however, a price to be paid for
this; such theories must have a built-in nonlocality to escape
problems with Bell’s inequalities. Nonlocality may be incor-
porated in numerous ways—the Bohm-Hiley quantum poten-

tial f1,12g, Nelson’s osmotic potentialf2g, or Parisi and Wu’s
fifth-timeparameterf4,5g.

Another deterministic access to quantum-mechanical sys-
tems was recently proposed by ’t Hooftf13,14g with subse-
quent applications in Refs.f15–21g. It is motivated by black-
hole thermodynamicssand particularly by the so-called
holographic principlef22,23gd, and hinges on the concept of
information loss. This and certain accompanying nontrivial
geometric phases are able to explain the observed nonlocal-
ity in quantum mechanics. The original formulation has ap-
peared in two versions: one involving a discrete time axis
f16g, the second continuous timesf14g. The goal of this pa-
per is to discuss further and gain more understanding of the
latter model. The reader interested in the discrete-time model
may find some practical applications in Refs.f24,25g. It is
not our purpose to dwell on the conceptual foundations of
’t Hooft’s proposal. Our aim is to set up a possible useful
alternative formulation of ’t Hooft’s model and quantization
scheme that is based on path integralsf11g. It makes use of
Gozzi et al.’s path-integral formulation of classical mechan-
ics f26,27g which appears to be a natural mathematical
framework for such a discussion. The condition of the infor-
mation loss, which is basically a first-class subsidiary con-
straint, can then be incorporated into path integrals by stan-
dard techniques. Although ’t Hooft’s procedure differs in its
basic rationale from stochastic quantization approaches, we
show that they share a common key feature, which is a hid-
den BRST invariance, related to the so-called Nicolai map
f28g. To be specific, we shall apply our formulation to two
classical systems: a planar mathematical pendulum and the
simplest deterministic chaotic system—the Rössler attractor.
Suitable choices of the “loss of information” condition then
allow us to identify the emergent quantum systems with a
free particle, a quantum harmonic oscillator, and a free par-
ticle weakly coupled to Duffing’s oscillator.

Our paper is organized as follows In Sec. II we quantize
’t Hooft’s Hamiltonian system by expressing it in terms of a
path integral which is singular due to the presence of second-
class primary constraints. The singularity is removed with
the help of the Faddeev-Senjanovic prescriptionf29,30g. It is
then shown that the fluctuating system produces a classical
partition function. In Sec. III we briefly review Gozziet al.’s
path-integral formulation of classical mechanics in configu-
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ration space. The corresponding phase-space formulation is
more involved and will not be considered here. By imposing
the condition of a vanishing ghost sector, which is character-
istic for the underlying deterministic system, we find that the
most general Hamiltonian system compatible with such a
condition is the one proposed by ’t Hooft. In Sec. IV we
introduce ’t Hooft’s constraint which expresses the property
of information loss. This condition not only explicitly breaks
the BRST symmetry but, when coupled with the Dirac-
Bergmann algorithm, it also allows us to recast the classical
generating functional into a form representing a proper
quantum-mechanical partition function. Section V is devoted
to application of our formalism to practical examples. We
conclude with Sec. VI. For the reader’s convenience the pa-
per is supplemented with four appendixes which clarify
some finer mathematical points needed in the paper.

II. QUANTIZATION OF ’t HOOFT’S MODEL

Consider the class of systems described by Hamiltonians
of the form

H = o
a=1

N

pafasqd. s1d

Such systems emerge in diverse physical situations, for ex-
ample, Fermi fields, chiral oscillatorsf20g, and noncommu-
tative magnetohydrodynamicsf31g. The relevant example in
the present context is the use of Eq.s1d by ’t Hooft to for-
mulate hisdeterministicproposalf13g.

An immediate problem with the above Hamiltonian is its
unboundedness from below. This is due to the absence of a
leading kinetic term quadratic in the momentapa

2/2M, and
we shall dwell more on this point in Sec. IV. The equations
of motion following from Eq.s1d are

q̇a = fasqd, ṗa = − pa
] fasqd

]qa
. s2d

Note that the equation forqa is autonomous, i.e., it is decou-
pled from the conjugate momentapa. The absence of a qua-
dratic term makes it impossible to find a Lagrangian via a
Legendre transformation. This is because the system is
singular—its Hess matrixHab;]2H /]pa]pb vanishes.

A Lagrangian yielding the equations of motions2d can
nevertheless be found, but at the expense of doubling the
configuration space by introducing additional auxiliary vari-
ablesq̄asa=1,… ,Nd. ThisextendedLagrangian has the form

L̄ ; o
a=1

N

fq̄aq̇a − q̄afasqdg s3d

and it allows us to define canonically conjugate momenta in

the usual way:pa;]L̄ /]q̇a, p̄a;]L̄ /]q̇̄a. A Legendre trans-
formation produces the Hamiltonian

H̄spa,qa,p̄a,q̄ad = o
a=1

N

paq̇a + p̄aq̇̄a − L = o
a=1

N

q̄afasqd. s4d

The rank of the Hess matrix is zero, which gives rise to 2N
primary constraints, which can be chosen as

f1
a = pa − q̄a < 0, f2

a = p̄a < 0. s5d

The use of the symbol< instead of = is due to Diracf32g
and it has a special meaning: two quantities related by this
symbol are equal after all constraints have been enforced.
The system has no secondary constraintsssee Appendix Ad.
The matrix formed by the Poisson brackets of the primary
constraints,

hf1
astd,f2

bstdj = − dab, s6d

has a nonzero determinant, implying that all constraints are
of the second class. Note that on the constraint manifold the
canonicalHamiltonians4d coincides with ’t Hooft’s Hamil-
tonian s1d.

To quantize ’t Hooft’s system we utilize the general
Faddeev-Senjanovic path integral formulaf29,30g for time
evolution amplitudes1

kq2,t2uq1,t1l = NE Dp DqÎudetihfi,f jjiup
i

dffig

3expH i

q
E

t1

t2

dtfpq̇ − H̄sq,pdgJ . s7d

Using the shorthand notation fi =hf1
1,f2

1,f1
2,

f2
2,… ,f1

N,f2
Nj si =1,… ,2Nd, Eq. s7d implies in our case

that

kq2,t2uq1,t1l = NE Dp Dq Dp̄ Dq̄dfp − q̄gdfp̄g

3expH i

q
E

t1

t2

dtfpq̇ + p̄q̇̄ − H̄sq,q̄,p,p̄dgJ
= NE

qst1d=q1

qst2d=q2

Dq Dq̄expF i

q
E

t1

t2

L̄sq,q̄,q̇,q̇̄ddtG
= NE

qst1d=q1

qst2d=q2

Dqp
a

dfq̇a − fasqdg, s8d

wheredffg;ptd(fstd) is the functional version of Dirac’sd
function. This result shows that after quantization the system
described by the Hamiltonians1d retains its deterministic
character. The paths are squeezed onto the classical trajecto-
ries determined by the differential equationsq̇a= fasqd. The
time evolution amplitudes8d contains a sum over only the
classical trajectories—there are no quantum fluctuations
driving the system away from the classical paths, which is
precisely what we expect from a deterministic dynamics.

The amplitudes8d can be brought to a more intuitive form
by utilizing the identity

dffsqd − q̇g = dfq − qclgsdetMd−1, s9d

whereM is a functional matrix formed by the second deriva-

tives of the actionĀfq ,q̄g;edt L̄sq ,q̄ ,q̇ , q̇̄d:

1Other path-integral s of systems with second-class constraints
such as that of Fradkin and Fradkinaf33g would lead to the same
result s8d.
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Mabst,t8d = U d2Ā
dqastddq̄bst8d

U
q=qcl

. s10d

The Morse index theorem then ensures that for sufficiently
short time intervalst2− t1 sbefore the system reaches its first
focal pointd, the classical solution with the initial condition
qst1d=q1 is unique. Note, however, that because of the first-
order character of the equations of motion we are dealing
with a Cauchy problem, which may happen to possess no
classical trajectory satisfying the two Dirichlet boundary
conditionsqst1d=q1, qst2d=q2. If a trajectory exists, Eq.s8d
can be brought to the form

kq2,t2uq1,t1l = N̄E
qst1d=q1

qst2d=q2

Dq dfq − qclg, s11d

where N̄;N / sdetMd. We close this section by observing
that detM can be recast into more expedient form. To do this
we formally write

detM = detIS]tda
b +

] fa„qstd…
]qbstd Ddst − t8dI

= expFTr lnIS]tda
b +

] fa„qstd…
]qbstd Ddst − t8dIG

= expFTr ln]tIda
bdst − t8d + Gst − t8d

] fa„qst8d…
]qbst8d IG

= expfTrsln]tdgexpFTr lnIda
bdst − t8d

+ Gst − t8d
] fa„qst8d…

]qbst8d IG . s12d

HereGst− t8d is the Green’s function satisfying the equation

]tGst − t8d = dst − t8d.

ChoosingGst− t8d=ust− t8d, and noting that the first factor in
Eq. s12d is an irrelevant constant that can be assimilated into
N we have

detM = expFTr lnIda
bdst − t8d + Gst − t8d

] fa„qst8d…
]qbst8d IG

= expFTrIust − t8d
] fa„qstd…

]qbstd IG
= expF1

2
E

t1

t2

dt =qfsqdG . s13d

In deriving Eq.s13d we have used the fact that due to the
product of theu function in the expansion of the logarithm,
all terms vanish but the first one. In evaluating the general-
ized functionusxd at the origin we have used the only con-
sistent midpoint rulef11g: us0d=1/2. Using the identity

UexpF1

2
E

t1

t2

dt =qfsqdGU
q=qcl

=E Dq̄ dfq̄ − q̄clgexpF−
1

2
E

t1

t2

dt =q̄q̇̄G , s14d

we can finally write the amplitude of transition in the sug-
gestive form

kq2,t2uq1,t1l = NE
qst1d=q1

qst2d=q2

Dq Dq̄ dfq − qclgdfq̄ − q̄clg

3expF−
1

2
E

t1

t2

dt =q̄q̇̄G = NE
qst1d=q1

qst2d=q2

Dq Dq̄

3dfq − qclgdfq̄ − q̄clgÎdetKst2d
detKst1d

. s15d

Here Kstd is the fundamental matrix of the solutions of the
system

q̇̄a = − q̄b
] fbsqd

]qa
. s16d

detKstd is then the corresponding Wronskian. Note that in
the particular case when=qfsqd;0, i.e., when the phase
flow preserves the volume of any domain in theconfigura-
tion space, the exponential in Eq.s15d can be dropped.2 Be-
cause the exponent depends only on the end points of theq̄
variable it can be removed by performing the trace overq̄.
As a result we can cast the quantum-mechanical partition
function sor generating functionald Z into the form

Z = NE Dq Dq̄ dfq − qclgdfq̄ − q̄clg

3expFE
t1

t2

fJstdqstd + J̄stdq̄stdgdtG
= NE Dqadfqa − sqadclgexpFE

t1

t2

dt JastdqastdG . s17d

Here the doubled vector notationqa=hq ,q̄j and Ja;hJ , J̄j
was used.

III. PATH-INTEGRAL FORMULATION OF CLASSICAL
MECHANICS: CONFIGURATION-SPACE

APPROACH

Expressionss11d and s17d formally coincide with the
path-integral formulation of classical mechanics in configu-
ration space proposed by Gozzif26g and further developed
by Gozzi, Reuter, and Thackerf27g ssee also Ref.f21g for
recent applicationsd. Let us briefly review aspects of this
which will be needed here. Consider the path-integral of the
generating functional of a quantum-mechanical system with
actionAfqg:

2This corresponds to the situation when there are no attractors in
the configuration spaceGq.
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ZQM = NE Dq e−iAfqg/qexpFE JstdqstddtG . s18d

We assume in this context that there are no constraints that
would make the measure more complicated as in Eq.s7d.
Gozzi et al. proposed to describe classical mechanics by a
generating functional of the forms18d with an obviously
modified integration measure which gives equal weight to all
classical trajectories and zero weight to all others,

ZCM = ÑE Dq dfq − qclgexpFE JstdqstddtG . s19d

Although the form of the partition functions19d is not de-
rived butpostulated, we show in Appendix B that it can be
heuristically understood either as the “classical” limit of the
stochastic-quantization partition function, or as a result of the
classical limit of the closed-time-path integral for transition
probability of systems coupled to a heat bath. This, in turn,
indicates that it would be formally more correct to associate
Eq. s19d with the probability of transition or svia the
stochastic-quantization passaged with the Euclideanampli-
tude of transitionf34g. Albeit Eq. s19d cannot be generally
obtained from Eq.s18d by a semiclassical limit as in the
WKB methodswhich can be recognized by the absence of a
phase factor expfi /qAsqcldg in Eq. s19dd it may happen that
even ordinary amplitudes of transition possess this form.
This is the case, for instance, when the number of degrees of
freedom is doubled or when one deals with closed-time-path
formulation of thermal quantum theory. Yet, whatever is the
origin or motivation for Eq.s19d, it will be its formal struc-
ture and mathematical implications that will interest us here
most.

To proceed we note that an alternative way of writing Eq.
s19d is

ZCM = ÑE Dq dFdA
dq

GdetU d2A
dqastddqbst8d

U
3expFE JstdqstddtG . s20d

By representing thed functional in the usual way as a func-
tional Fourier integral,

dFdA
dq

G =E Dl expSiE
t1

t2

dt lstd
dA

dqstdD , s21d

and the functional determinant as a functional integral over
two real time-dependent Grassmannianghost variables castd
and c̄astd,

detU d2A
dqastddqbst8d

U =E Dc Dc̄ expFE
t1

t2

dtE
t1

t2

dt8c̄astd

3
d2A

dqastddqbst8d
cbst8dG , s22d

we obtain

ZCM =E Dq Dl Dc Dc̄ expFiS +E
t1

t2

dt JstdqstdG ,

s23d

with the new action

Sfq,c̄,c,lg ; E
t1

t2

dt lstd
dA

dqstd

− iE
t1

t2

dtE
t1

t2

dt8c̄astd
d2A

dqastddqbst8d
cbst8d.

s24d

SinceZCM together with the actions24d formally result from
the classical limit of the stochastic-quantization partition
function, it comes as no surprise thatS exhibits BRSTsand
anti-BRSTd supersymmetry. It is simple to check thatS does
not change under the supersymmetry transformations

dBRSTq = «̄c, dBRSTc = 0, dBRSTc̄ = − i «̄l, dBRSTl = 0,

s25d

where«̄ is a Grassmann-valued parameterfthe corresponding
anti-BRST transformations are related with Eq.s25d by
charge conjugationg. Indeed, the variations of the two terms
in Eq. s24d read

dBRSTFE
t1

t2

dt lstd
dA

dqstdG = «̄E
t1

t2

dtE
t1

t2

dt8lastd

3
d2A

dqastddqbst8d
cbst8d, s26d

dBRSTFE
t1

t2

dtE
t1

t2

dt8c̄astd
d2A

dqastddqbst8d
cbst8dG

= − i «̄E
t1

t2

dtE
t1

t2

dt8lastd
d2A

dqastddqbst8d
cbst8d

+E
t1

t2

dtE
t1

t2

dt8E
t1

t2

dt9c̄astd

3
d3A

dqastddqbst8ddqcst9d
«̄ccst9dcbst8d. s27d

The second term on the right-hand side RHS of Eq.s27d
vanishes because the functional derivative ofA is symmetric
in c↔b whereas the termcccb is anti-symmetric. Inserting
Eqs. s26d and s27d into the action we clearly finddBRSTS
=0. As noted inf27g, the ghost fieldsc̄ andc are mandatory
at the classical level as their role is to cut off the fluctuations
perpendicular to the classical trajectories. On the formal
side, c̄ and c may be identified with Jacobi fieldsf27,35g.
The corresponding BRST charges are related to Poincaré-
Cartan integral invariantsf36g.

By analogy with the stochastic quantization the path inte-
gral s23d can, of course, be rewritten in a compact form with
the help of a superfieldf26,34g
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Fast,u,ūd = qastd + iucastd − i ūc̄astd + i ūulastd, s28d

in which u and ū are anticommuting coordinates extending
the configuration space ofqa variable to a superspace. The
latter is nothing but the degenerate case of supersymmetric
field theory in d=1 in the superspace formalism of Salam
and Strathdeef37g. In terms of superspace variables we see
that

E dū du AfFg =E dt dū du Lfqstd + iucstd

− i ūc̄std + i ūulstdg

=E dū du Afqg +E dt dū du

3fiucstd − i ūc̄std + i ūulg
dA

dqstd

+E dt dt8dū du ucastd
d2A

dqastddqbst8d
ūc̄st8d.

s29d

Using the standard integration rules for Grassmann variables,
this becomes equal to −iS. Together with the identityDF
=Dq Dc Dc̄ Dl we may therefore express the classical par-
tition functionss19d ands20d as a supersymmetric path inte-
gral with fully fluctuating paths in superspace

ZCM =E DF expH−E du dū AfFgsu,ūd

+E dt du dū Gst,u,ūdFst,u,ūdJ . s30d

Here we have defined the supercurrentGst ,u , ūd= ūuJstd.
It is interesting to find the most general form of an action

A for which the classical path integrals30d coincides with
the quantum-mechanical path integral of the system, or, in
other words, for which a theory would possess at the same
time deterministic and quantal character. As already men-
tioned, the Grassmannnian ghost variables are responsible
for the deterministic nature of the partition function. It is
obvious that if the ghost sector could somehow be factored
out we would extend the path integration to all fluctuating
paths inq space. By formally writing

d2A
dqkstddqlst8d

= FklSt,t8,qm,
dA
dqn

D, k,l,m,n = 1,…,N,

s31d

we see that the factorization will occur if and only if the
sdistribution valuedd functional Fkls¯d is qm independent
when evaluated on shell, i.e.,Fklst ,t8 ,qm,0d=Fklst ,t8d. This
is a simple consequence of Eq.s20d where the determinant is
factorizable if and only if it isq independent atdA /dq=0.

In order to provide a correct Feynman weight to every
path we must, in addition, identify

Afqg =E
t1

t2

dt lm

dAfqg
dqm

, s32d

as can be seen from Eq.s24d after factoring out the second
term. Assuming thatL=Lsql ,q̇ld si.e., a scleronomic systemd
and that the Hessian is regular, the conditions32d shows that
lk=lksql ,q̇kd. In addition, it is obvious on dimensional
grounds thatfllg=fqlg. This, in turn, implies thatlk=aklql,
wherealk is some realst-independentd matrix. To determine
the latter we functionally expandA in Eq. s32d aroundqk and
compare both sides. The resulting integrability condition
reads

sd ji − a jid
dA

dqjstd
dst − t8d = al jqjstd

d2A
dqlstddqist8d

, s33d

which is evidently compatible with the conditions31d. When
ai j is diagonalizable we can pass to a polar basis and write
Eq. s32d in more manageable form, namely,

Afqg =E
t1

t2

dto
i

aiqistd
dAfqg
dqistd

. s34d

For simplicity, we do not use new symbols for transformed
q’s.

To proceed we assume that the kinetic energy is quadratic
in q and q̇. Then Eq.s34d implies thatLkin must be linear in
q̇. As such, one can always writesmodulo the total deriva-
tived

Lkin = o
i,j

Bijqistdq̇jstd, s35d

with B being an upper triangular matrix. ComparingLkin on
both sides of Eq.s34d we arrive at the equation

sam − 1dBim = Bmiam ⇒ sB − BTda = B, s36d

with no Einstein’s summation convention applied here. Be-
causeB is upper triangular, the first part of Eq.s36d implies
that the only eigenvalues ofai j are 1 and 0. Thus,a can be
reduced to the block form

a = F0 0

0 1
G , s37d

where 1 is anr 3 r sr øNd unit matrix. Using the equation
sB−BTda=B we see thatB has the block structure

B = F0 B2

0 0
G s38d

whereB2 is ansN−rd3 r matrix. To determiner we use the
fact thata is idempotent, i.e.a2=a. Multiplying sB−BTda
=B by a we find

Ba = B, BTa = 0. s39d

From Ba=B it follows that ranksBd=ranksad=r, whereas
BTs1−ad=BT implies that ranksBTd=ranks1−ad. Utilizing
the identity ranksBd=ranksBTd we derive r =ranksad
=ranks1−ad=sN−rd, and thusr =N/2. Thus the condition
s34d can be satisfied only for an even numberN of degrees of
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freedom. An immediate further consequence of Eq.s38d is
that we can rewrite Eq.s35d as

Lkin = o
i,j=1

N/2

Bi,sN/2+jdq̇iqN/2+j . s40d

DenotingaN/2+i, qN/2+i andlN/2+i si =1,… ,N/2d asāi, q̄i, and

l̄i, respectivelyshence,l=0 and l̄= q̄d, then Eq.s34d reads

Āfq,q̄g =E
t1

t2

dt q̄std
dĀfq,q̄g

dq̄std
. s41d

HereĀfq ,q̄g=Afq1,… ,q2Ng.

The results41d can be obtained also in a different way. Indeed, in Appendix C we show that Eq.s34d is a so-called Euler-like
functional

Afqg =E
t1

t2

dt rstdLSr−a1stdq1std,…,r−aNstdqNstd,
dfr−a1stdq1stdg

dt
,…,

dfr−aNstdqNstdg
dt

D , s42d

with rstd being an arbitrary function ofqk whose variations vanish at the endsdrstid=drstfd=0 if all dqk’s have this property.
In particular, we may choser to be any finite powerqk

1/ak sfor k=1,… ,Nd, in which case

Afqg =E
t1

t2

dt qk
1/akLS q1

qk
a1/ak

,…,1
↓
k

,…,
qN

qk
aN/ak

,
dsq1/qk

a1/akd
dt

,…,0
↓
k

,…,
dsqN/qk

aN/akd
dt

D . s43d

Assuming, as before, that the kinetic term inL is quadratic in
q andq̇, we arrive ata as ins37d, and the actions43d reduces
again tos41d.

One can incorporate the constraints onai sor lid by in-
serting a correspondingd functional into the path integral
s23d. This leads to the most general generating functional
with the above-stated property:

ZCM =E Dq Dq̄ Dl Dl̄dflgdfl̄ − q̄g

3expFiE
t1

t2

dt l
dĀfq,q̄g

dq
+ iE

t1

t2

dt l̄
dĀfq,q̄g

dq̄

+E
t1

t2

dto
k=1

N

JkqkG
=E Dq Dq̄ expFiE

t1

t2

dt q̄
dĀfq,q̄g

dq̄
+E

t1

t2

dto
k=1

N

JkqkG
=E Dq Dq̄ expFiE

t1

t2

dt L̄ +E dto
k=1

N

JkqkG . s44d

An irrelevant normalization factor has been dropped. The

LagrangianL̄ coincides precisely with the Lagrangians3d,
and describes therefore ’t Hooft’s deterministic system.
Hence within the above assumptions there are no other sys-
tems with the peculiar property that their full quantum prop-
erties are classical. Among other things, the latter also indi-
cates that the Koopman–von Neumann operatorial
formulation of classical mechanicsf38g when applied to

’t Hooft systems must agree with its canonically quantized
counterpart.

IV. ’t HOOFT’S INFORMATION LOSS AS A FIRST-CLASS
PRIMARY CONSTRAINT

As observed in Sec. II, the Hamiltonians1d is not bounded
from below, and this is true for any functionf i. Thus, no
deterministic system with dynamical equationsq̇i = f isqd can
describe a physically acceptablequantum world. Its Hamil-
tonian would not be stable and we could build a perpetual
motion machine. To deal with this problem we will employ
’t Hooft’s proceduref13g. We assume that the systems1d has
n conserved, irreducible chargesCi, i.e.,

hCi,Hj = 0, i = 1,…,n. s45d

In order to enforce a lower bound uponH, ’t Hooft split the
Hamiltonian asH=H+−H− with both H+ and H− having
lower bounds. Then he imposed the condition thatH− should
be zero on the physically accessible part of phase space, i.e.,

H− < 0. s46d

This will make the actual dynamics governed by the reduced
Hamiltonian H+, which is bounded from below, by defini-
tion.

To ensure that the above splitting is conserved in time one
must require thathH−,Hj=hH+,Hj=0. The latter is equiva-
lent to the statement thathH+,H−j=0. Since the chargesCi in
Eq. s45d form an irreducible set, the HamiltoniansH+ andH−
must be functions of the charges andH :H+=F+sCk,Hd and
H−=F−sCk,Hd. There is a certain amount of flexibility in
finding F− and F+, but for convenience’s sake we confine
ourselves to the following choice:
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H+ =
FH + o

i

aistdCiG2

4o
i

aistdCi

, H− =
FH − o

i

aistdCiG2

4o
i

aistdCi

,

s47d

whereaistd are independent ofq andp and will be specified
later. The lower bound is then achieved by choosing
oiaistdCi to be positive definite. In the following it will also
be important to select the combination ofCi’s in such a way
that it depends solely onq fthis condition may not necessar-
ily be achievable for generalfasqdg. Thus by imposing
H−<0 we obtain the weak reduced HamiltonianH<H+
<oiaistdCi.

The constraints46d for s47dg can be motivated by dissipa-
tion or information lossf14,15,19g. In Appendix D we show
that theexplicit constraints46d does not generate any new
si.e., secondaryd constraints when added to the existing con-
straints s5d. In addition, this new set of constraints corre-
sponds to 2N second-class constraints andone first-class
constraintssee also Appendix Dd. It is well known in the
theory of constrained systems that the existence of first-class
constraints signals the presence of a gauge freedom in
Hamiltonian theory. This is so because the Lagrange multi-
pliers affiliated with first-class constraints cannot be fixed
from dynamical equations alonef32g. The time evolution of
observablesphysicald quantities, however, cannot be affected
by the arbitrariness in Lagrange multipliers. To remove this
superfluous freedom that is left in the formalism we must
pick up a gauge, i.e., impose a set of conditions that will
eliminate the above redundancy from the description. It is
easy to see that the number of independent gauge conditions
must match the number of first-class constraints. Indeed, the
requirement on a physical quantityssay fd to have a unique
time evolution on the constraint submanifoldM, i.e.,

ḟ < hf,H̄j + o
i=1

m

vihf,wij + o
k=1

m8

ukhf,fkj, s48d

implies that

hf,wij < 0. s49d

The constraintswi and fk represent first- and second-class
constraints, respectively. First-class constraints have, by defi-
nition, weakly vanishing Poisson brackets with all other con-
straints; any other constraint that is not first class is second
class. While the Lagrange multipliersuk can be uniquely
fixed from the dynamics by consistency conditionsssee Ap-
pendixes A and Dd this cannot be done for thevi’s. In this
way s49d represents an obligatory condition for a quantityf
to be observable. Equations49d can be considered as a set of
m first-order differential equations on the constrained surface
with the relationhwi ,w jj<0 serving as the integrability con-
ditions f32,39g.Thus, f is uniquely defined by its values on
the the submanifold of the initial conditons fors49d. As a
result, the above initial value surface describes the true de-
grees of freedom. By denoting the dimension of the con-
straint manifold asD we see that the dimension of the sub-

manifold of initial conditions must beD−m. We can take
this submanifold to be a surfaceG* specified by the equations

wi = 0, i = 1,…,m,

fk = 0, k = 1,…,m8,

xl = 0, l = 1,…,m. s50d

The m subsidiary conditionsxl are the sought gauge con-
straints. The functionsxl must clearly satisfy the condition

detihxl,wiji Þ 0, s51d

as only in such a case can we determine specific values for
the multipliersvi from the dynamical equation forxl sthis is
because the time derivative of any constraint, and hence also
xl, must be zerod. Therefore only when the conditions51d is
satisfied do the constraintss50d indeed describe the surface
of the initial conditions.

The preceding discussion implies that in our case the sur-
faceG* is defined by

wsq,q̄,p,p̄d = 0, xsq,q̄,p,p̄d = 0, s52d

fisq,q̄,p,p̄d = 0, i = 1,…,2N. s53d

The explicit form of w is found in Appendix D where we
show thatw<H−oaiCi. Apart from conditions51d we shall
further restrict our choice ofx to functions satisfying the
simultaneous equations

hx,fij = 0, i = 1,…,2N. s54d

Such a choice is always possiblesat least in a weak sensed
f30g and it will prove crucial in the following.

In order to proceed further we begin by reexamining Eq.
s44d. The latter basically states that

ZCM =E Dq dfq − qclgexpFE
t1

t2

dt qstdJstdG . s55d

We may now formally invert the steps leading to Eq.s8d, i.e.,
we introduce auxiliary momentum integrations and go over
to the canonical ofs55d. Correspondingly Eq.s55d can be
recast into

ZCM =E Dp Dq Dp̄ Dq̄Îudetihfi,f jjiup
i=1

2N

dffig

3expFiE
t1

t2

dtfpq̇ + p̄q̇̄ − Hg +E
t1

t2

dtfqJ + q̄J̄gG .

Due to d functions in the integration we could substitute

’t Hooft’s HamiltonianH for the canonical HamiltonianH̄. It
should be stressed that despite its formal appearance and the
phase-space disguise, the latter is still the classical partition
function of Gozziet al.

To include the constraintss52d into Eq.s44d we must be a
bit cautious. A naive intuition would dictate that the func-
tional d functionsdfxg anddfwg should be inserted into the
path-integral measure forZCM. This would be, however, too
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simplistic as a mere inclusion ofd functions intoZCM would
not guarantee that the physical content of the theory that
resides in the generating functionalZCM is independent of the
choice x. Indeed, utilizing the fact that the generators of
gauge transformations are the first-class constraintsf39g we
can write that

dx = «hx,wj + Cw < «hx,wj. s56d

Here« is an infinitesimal quantity. The corresponding gauge
generator«w generates the infinistesimal canonical transfor-
mations

q → q + dq, p → p + dp, dq = h«w,qj, p = h«w,pj,

q̄ → q̄ + dq̄, p̄ → p̄ + dp̄, dq̄ = h«w,q̄j, p̄ = h«w,p̄j.

s57d

It follows immediately that the corresponding generating
function is

Gsq,q̄,P,P̄d = qP + q̄P̄ + «w + os«2d. s58d

The canonical transformationss57d result in changingw and
fi by

dw = Aw, s59d

dfi = «hfi,wj = Biw + Dijf j . s60d

HereA,Bi ,C andDij are some phase-space functions of or-
der «. Note that in our case the gauge algebra is Abelian. As
a consequence of Eqs.s59d and s60d we find

dfwg → u1 + TrsAdu−1dfwg, s61d

p
i

dffig → u1 + TrsDdu−1p
i

dffig, s62d

Îudetihfi,f jjiu → u1 + TrsDduÎudetihfi,f jjiu s63d

fhere TrsAd=otAstd, etc.g. In s63d we have used the fact that
in the path-integral measure are presentdfwg anddffig, and

so we have dropped on the RHS’s ofs61d–s63d the vanishing
terms. The infinitesimal gauge transformations described
hitherto clearly show thatZCM is dependent on the choice of
x fthe term withu1+TrsAdu does not get canceledg. To ensure
the gauge invariance we need to factor out the “orbit vol-
ume” from the definition ofZCM. This will be achieved by a
procedure that is akin to the Faddeev–Popov–De Witt trick.
We define the functional

sDxd−1 =E Dg dfxgg, s64d

with xg representing the gauge transformedx. The super-
scriptg in Eq. s64d denotes an element of the Abelian gauge
group generated byw. We point out that the functionals64d is
manifestly gauge invariant since

sDxg8d−1 =E Dg dfxg8gg =E Dsg8gddfxg8gg = sDxd−1.

s65d

The second identity holds because of the invariance of the
group measure under composition, i.e.,Dg=Dsg8gd. Equa-
tions s64d and s65d allow as to write “1” as

1 = Dxdfxg E Dg. s66d

To find an explicit form ofDfxg we can apply the infinitesi-
mal gauge transformations56d. Then

xg = x + «hx,wj + Cw

⇒ sDxd−1 =E D« dfx + «hx,wj + Cwg

⇒ usDxd−1uG* = udetihx,wjiu−1, s67d

with the obvious notation detihxstd ,wst8dji=pthxstd ,wstdj.
Upon insertion of Eq.s66d into ZCM we obtain

ZCM =E Dp Dq Dp̄ Dq̄ udetihx,wjiuÎudetihfi,f jjiudfxgdfwgp
i=1

2N

dffig expFiE
t1

t2

dtfpq̇ + p̄q̇̄ − H̄g +E
t1

t2

dtfqJ + q̄J̄gG ,

s68d

where3 the group volumeGV=eDg has been factored out as
desired. The partition functions68d is now clearlyslocallyd
independent of the choice of the gauge constraintsx. This is
because under the transformations59d we have

detihx,wji → f1 + TrsAdgdetihx + dx,wji, s69d

and hence the partition functionZCM as obtained by Eq.s68d
takes the same form as the untransformed one, but withx
replaced byx+dx. Because we deal with canonical transfor-
mations it is implicit in our derivation that the action in the
new variables is identical, to within a boundary term, with
the original action. In path integrals this might be invalidated

3If F is any phase-space function thenfd« ,dhgF=d«dhF
−dhd«F=«hhF ,hw ,wjj=0.
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by the path roughness and related ordering problems.4 For
simplicity’s sake we shall further assume that the latter are
absent or harmless. This happens, for instance, when canoni-
cal transformations are linear. In such cases an infinitesimal
change inx does not alter the physical content of the theory
present inZCM. This conclusion may generally not be true
globally throughout phase space. Global gauge invariance,
however, is mandatory in our case since we need a global
equivalence between the partition functionsZCM and ZQM
and not mere perturbative correspondence. Thus the potenti-
ality of Gribov’s copies must be checked in every individual
problem separately.

In passing we may notice that if we arrange the con-
straints in one sethhaj=hx ,w ,fij we can write Eq.s68d as

ZCM =E Dp Dq Dp̄ Dq̄Îudetihha,hbjiu p
a=1

2N+2

dfhag

3 expFiE
t1

t2

dtfpq̇ + p̄q̇̄ − Hg +E
t1

t2

dtfqJ + q̄J̄gG .

s70d

By comparison with Eq.s7d we retrieve a well known result
f39,41g, namely, that the sethhaj of 2N+2 constraints can be
viewed as a set of second-class constraints. Thus, by fixing a
gauge we have effectively converted the original system of
2N second-class andone first-class constraints into 2N+2
second-class constraints.

In view of Eqs.s6d ands54d, we can perform a canonical
transformation in the full phase space in such a way that the
new variables areP1=x ,Q1+i =f2i ,P1+i =f2i−1; i =1,… ,N .
After a trivial integration overPa andQ1+i we find that

ZCM =E DP̄ DQ̄ DQ1SdfwgUdetI dw

dQ1
IUD

3expFiE
t1

t2

dtfP̄Q̄
˙

− Kg +E
t1

t2

dt Q̄jG , s71d

whereP̄a andQ̄a are the remaining canonical variables span-
ning thes2N−2d-dimensional phase space. To within a time
derivative term the new Hamiltonian is done by the prescrip-

tion KsP̄,Q̄ ,Q1d=HsP̄,Q̄ ,P1=0,Q1,Q1+i =0,P1+i =0d. The

sourcesj are correspondingly transformed sourcesJ and J̄.
Utilizing the identity

dfwgUdetI dw

dQ1
IU = dfQ1 − Q1

*sP̄,Q̄dg, s72d

we can finally write

ZCM =E DP̄ DQ̄ expFiE
t1

t2

dtfP̄Q̄
˙

− K*g +E
t1

t2

dt Q̄jG .

s73d

HereK*sP̄,Q̄d=KsP̄,Q̄ ,Q1=Q1
*sP̄,Q̄dd. In view of Eq.sD7d

we can alternatively writeZCM as

ZCM =E DP̄ DQ̄ expFiE
t1

t2

dtfP̄Q̄
˙

− H+
* g +E

t1

t2

dt Q̄jG ,

s74d

whereH+
* =H+sP̄,Q̄ ,Q1=Q1

*sP̄,Q̄d ,Pa=0,Q1+i =0d. In pass-

ing we may notice thatP̄a and Q̄a are true canonical vari-
ables on the submanifoldG* of the initial conditions for Eq.
s49d. Indeed, in terms of a noncanonical system of variables

hzij=hw ;x ;fi ;Q̄ ; P̄j the Poisson bracket of any twoobserv-
ablequantitiesssay f andgd on the constraint manifoldM is

uhf,gjuM = UFo
a,b

hza,zbj
] f

]za

]g

]zb
GU

M
= o

i,j
hP̄i,Q̄jj

] f*

] P̄i

]g*

]Q̄j

= o
i,j

Vi j
] f*

]Q̄i

]g*

]Q̄ j

, s75d

with hQ̄ jj=hQ̄ ; P̄j and with

f*sQ̄,P̄d = fsw = 0,x = 0,fi = 0,Q̄,P̄d,

g*sQ̄,P̄d = gsw = 0,x = 0,fi = 0,Q̄,P̄d

representing the physical quantities onM. The latter depend

only on the canonical variablesQ̄ and P̄, which are the in-
dependent variables onG* . In deriving Eq.s75d we have used
the fact that various terms are vanishing on account of Eqs.
s49d and s54d. So, for instance, fhw ,zij] f /]ziguM
=0,hwi , P̄jj=0,hwi ,Q̄jj=0,fhx ,zij] f /]xguM=0, etc. The ma-
trix Vi j stands for thes2N−2d3 s2N−2d symplectic matrix.

ZCM as defined by Eqs.s73d and s74d does not generally
represent asclassicald deterministic system. This is because
the constraintw=0 explicitly breaks the BRST invariance of
ZCM, which sas illustrated in Sec. IIId is key in preserving the
classical nature of the partition function. Indeed, using the
relationshx , p̄aj=hx ,pa− q̄aj=0 we immediately obtain

hx,wj = o
a
H ]x

]qa
S ]w

]pa
+

]w

]q̄a
D −

]x

]pa

]w

]qa
J , s76d

which implies that

uhx,wjuM,q̄a=la
= o

a
H ]x*

]qa

]w*

]la
−

]x*

]la

]w*

]qa
J ; hx* ,w*j.

s77d

Here the notationsx*sq ,ld=xsq ,p=l ,q̄=l ,p̄=0d and
w*sq ,ld=wsq ,l ,l ,0d were used. We also took advantage of
the fact thatq̄=l as indicated in Sec. III. So the generating
functional s73d for s74dg can be rewritten as

4In the literature this phenomenon frequently goes under the name
of the Edwards-Gulyaev effectf40g.
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ZCMfJ = 0g =E Dq Dl Dc̄ Dc expfiSgdfw*gdfx*g

3udetihx* ,w*jiu, s78d

where the integration over the ghost fields was reintroduced
for convenience. By reformulatingZCM in terms of q ,l ,c
and c̄ we can now easily check the BRST invariance. The
BRST transformationss25d imply that

dBRST w* =
]w*

]qi
«̄ci = − «̄£XQ BRST

w* ,

d̄BRST w* = −
]w*

]qi
«c̄i = − «̄£XQ̄ BRST

w* . s79d

Here£XQ BRST
and£XQ̄ BRST

represent the Lie derivatives with

respect to flows generated by the BRST and anti-BRST
charges, respectively. Analogous relations hold also forx* .
Correspondingly, to the lowest order in«̄ we can write

dfx*g → u1 − Trs«̄£XQ BRST
du−1dfx*g,

udetihx* ,w*jiu → u1 − Trs«̄£XQ BRST
duudetihx* ,w*jiu. s80d

The transformations s80d show that the term
dfx*gudetihx* ,w*jiu in Eq. s78d is the BRST invariantsas, of
course, are both the integration measure and the effective
actionSd. However, because the variationdBRSTdfw*g is not
compensated in Eq.s78d we have in generaldBRSTZCMfJ
=0gÞ0. An analogous result applies also to the anti-BRST
transformation.

We should note that the conditiondBRSTZCMfJ=0gÞ0
only indicates that theclassicalpath-integral structure is de-
stroyed; it does not, however, ensure that the ensuingZCM
can be recast into a form describing a proper quantum-
mechanical generating functional. The straightforward path-
integral such ass73d emerges only after the gauge freedom
inherent in the “information loss” conditionw is properly
fixed via the gauge constraintx. Let us finally emphasize
once more that the partition functions73d for s74dg has arisen
as a consequence of the application of the classical Dirac-
Bergmann algorithm for singular systems to the classical
path integral of Gozziet al.

V. EXPLICIT EXAMPLES

A. Free particle

Although the preceding construction may seem a bit ab-
stract, its implementation is quite straightforward. Let us
now illustrate this with two systems. As a warm-up example
we start with the Hamiltonian

H = L3 = xpy − ypx, s81d

which is known to represent the angular momentum with
values unbounded from below. Alternatively, Eq.s81d can be
regarded as describing the mathematical pendulum. This is
because the corresponding dynamical equations2d for q is a

plane pendulum equation with the pendulum constantl /g
=1. The Lagrangians3d reads

L̄ = x̄ẋ + ȳẏ + x̄y − ȳx. s82d

It is well known f42g that the system has twosfunctionally
independentd constants of motion—Casimir functions. For
Eq. s81d they read

C1 = x2 + y2, C2 = xpx + ypy. s83d

The chargeC1 corresponds to the conserved radius of the
orbit while C2 is the Noether charge of dilatation invariance
of the Lagrangian s82d under the transformations
sx̄, ȳ,x,yd° se−sx̄,e−sȳ,esx,esyd. As only C1 is p indepen-
dent, the functionsF+ andF− of this system are according to
Eq. s47d chosen as

F+ =
sH + a1C1d2

4a1C1
, F− =

sH − a1C1d2

4a1C1
. s84d

HenceH−=0 implies thatH+<a1sx2+y2d. Herea1 is some
constant to be specified later. The ensuing first-class con-
straint is

w = xpy − ypx − a1x
2 − a1y

2 − p̄x̄ȳ + 2a1p̄x̄x + p̄ȳx̄ + 2a1p̄ȳy

< H − a1C1. s85d

The gauge condition can then be chosen in the form
x= p̄ȳ−y. Indeed, we easily find that

hx,wj = p̄x̄ − x Þ 0,

hx,fij = 0, i = 1,…,4. s86d

The advantage of our choice ofx is that it will not run into
Gribov ambiguities, i.e.,the equationw=0 will have a glo-
bally unique solution forQ1 on G* . This should be contrasted
with such choices as, e.g.,x=px or x=py, which also satisfy
the conditionss86d, but lead to two Gribov copies each.

With the above choice ofx we may directly write the
canonical transformations

P1 = x = p̄ȳ − y, Q1 = py,

P2 = px − x̄, Q2 = p̄x̄,

P3 = py − ȳ, Q3 = p̄ȳ,

P̄ = p̄x̄ − x, Q̄ = px. s87d

It might be checked that the transformation Jacobian is in-
deed 1. In the new canonical variables the HamiltonianK
reads

KsP̄,Q̄,Q1d = HsP̄,Q̄,Pa = 0,Q1,Q2 = 0,Q3 = 0d = − P̄Q1.

s88d

The functionald function s72d has the form
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dfQ1 − Q1
*sP̄,Q̄dg = dfQ1 + a1P̄g, s89d

and henceK*sP̄,Q̄d=H+
* sP̄,Q̄d=a1P̄

2. Let us now seta1

=1/2m". After changing variablesQ̄std to Q̄std /" we obtain
not only the correct “quantum-mechanical” path-integral
measure

DQ̄ DP̄ < p
i

SdQ̄stiddP̄stid
2p"

D , s90d

but also the prefactor 1/" in the exponent. So Eq.s74d re-
duces to the quantum partition function for a free particle of
massm. As the constanta1 represents the choice of unitssor
scale factord for C1 we see that the quantum scale" is imple-
mented into the partition function via the choice of the “loss
of information” constraint.

B. Harmonic oscillator

The systems81d can also be used to obtain the quantized
linear harmonic oscillator. This is possible by observing that
not only isC1=x2+y2 a constant of motion fors81d but also
C1=x2+y2+c with c being anyq- and p-independent con-
stant. So in particular we can choosec=csq̄d. The functional
dependence ofc on q̄ cannot be, however, arbitrary. The
requirement that ’t Hooft’s constraint should not generate
any newsi.e., secondaryd constraint represents quite a severe
restriction. Indeed, in order to satisfy Eq.sD2d the following
condition must holdssee Appendix Dd:

o
i=0

2N

eihfi,H̄j = − o
a,i

aihCi,p̄ajhpa,H̄j = o
i,k,a

ai
]cisq̄d
]q̄a

q̄k
] fksqd

]qa

s91d

which for the system in question is weakly zero only if

x̄
]csq̄d

] ȳ
− ȳ

]csq̄d
] x̄

= 0. s92d

The latter equation has the solutionsmodulo an irrelevant
additive constantd csq̄d=d2sx̄2+ ȳ2d. Here d2 represents a
multiplicative constant. Hence we have thatC1 has the gen-
eral form

C1 = x2 + y2 + d2sx̄2 + ȳ2d. s93d

It will be further convenient to choosea1=−1/2d.The result-
ing first-class constraint then reads

w = xpy − ypx +
1

2d
x2 +

1

2d
y2 −

d

2
x̄2 −

d

2
ȳ2 − ȳp̄x̄ + x̄p̄ȳ

−
1

d
xp̄x̄ −

1

d
yp̄ȳ + dx̄px + dȳpy

< H +
1

2d
C1. s94d

If we choose the gauge condition to be

x = p̄ȳ + dpx − y, s95d

it ensures that

hx,wj = 2p̄x̄ − 2x − 2dpy Þ 0,

hx,fij = 0, i = 1,…,4. s96d

In addition, we shall see that Eq.s95d guarantees the unique
global solution of the equationw=0 for Q1 on G* shence it
avoids the undesired Gribov ambiguityd.

The canonical transformation discussed in Sec. IV now
takes the form

P1 = x = p̄ȳ + dpx − y, Q1 = py,

P2 = px − x̄, Q2 = p̄x̄,

P3 = py − ȳ, Q3 = p̄ȳ,

P̄ = p̄x̄ + dpy − x, Q̄ = px, s97d

and the HamiltonianK reads

KsP̄,Q̄,Q1d = − P̄Q1 + dQ1
2 − dQ̄2. s98d

The functionald function s72d now has the form

dfQ1 − Q1
*sP̄,Q̄dg = dFQ1 −

1

2d
P̄G . s99d

This finally implies that the Hamiltonian on the physical

space G* has the form K*sP̄,Q̄d=H+
* sP̄,Q̄d=−s1/4ddP̄2

−dQ̄2. By choosingd=−m" /2 and transformingQ̄°Q̄/" in
the path integrals73d sor s74dd we obtain the quantum parti-
tion function for a system described by the Hamiltonian

s1/2mdP̄2+sm/2dQ̄2, i.e., the linear harmonic oscillator with
unit frequency. This is precisely the result which in the con-
text of the systems81d was originally conjectured by ’t Hooft
in Ref. f14g. Note again that the fundamental scalessugges-
tively denoted as"d was implemented into the theory via the
“loss of information” condition.

C. Free particle weakly coupled to Duffing’s oscillator

There is no difficulty, in principle, in carrying over our
procedure to nonlinear dynamical systems. As an illustration
we will consider here the Rössler system. This is a three-
dimensional continuous-time chaotic system described by
the three autonomous nonlinear equations

dx

dt
= − y − z,

dy

dt
= x + Ay,

dz

dt
= B + xz− Cz, s100d

whereA,B, and C are adjustable constants. The associated
’t Hooft Hamiltonian reads
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H = − pxsy + zd + pysx + Ayd + pzsB + xz− Czd, s101d

and the Lagrangians3d has the form

L̄ = x̄ẋ + ȳẏ + z̄ż+ x̄sy + zd − ȳsx + Ayd − z̄sB + xz+ Czd.

s102d

The Rössler system is considered to be the simplest possible
chaotic attractor with important applications in far-from-
equilibrium chemical kineticsf43g. It also frequently serves
as a playground for studying, e.g., period-doubling bifurca-
tion cycles or Feigenbaum’s universality theory. For the sake
of an explicit analytic solution we will confine ourselves
only to the special case whenA=B=C=0. With such a
choice of parameters the Rössler system can be expressed in
a scalar form asŷ=yẏ+ ẏÿ− ẏ which ensures its integrability
f44g. The latter implies that in this regime Rössler’s system
does not posses chaotic attractors.

To proceed further, we should realize that becauseCi are
supposed to bep independent their finding is equivalent to
specifying the first integrals of the systems100d fi.e., func-
tions that are constant along lines ofsx,y,zd satisfying
s100dg. In other words, the differential equationss100d rep-
resent a characteristic system for the differential equation
hH ,Cij=0. It is simple to see that the first integrals of the
above Rössler system arex2+y2+2z andze−y; hence we can
identify C1 andC2 with

C1 = sx2 + y2 + 2zd2, C2 = z2e−2y. s103d

The previous choice provides indeed positive and irreducible
charges. The first-class constraintw then reads

w = − pxsy + zd + pyx + pzxz− a1sx2 + y2 + 2zd2 − a2z
2e−2y

− p̄x̄fȳ + z̄z− 4a1xsx2 + y2 + 2zdg + p̄ȳfx̄ + 4a1ysx2 + y2

+ 2zd − 2a2z
2e−2yg + p̄z̄fx̄ − z̄x + 4a1sx2 + y2 + 2zd

+ 2a2ze−2yg < H − a1C1 − a2C2. s104d

Explicit values ofa1 anda2 will be fixed in footnote5 below.
A little algebra shows that the gauge conditionx can be
selected, for instance, as

x = p̄x̄ − y. s105d

Such a choice satisfies the necessary conditions

hx,wj = p̄ȳ + p̄z̄ + x Þ 0, hx,fij = 0, i = 1,…,6.

s106d

The abovex also allows us to perform the following linear
canonical transformation:

P1 = x = p̄x̄ − y, Q1 = py,

P2 = px − x̄, Q2 = p̄x̄,

P3 = py − ȳ, Q3 = p̄ȳ,

P4 = pz − z̄, Q4 = p̄z̄,

P̄1 = sp̄z̄/d − z/dd/Î2, Q̄1 = s2dpz − p̄x̄/c + x/cd/Î2,

P̄2 = s2cpx − p̄z̄/d + z/dd/Î2, Q̄2 = sx/c − p̄x̄/cd/Î2.

s107d

Herec andd represent arbitrary real constants to be specified
later. The transformations107d secures the unique global so-
lution Q1 for w=0 on G* . To show this it is sufficient to
observe thatfH−a1C1−a2C2guG* is linear inQ1. Indeed,

fH − a1C1 − a2C2gG* = Î2c Q1Q̄2 − Î2csQ̄1 − Q̄2dQ̄2P̄1

+ d/csP̄1 + P̄2dP̄1 − AsP̄1d2

− B P̄1sQ̄2d2 − CsQ̄2d4, s108d

with A=2d2s4a1+a2d ,B=−8Î2a1dc2, andC=4a1c
4. As a re-

sult

K*sP̄,Q̄d = H+
* sP̄,Q̄d = AsP̄1d2 + B P̄1sQ̄2d2 + CsQ̄2d4.

s109d

Inserting this into Eq.s73d for Eq.s74dg and integrating over

P̄1 and P̄2 we obtain the following chain of identities:

ZCM =E DP̄ DQ̄ expHiE
t1

t2

dtfP̄Q̄
˙

− AsP̄1d2

− BP̄1sQ̄2d2 − CsQ̄2d4 + Q̄j gJ
=E DQ̄1DQ̄2 dfQ̄˙ 2gexpHiE

t1

t2

dtF 1

4A fQ̄˙ 1 − BsQ̄2d2g2

− CsQ̄2d4 + Q̄jGJ
= lim

a→0+

E DQ̄1DQ̄2expHiE
t1

t2

dtF 1

4A sQ̄˙ 1d2 +
1

4a
sQ̄˙ 2d2

−
B

2AQ̄
˙

1sQ̄2d2GJ expHiE
t1

t2

dtFS B2

4A − CD
3sQ̄2d4 + Q̄jGJ . s110d

As an explanatory step we should mention that the formal
measure in the second equality of Eq.s110d has the explicit
time-sliced form

DQ̄1DQ̄2 < p
i
S dQ̄1stid

Î4pieAdQ̄2stidD , s111d

while in the third equality the shorthand notationDQ̄1DQ̄2
stands for
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DQ̄1DQ̄2 < p
i
S dQ̄1stid

Î4pieA
dQ̄2stid
Î4piae

D . s112d

The symbole represents the infinitesimal width of the time
slicing. During our derivation we have used the Fresnel in-
tegral

E
−`

`

dx e−iax2+ixj =Îp

a
eisj2/a−pd/4 =Îp

ia
eij2/s4ad, a . 0,

s113d

and the ensuing representation of the Diracd function:

lim
a→0+

Î 1

4ipa
eij2/s4ad = dsjd. s114d

In the following we perform the scale transformation

Q̄2/Îa°Î2m2Q̄2 and setA=1/s2m1d ,B=1/sÎm1m2d, and
C=1/m2.

5 The resulting partition function then reads

ZCM = lim
g→0+

E DQ̄1DQ̄2expHiE
t1

t2

dtFm1

2
sQ̄˙ 1d2 +

m2

2
sQ̄˙ 2d2GJ

3 expHiE
t1

t2

dtFgÎm1m2

2
Q̄
˙

1sQ̄2d2

−
m2g

2

4
sQ̄2d4 + Q̄jGJ , s115d

where we have set g=2Î2a. The system thus obtained

describes a pure anharmonicsDuffing’sd oscillator sQ̄2
oscillatord weakly coupled through the Rayleigh interaction

with a free particlesQ̄1 particled. Alternatively, whenm1
=m2=m we can interpret the Lagrangian in Eq.s115d as a
planar system describing a particle of massm in a quartic

scalar potentialeFsQ̄d=mg2/4sQ̄2d4 and a vector potential

eA =(gmÎ1/2sQ̄2d2,0) si.e., in the linear magnetic field

B3=e3i j]iAj =−gmÎ2Q̄2/ed.
It is preferable to setm1°m1" andm2°m2/". The latter

corresponds to the scale factorsa2=1/s2m1"d and a1

=1/s8m1"d. After rescaling Q̄1std°Q̄1std /" the partition
function s115d boils down to the usual quantum-mechanical
partition function with the path-integral measure

DQ̄ < p
i
S dQ̄1stid

Î2pie"/m1

dQ̄2stid
Î2pie"/m2

D s116d

and with 1/" in the exponent. Hence, just as found in the
previous two cases, the choice of ’t Hooft’s condition ensures
that the Planck constant enters the partition functions115d in
a correct quantum-mechanical manner. In turn," enters only
via the scale factorsa1 and a2 sthe factorsd and c are "
independentd and hence it represents a natural scale on which
the “loss of information” condition operates. In other words,
whenever one would be able to “measure” or determine from
“first principles” the “loss of information” condition one
could, in principle, determine the value of the fundamental
quantum scale".

As a final note we mention that the ’t Hooft quantization
procedure can be straightforwardly extended to other nonlin-
ear systems and particularly to systems possessing chaotic
behaviorse.g., strange attractorsd. In general cases this might
be, however, hindered by our inability to find the correspond-
ing first integralssand henceCi’sd in the analytic form. It is
interesting to notice that machinery outlined above allows to
find the emergent quantistic system for the configuration-
space strange attractors. This is because in ’t Hooft’s “quan-
tization” one only needs the dynamical equations in thecon-
figuration space. The latter should be contrasted with the
Hamiltoniansor symplecticd systems where strange attractors
cannot exist in thephase spaceon account of the Liouville
theoremf45g.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have attempted to substantiate the recent
proposal of ’t Hooft in which quantum theory is viewed as
not a complete final theory, but as in fact an emergent phe-
nomenon arising from a deeper level of dynamics. The un-
derlying dynamics are taken to be classical mechanics with
singular Lagrangians supplied with an appropriate informa-
tion loss condition. With plausible assumptions about the ac-
tual nature of the constraint dynamics, quantum theory is
shown to emerge when the classical Dirac-Bergmann algo-
rithm for constrained dynamics is applied to the classical
path integral of Gozziet al..

There are essentially two different tactics for implement-
ing the classical path integrals in ’t Hooft’s quantization sce-
nario. The first is to apply the configuration-space formula-
tion f26g. This is suited to situations when ’t Hooft’s systems
are phrased through the Lagrangian description. The alterna-
tive approach is to start with the phase-space versionf27g.
The latter provides a natural framework when the Hamil-
tonian formulation is of interest or where the language of
symplectic geometry is preferred. It should be, however,
stressed that it is not merely a matter of a computational
convenience which method is actually employed. In fact,
both approaches are mathematically and conceptually very
different sas they are also in conventional quantum mechan-
ics f11,46gd. Besides, the methodology for handling singular
systems is distinct in Lagrangian and Hamiltonian formula-
tionsssee Refs.f39,41g and citation’s thereind. In passing, we
should mention that the currently popular Hamilton-Jacobi

5This choice is equivalent to the solution:

a1 =
a2

4
, d =

1

2Î2a2m1

, c = ±
1

Î4 a2m2

.

Without loss of generality we can setd=1/2; then

a2 =
1

2m1
, a1 =

1

8m1
, c = ± 23/4

4Îm1

m2
.
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f47g and Legendre-Ostrogradski� f48g approaches for a treat-
ment of constrained systems, though highly convenient in
certain casesse.g., in higher-order Lagrangian systemsd, have
not found as yet any particular utility in the present context.

Throughout this paper we have considered only the
configuration-space formulation of classical path integrals.
sIncidently, the phase-space path integral which appears in
Sec. IV fafter Eq.s55dg is not the phase-space path integral
of Gozzi, Reuter, and Thackerf27g but rather Gozzi’s
configuration-pathf26g integral with extra degrees of free-
dom.d By choosing to work within such a framework we
have been able to render a number of formal steps more
tractablese.g., BRST analysis is reputed to be simpler in the
configuration space, uniqueness proof for ’t Hooft systems is
easy and transparent in the Lagrange description, etc.d. The
key advantage, however, lies in two observations. First, the
position-space path integral of Gozziet al. provides a con-
ceptually clean starting point in view of the fact that it rep-
resents the classical limit of both the stochastic-quantization
path integral and the closed-time-path integral for the transi-
tion probability of systems coupled to a heat bath. Such a
connection is by no means obvious in the canonical path-
integral as both the Parisi-Wu stochastic quantization and the
Feynman-Vernon formalismswith ensuing closed-time-path
integrald are intrinsically formulated in the configuration
space. Second, according to ’t Hooft’s conjecture the “loss of
information” condition should operate in the position space
where it is supposed to eliminate some of the transient tra-
jectories leaving behind only stablesor near to stabled orbits
f14g. Hence working in configuration space may allow one to
probe the plausibility of ’t Hooft’s conjecture. The price that
has been paid for this choice is that the configuration space
must have been doubled. This is an unavoidable step when-
ever one wishes to obtain first-order autonomous dynamical
equations directly from the Lagrange formulationsa fact well
known in the theory of dissipative systemsf49gd. Our analy-
sis in Appendix B suggests that the auxiliary coordinatesq̄i
may be related to relative coordinates on the backward-
forward time path in the Feynman-Vernon approach.sSuch
coordinates also go under the namesfast variablesf50g or
quantum noise variablesf51g.d On the formal side, the aux-
iliary variablesq̄i are nothing but Gozzi’s Lagrange multipli-

ersli sin our case denoted asl̄id.
In order to incorporate the “loss of information” into our

scheme, we have introduced in Sec. IV an auxiliary momen-
tum integration to go over to the canonical representation.
Such a step, though formal, allowed us to treat our con-
strained system via the standard Dirac-Bergmann procedure.
It should be admitted that such a choice is by no means
unique, e.g., methodologies for treatment of classical con-
strained systems in configuration space do existf39,41g. The
decision to apply the Dirac-Bergmann algorithm was mainly
motivated by its conceptual simplicity and direct applicabil-
ity to path integrals. On the other hand, we do not expect that
the presented results should undergo any substantial changes
when some other scheme would be utilized. It should be
further emphasized that while we have established the math-
ematical linkfEqs. s52d and sD7dg between the “loss of in-
formation” condition and first-class constraints, it is not yet

clear if this connection has more direct physical interpreta-
tion salthough various proposals exist in the literature
f14,19,24gd. Such an understanding would not only help to
develop this approach for more complicated physical situa-
tions but also allow affiliation in a systematic fashion of a
quantum system to an underlying classical dynamics. Work
along those lines is currently in progress.

To illustrate the presented ideas we have considered two
simple systems; the planar pendulum and the Rössler system.
In the pendulum case we have taken advantage of free choice
of an additive constant in the chargeC1. This in turn, allowed
us to impose’t Hooft’s constraints in two distinct ways. In the
case of Rössler’s system twop-independent, irreducible
chargesC1 andC2 exist. For definiteness sake we have con-
structed in the latter case the “loss of information” condition
with the additive constant set to zero. With this we were able
to convert the corresponding classical path integrals into path
integrals describing a quantized free particle, a harmonic os-
cillator, and a free particle weakly coupled to Duffing’s os-
cillator. As a by-product we could observe that our prescrip-
tion provides a surprisingly rigid structure with rather tight
maneuvering space for the emergent quantum dynamics. In-
deed, when the classical dynamics is fixed, the ’t Hooft con-
dition is formulated via linear combination of chargesCi
which correspond to the first integrals of the autonomous
dynamical equations forq, i.e., Eq.s2d. Due to the explicit
form of ’t Hooft’s Hamiltonian the constraint is of the first
class and so we must remove the redundancy in the descrip-
tion by imposing the gauge conditionx. By requiring that the
consistency conditionss51d and s54d are satisfied, that the
choice ofx does not induce Gribov ambiguity, and that the
canonical transformations defined in Sec. IV are linear, we
substantially narrowed down the class of possible emergent
quantum systems. Note also, that when we start with the
N-dimensional classical systemsq variablesd, the emergent

quantum dynamics hassN−1d dimensionssQ̄ variablesd. In-
deed, by introducing the auxiliary degrees of freedomq̄
we obtain 4N-dimensional phase space which is constrained
by 2N+2 conditionssfi, w, and xd, which leaves behind

s2N−2d-dimensional phase spaceQ̄ ,P̄. This disparity be-
tween the dimensionality of the classical and emergent quan-
tum systems vindicates in part the terminology “information
loss” used throughout the text.

An important conclusion of this work is that ’t Hooft’s
quantization proposal seems to provide a tenable scenario
which allows for deriving certain quantum systems from
classical physics. It should be stressed that although we as-
sumed throughout that the deeper level dynamics is the clas-
sical sLagrangian or Hamiltoniand one, there is in principle
no fundamental reason that would preclude starting with
more exotic premises. In particular, our conceptual reasoning
would go unchanged if we had begun with Lagrangians op-
erating over coordinate superspacesspseudoclassical me-
chanicsf52gd or with the currently much discussed discrete
classical mechanicssi.e., having foam-, fractal-, or crystal-
like configuration spaced f53g, etc. The only prerequisite for
such approaches is the possibility of formulating a corre-
sponding variant of Gozzi’s path integral, and a method for
implementing the “loss of information” constraint in such
integrals.
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There are many interesting applications of the above
method. Applications to chaotic dynamical systems espe-
cially seem quite pertinent. After all, central to our reasoning
is a sdoubledd set of real first-order dynamical equations6

which, under favorable conditions, may by associated with a
chaotic dynamics in the configuration space. We should em-
phasize that the reader should not confuse the above with the
extensively studied but unrelated notion of chaos in Hamil-
tonian systems—we do not deal here with dynamical equa-
tions on symplectic manifolds. This is important, as Hamil-
tonian systems forbidper sethe existence of attractive orbits
which are otherwise key in ’t Hooft’s proposal. In this re-
spect our approach is parallel with some more conventional
approaches. Indeed, a direct “quantization” of the equations
of the motion—originally proposed by Feynmanf54g—is
one of the techniques for tackling quantization of dissipative
systemsf55,56g. In field theories this line of reasoning was
recently extended by Biró, Müller and Matinyanf19g who
demonstrated that quantum gauge field theories can emerge
in the infrared limit of a higher-dimensional classicalsnon-
Abeliand gauge field theory, known to have chaotic behavior
f57g.

We finally wish to comment on two more points. First, in
cases where one strives for an explicit reparametrization in-
variancesor general covarianced of the emergent quantum
system the presented framework is not very suitable. The
absence of explicit covariance in both Dirac-Bergmann and
Fadeev-Senjanovic algorithms makes the actual analysis
very cumbersome or even impossible. In fact, expressions
s68d ands70d are evidently not generally covariant due to the
presence of time-independent constraints in the measure. Al-
though generalizations that include covariant constraints do
exist f33,58,59g they result in gauge fixing conditions which
depend not only on the canonical variables but also on the
Lagrange multiplierssor explicit timed. Such gauge con-
straints are, however, incompatible with our Poisson bracket
analysis used in Sec. IV and Appendixes A and D. Hence, if
the emergent quantum system is supposed to be reparametri-
zation invariantse.g., relativistic particle, canonical gravity,
relativistic string, etc.d a new framework for the path-integral
implementation of ’t Hooft’s scheme must be sought. Sec-
ond, the formalism of functional integrals is sometimes de-
ceptive when taken too literally. The latter is the case, for
instance, when gauge conditions are imposed and/or canoni-
cal transformations performed. The difficulty involved is
known as the Edwards-Gulyaev effectf11,40,46g and it re-
sides in the exact nature of the limiting sequence of the finite
dimensional integrals which constitute the path integral. As a
result the classical canonical transformation does not leave,
in general, the measure of the path integral Liouville invari-
ant but instead induces an anomalyf46,60g. Thus, for our
construction to be meaningful it should be shown that the
canonical transformations in Sec. IV are unaffected by the
Edwards-Gulyaev effect. Fortunately, in cases when the gen-
erating function is at most quadraticsmaking canonical

transformations lineard and not explicitly time dependent, it
can be shownf29,60,61g that the anomaly is absent. It was
precisely for this reason that more general transformations
were not considered in the present paper. Clearly, both men-
tioned points are of key importance for further development
of our procedure and, due to their delicate nature, they de-
serve a separate discussion.

Let us end with the remark that the notorious problem
with operator ordering known from canonical approaches has
an elegant solution in path integrals. The ordering is there
naturally generated by the necessary physical requirement
that path integrals must be invariant under coordinate trans-
formationsf65g.
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APPENDIX A

In this appendix we show that the systems1d has no sec-
ondary constraints. In contrast to the primary constraints
which are a consequence of the noninvertibility of the veloci-
ties in terms of thep’s andq’s, secondary constraints result
from the equations of motion. To show their absence in ’t
Hooft’s system we start with the observation that the time
derivative of any functionfsq ,pd is given byf39g

ḟ < hf,H̄j + ujhf,f jj. sA1d

Hereua are the Lagrange multipliers to be determined by the
consistency conditions

0 < ḟi < hfi,H̄j + ujhfi,f jj. sA2d

The latter is nothing but the statement that constraintssas
functions ofq andpd must hold at any time. If alluj could
not be determined from the consistency conditionsA2d then
we would have the so-called secondary constraints. In our
case we have

hf1
a,H̄j = −

]H̄

]qa
<” 0,

hf2
a,H̄j = − fasqd<” 0, hf1

a,f2
bj = − dab. sA3d

Using the fact thathfi ,H̄jÞ0 and detuhfi ,f jju=1, the inho-
mogeneous system of linear equationssA2d can be uniquely
resolved with respect touj, thus implying the absence of
secondary constraints.

APPENDIX B

We show here that Gozzi’s configuration-space path inte-
gral results from the “classical” limit of the stochastic-
quantization partition function, i.e., the limit where the width

6Nontrivial are only the equations over actual configuration space.
The dynamical equations for the auxiliary variablesq̄i are linear and
hence they are not relevant in this connection
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of a noise distribution tends to zero. For this purpose we start
with the form of the partition function for stochastic quanti-
zation as written down by Zinn-Justinf34,62g:

ZSCsJd =E Dq Dc Dc̄ Dl expH− Sfq,c,c̄,lg

+E JsxdqsxddxJ , sB1d

where

S ; − wsld +E lsxdS ]qsxd
]t

+
dA

dqsxd
Ddx−E dx dx8c̄asxd

3S ]

]t
dabdsx − x8d +

d2A
dqasxddqbsx8d

Dcbsx8d sB2d

and

expfwsldg ; E Dn expH− ssnd +E dx lsxdnsxdJ ,

sB3d

with Dn expf−ssndg being the functional measure of noise.
Here x=st ,td and dx=dt dt wheret is the Parisi-Wu ficti-
tious time. The dynamical equation forqsxd is described by
the Langevin equation

]qsxd
]t

+ U dAfqg
dq

U
q=qsxd

= nsxd, sB4d

with the initial conditionqst ,0d=qstd. For Gaussian noise of
variance 2", the noise measure is

Dnexpf− ssndg = p
i,x

dnisxd
2Îpq

expS−
1

4q
E dx n2sxdD ,

sB5d

and sB1d takes the form

ZSCsJd =E Dq Dn dS ]q

]t
+

dAfqg
dq

− nDdetI ]

]t
dabdsx − x8d

+
d2A

dqasxddqbsx8d
IexpH− ssnd +E JsxdqsxddxJ

=E Dq Dn dfq − qfnggexpH− ssnd +E JsxdqsxddxJ ,

sB6d

wheredffsqdg;pt,tdsfsqst ,tddd and qfngsxd is a solution of
Eq. sB4d. Using the representation

dsxd = lim
"→0+

1

2Îp"
e−x2/s4"d, sB7d

we get in the limit of zero distribution widthsi.e., "→0+d
that

ZSCsJ,qd →E Dq dfq − qf0ggexpHE JsxdqsxddxJ .

sB8d

Choosing a special sourceJsxd=Jstddstd we can sum in the
path integral solely over configurations withqst ,0d=qstd as
other configurations will contribute only to an overall nor-
malization constant. Thus we finally obtain

lim
"→0+

ZSCsJ,"d = ZCMsJd. sB9d

Next we show that Gozzi’s configuration-space partition
function s19d results from the “classical” limit of the closed-
time-path integral for the transition probability of a system
coupled to a thermal reservoir at some temperatureT. By the
classical limit we mean the high temperature and weak heat
bath coupling limit.

The path-integral treatment of systems that are linearly
coupled to a thermal bath of harmonic oscillators was first
considered by Feynman and Vernonf63g. For our purpose it
will be particularly convenient to utilize the so-called Ohmic
limit version, as discussed in Refs.f11,64g:

ZFVfJ+,J−g =E Dq+Dq−expH i

"
†Afq+g − Afq−g‡

+E dtfJ+stdq+std − J−stdq−stdgJ
3 expH− i

mg

2"
E dtfq+std − q−stdg

3fq̇+std + q̇−stdgRJ
3expH−

mg

q2b
E dtE dt8fq+std − q−stdg

3Kst,t8dfq+st8d − q−st8dgJ . sB10d

Here the pathsq+std and q−std are associated with the for-
ward and backward movement of the particles in time. The
superscriptR indicates anegativeshift in the time argument
of the velocities with respect to positions. The latter ensures
the causality of the friction forcesf64g. In addition,m repre-
sents the particle masssfor simplicity we assume here that all
system particles have the same massd, b=1/T, andg is the
friction constantsor thermal reservoir couplingd. The func-
tion Kst ,t8d is the bath correlation function. As argued in
f11,64g, at high temperaturesKst ,t8d<dst− t8d. Introducing
the new set of variablesq=fq++q−g /2 and q̄=fq+−q−g
si.e.,the center-of-mass andfast coordinatesd we can in the
high-temperature case recastsB10d into
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ZFVfJ,J̄g =E Dq Dq̄expH i

"
fAfq + q̄/2g − Afq − q̄/2gg +E dtfJstdqstd − J̄stdq̄stdgJ

3expH− i
mg

"
E dt q̄stdfq̇stdgR −

mg

"2b
E dt q̄2stdJ . sB11d

Here the self-explanatory notationJ=fJ+−J−g and J̄=−fJ++J−g /2 was used. Let us now definev=2mg /b, integrate overq̄,
and go to the classical limitg→0. Then we obtain the following chain of equations:

lim
g→0

ZFVfJ,J̄g = lim
g→0

E Dq Dq̄ expH i

"
E dt q̄stdF dA

dqstd
− mgfq̇stdgR + i"J̄stdG −

v

2q2 E dt q̄2stdJexpHE dt JstdqstdJ
= lim

g→0
E Dq expH−

1

2v
E dtF dA

dqstd
− mgfq̇stdgR + i"J̄stdG2

+E dt JstdqstdJ
= lim

g→0
E Dq JfqgexpH−

1

2v
E dtF dA

dqstd
− mgq̇std + iqJ̄stdG2

+E dt JstdqstdJ
=E Dq dFdA

dq
+ i"J̄GJfqgexpHE dt JstdqstdJ

=E Dq dfq − qfJ̄ggexpHE dt JstdqstdJ . sB12d

The JacobianJfqg results from transition to the “unretarded”
velocities and its explicit form readsf64g

Jfqg = detI ]

]t
dabdst − t8d +

d2A
dqastddqbst8d

I . sB13d

The coordinatesqfJ̄g are solutions of the equation of the mo-
tion

dAfqg
dqstd

= − i"J̄std. sB14d

In the limit g→0, we find again the Gozziet al. partition
function

lim
g→0

ZFVfJ,0g = lim
"→0

lim
g→0

ZFVfJ,J̄g = ZCMfJg. sB15d

APPENDIX C

In this appendix we prove that Eq.s34d is a special case of
the Euler-like functionalss42d. Let us first show that Eq.s34d
can be replaced by an action of the forms42d. Indeed, be-
cause of the homogeneity of Eq.s34d, we can immediatley
replace it by

Afraiqig = o
i
E dt air

aistdqistd
dAfraiqig
draistdqistd

=E dt rstd
dAfraiqig

drstd
. sC1d

Since this is true for anyrstd, we see that

E dtdt8rstd
d2Afraiqig
drstddrst8d

= 0. sC2d

This simply expresses the fact that the functionalAfraiqig is
linear in rstd. The right-hand side of Eq.sC1d has then pre-
cisely the Euler forms42d.

The reverse direction is proved in the following way: We
first recast Eq.s42d in the general form

E dt rstdL„qstd,q̇std… =E dt Lsraistdqistd,d„raistdqistd…/dtd.

sC3d

Applying the variationedt d /drstd to Eq. sC3d we obtain

Afqg =E dto
i

air
ai−1qistdS ]L

]raistdqistd

−
d

dt

]L

]fdsraistdqistdd/dtgD . sC4d

This relation must hold for allrstd, and hence by choosing
rstd=1 we arrive at the required result

Afqg =E dto
i

aiqistd
dAfqg
dqistd

. sC5d

APPENDIX D

Here we prove the fact that inclusion of the subsidiary
constraints46d in the primary constraintss5d does not pro-
duce any secondary constraints. The secondary constraints
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result from the consistency conditionssA2d or, in other
words, occur when existing constraints are incompatible with
the equation of motion.

We first observe that the conditionH−<0 can be equiva-

lently represented by the conditionsH̄−oiaiCid;f0<0. If
we now add the subsidiary constraintf0 to the remaining 2N
constraintsfi and again require that the constraintsfi re-
main sweaklyd zero at all times we have

0 < ḟi < hfi,H̄j + ujhfi,f jj, i, j = 0,1…,2N. sD1d

Since there is an odd number of constraints and because
hfi ,f jj is an antisymmetric matrix we have that
detihfi ,f jji=0. From the analysis in Appendix A it is clear
that the rank of the matrixhfi ,f jj is 2N and hence it has one
null eigenvector, saye. Thus, Eq.sD1d implies the constraint

o
i=0

2N

eihfi,H̄j < 0. sD2d

If the latter represented a new nontrivial constraintsi.e., a
constraint that cannot be written as a linear combination of
constraintsfid we would need to include such a new con-
straint sthe so-called secondary constraintd in the list of ex-
isting constraints and go again through the consistency con-
dition sD1d. Fortunately, the conditionsD2d is automatically
satisfied and hence it does not constitute any new constraint.
Indeed, by choosing

e=1
1

hf0,f2
aj

hf1
a,f0j

hf0,f2
bj

hf1
b,f0j
]

hf0,f2
Nj

hf1
N,f0j

2 =1
1

fasqd

−
]f0

]qa

fbsqd

−
]f0

]qb

]

fNsqd

−
]f0

]qN

2 , sD3d

and usinghf0,H̄j=0 together withsA3d we obtain

o
i=0

2N

eihfi,H̄j = − o
i,a

aistdfasqd
]Ci

]qa
= o

i=1

n

aistdhH,Cij = 0.

sD4d

As the latter is zeroseven stronglyd there is no new con-
straint condition generated by inclusion off0 in the original
set of sprimaryd constraints. Note that the key in obtaining
sD4d was the fact that theCi’s arep-independent constants of
motion.

The rank of hfi ,f jj being 2N means that there is one
relation

o
i=0

2N

eihfi,f jj < 0. sD5d

Any linear combination of the constraintsfi is again a con-
straint. So, particularly if we definew=oieifi, we obtain that
w has weakly vanishing Poisson brackets with all constraints,
i.e.,

hw,fij < 0, i = 1,…,2N. sD6d

Thus, according to Dirac’s classificationssee, e.g., Ref.f32gd
w is a first-class constraint. The remaining 2N constraints
swhich do not have vanishing Poisson brackets with all other
constraintsd are of the second class. Note particularly that the
explicit form for w reads

w = o
i=0

2N

eifi = SH − o
i=1

n

aiCiD − o
a=1

N

p̄a
]f0

]qa
, sD7d

which is clearly weakly identical toH−oiaiCi. Observe that

it is H and notH̄ that is present in Eq.sD7d.
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