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Abstract: We calculate the electromagnetic structure functions from an infinite component wave 
equation which is a relativistic generalization of the Schrodinger equation of the H atom. 
The elastic form factor has a dipole structure leading to the threshold behavior of 
F2 (~) ~(1-~)3 at ~ = 1. Apart from that, F 2 (~) differs from the structure function of the 
proton by being larger and by having a zero at ~ = 0. 

While our amplitude appears at first sight to be typical resonance model for the struc- 
ture functions, all properties of the result allow for a direct interpretation in terms of the 
parton picture. 

A specific choice of the mass parameters reduces our model to that of the H atom. In 
this limiting case we show that the result is almost identical to what one would obtain 
from the patton approximation. 

1. I N T R O D U C T I O N  

It  is well  k n o w n  t h a t  b o t h  the  large m a g n i t u d e  and  the  scaling p r o p e r t y  o f  deep  

inelast ic  e l ec t ron  n u c l e o n  sca t t e r ing  can be  exp la ined  b y  imagin ing  the  n u c l e o n  to  

be  c o m p o s e d  o f  p o i n t  like c o n s t i t u e n t s  called pa r t ons  [1 ]. A p p r o p r i a t e  add i t iona l  

a s sump t ions  on  the i r  ins t r ins ic  p roper t i e s  and  on  the i r  d i s t r i bu t i on  inside the  nu-  

c leon lead to  reasonab le  fits o f  mos t  o f  the  avai lable da ta  [2] ** 

I t  has  been  p o i n t e d  ou t  b y  B l o o m  and  Gi lman  [4],  t h a t  there  is an a l t e rna t ive  

way o f  u n d e r s t a n d i n g  the  da ta  in t e rms  o f  s - c h a n n e l  resonances .  The  a r g u m e n t  is 

t h a t  these  r e sonances  should ,  at  least  for  ~ >~ ~6, be respons ib le  for a cons iderab le  

par t  o f  the  ampl i t ude .  The observed  th re sho ld  b e h a v i o r  o f  ( 1 - ~ ) 3  in vW 2 would  t h e n  

be ind ica t ive  o f  an equa l  fal l -off  o f  all t r ans i t ion  f o r m  fac tors  to  h igher  r e sonances  

* Supported in part by Deutsche Forschungsgemeinschaft under grant KL 256. 
** Note however, the serious disagreement with some of the recent experimental findings, na- 

mely 

n p 
vW2/vW 2 "~ ( 1 - ~ ) ,  

with the lowest value (for ~ close to 1) being smaller than 0.25 [3]. The quark parton model 
predicted-~. We shall use the scaling variables ~ ~ 1/t~ ~ - q2/2mv. 
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~. (q2)-2.  Also these ideas supplemented with some quite simple ad hoc assumptions 
are able to reproduce the gross features of  the data [5] * 

Recently it was noticed [6] that  theories of  the electromagnetic form factors 
constructed on the basis of  infinite component  wave equations provide a natural 
framework for obtaining such results without  such ad,hoc assumptions. Within this 
framework, the structure functions have been calculated [6] for the Majorana equa- 
tion [7]**, the Abets, Grodsky, Norton equation [8], and a wave equation with an os- 
cillator type of  spectrum describing linearly rising trajectories [9] *** 

All of  these models, apart from giving a far too large result for uW 2, fail to ac- 
count for the characteristic threshold behaviour of  (1-~)3  close to ~ = 1. The reason 
is that they show the connection between the threshold behavior uW 2 -~ (1-~)2P --1 
and the fall-off of  the elastic form factors (q2) -p  first discovered in a model  by  
Drell and Y a n [  10]. But it has been known for a long time that the elastic form fac- 
tors of  the Majorana equation go asymptotically like ( q 2 ) - I  [ 11 ], those of  the 
Abers Grodsky Norton equation like (q2)-~ ,  and those [10] of  the oscillator equa- 
tion like e - W  2 . Correspondingly, the structure functions vW 2 go like (1 -~) ,  const., 
and zero, respectively t .  The way to remedy these defects is well known [12]. First 
one considers Majorana equations constructed on a unitary representation space of  
the Lorentz group characterized by a parameter v :/: 0 ] ' t .  For such equations the 
form factors oscillate asymptotical ly.  This corresponds to having hollow particles 
concentrated on the surface of  a sphere. Then one constructs a physical particle by 
mixing such states via radial wave functions. 

Such a construction can be economized by  employing a representation space of  a 
larger group which is able to accommodate such radial wave functions. The mecha- 
nism of  representation mixing is learned from the study of  the non-relativistic H 
atom. Here the radial wave function describes the mixtures of  irreducible representa- 
tions of  the Galilean group which are contained in every state and which generate 
the form factors. By following this example given by nature,  a complete theory of  
the currents of  the baryon resonances has been developed some time ago [ 13]. 

* With a similar problem for vW~/uW~ which is predicted to go as 

gp]  

** For a review of this equation see ref. [ 12] and references therein. 
*** At the cost of containing states of negative norm. 

J" In the third case, the threshold behaviour should be, according to the Drell Yan rule, faster 
than any power of (1-~). In fact, vW2 is found to be zero up to a point Go < 1. 

t~ The parameter u is defined by the invariants of the Lorentz group 

L 2 M 2 .2 v 2 1 L . M  = " - = l p -  - , - l o p  

where Jo is the lowest spin of representation. 
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These currents satisfy current algebra, give approximately the correct mass spec- 
trum of the observed baryon resonances and describe correctly the known electro- 
magnetic form factors. In particular, these currents supply, up to now, the only ex- 
planation of  the dipole fit of  the nucleon form factors GE= GM/tJ = (1--q2/m2) 2 

by relating it to the spectrum of the baryon resonances. 
Since the explicit construction of  these currents is quite involved we prefer in 

this note, as a preliminary study, to discuss a slightly less realistic but simpler model. 
This simpler model incorporates many of  the essential properties of  the correct cur- 
rents and has the advantage of  yielding directly transparent results. 

In our model, internal symmetries have been neglected. It should be mentioned, 
however, that any of  the currents constructed on the basis of  an infinite component 
wave equation excites the nucleon only to non-exotic states. This very general pro- 
perty, shared by all such models, can in principle be tested since it implies relations 
among the structure functions of  electron and neutrino scattering. Such tests involve, 
however, the knowledge of  strangeness changing parts in neutrino proton scattering 
and therefore will remain out of experimental reach for quite some time. 

The same remark certainly holds for any model in which only resonances in the 
s-channel  are exchanged [4,5], since resonances are, as much as we know, non-ex- 
otic * 

At first sight the wave equation is a typical example of  a resonance model for the 
structure functions. Closer inspection of  the results shows, however, that every pro- 
perty finds a straight-forward interpretation in terms of  the parton picture of  deep in- 
elastic scattering processes. The reason is that the wave equation as a generalization 
of  the Schr6dinger equa'tion retains a typical two body character. 

The lesson learned by the study of  this model points ways for possible modifica- 
tions which have to be done with current wave equations in order to permit them to 
incorporate the typical many parton-aspects necessarily present in elementary par- 
ticle collisions. In our discussion we have concentrated completely on the good as- 
pects of  infinite component wave equations. The deseases which are brought along 
by the locality of  the fields occuring together with the solubility of  the model, like 
space like solutions and states of  negative norm, have been thoroughly discussed in 
the literature and will not be mentioned here [19]. Fortunately, electron proton 
scattering measures only the form factors of  resonances with positive m 2 at negative 
q2. It is exactly in this region that wave equations appaer to provide excellent fits to 
experimental form factors [13]. 

2. THE MODEL 

We shall employ a generalized form of the relativistic wave equation o f  the H 
atom. This equation was proposed first some time ago as a possible relativistic exten- 

* The author thanks M. Gell-Mann for bringing this point to his attention. 
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sion of  the non-relativistic SchrOdinger theory [ 15 ]* and has since then been the ob- 
ject of  several studies. In particular, several attempts were made to understand the 
relation of  this equation with other relativistic models, like Bethe Salpeter [16] and 
quasi-potential equations [ 17]. 

Consider the Hilbert space generated by applying an equal number of  creation 
+ 

operators a r and b+r(r = 1,2) to the vacuum 10). On this Hilbert space a Lorentz inva- 
riant wave equation can be writen down in the form 

L(p) u(p) ==-[-(m +-m_)pu F u + (p2-m +m_)L46 + ~ ] u(p) = 0 , (1) 

where 

F 'u = (L56, Li6 ) , (2) 

and Lab are part of  the 15 generators of  the group 0(4,  2) satisfying the commuta- 
tion rules 

--1 --1 --1 ) 
[Lab' Lac] = - igoaLbc ' gab = --1 1 1 (3) 

All generators can be written down in terms of  the operators a and b (see appendix 
A). In particular L56 is diagonal and counts the number of a and b operators: 

L56 = ½(a*a+b+b)+l . (4) 

Eq. (1) is invariant under Lorentz transformations generated by Li/, Li6. Thus, the 
spinors u(p) can be constructed by Lorentz boosting a spinor at rest u(0): 

u(p) = e -i~iLi6 u(0) , ~ = arsh Iplp . (5) 
m 

These spinors at rest satisfy the equation 

[ -  (m+ m_)  m L56 + (m2-m+m_) L46 + ~] u(0) = 0 . (6) 

As long as (m+-m_)m is larger than m 2 - m + m ,  this equation can be diagonalized 
by a transformation (a so called "tilt operation") 

-iOL45 
u(0) = e ~'(0) , (7) 

* It was proved that in the limit of weak coupling a ~ 0, which slows down the orbital motion 
to non-relativistic velocities, all form factors become the same as those of the Schr6dinger 
e~uation. 
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with 

ch0 = b(m2~)) (m+-m_)m, sh0 - b(m2)(m2-m+m ) (8) 

where the factor b(m2)/t¢ is introduced in order to get the normalization right: 

ch20_ sh20 = ( b ( m 2 )  )2 (m2-m2_)(m2-m2) = 1  (9) 

which can be achieved by choosing 

b(m2) - [(m2-m 2)(m2-m2)]-~- . (10) 
K 

Under the transformation (7), eq. (6) goes over into 

~(m 2) ~'(0) - b(~n2) (L56 - b(m2)) ur(0) = 0 , (11) 

which is solved by the basis states 

]Pqfiq~> = [P!q!~!~t!] -~ a+l p aeCq ht~ b~ ~ [0>, p+q : fi + 2 ~2 

on which L56 has the eigenvalue ½(p + q + ~ + ~) + 1 - n with masses given by the 
solutions of 

n = b(m 2) , n = 1 ,2 ,3  . . . . .  (12) 

For (m+ - m )  m< m2-m+m_, one can rotate eq. (5) into 

~ ) ( - _ - +), (14) + ~  L46+K ~(0) = 0 , K/f)(m2)--X/~(m 2 m2)(m 2 m 2 

if one uses the angle 0 determined by 

c h 0 -  b(7  2) (m2-m+m_) ,  s h t ) -  ~(m2)(m+-m ) m .  (15) 

Here the eigenstates of L46 with the continuous eigenvalues ~ ~ [_0% oo] provide a 
solution. The corresponding continuum of masses is given by 

h = - •(m 2) (16) 
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The mass  s p e c t r u m  can be  s u m m a r i z e d  b y  squar ing  (12)  and  (16) .  One f inds  

n 2 - tc 2 

(m2 m2+)(m2 m ~  (17)  

w i th  discre te  values of  n2~> 1 and  a c o n t i n u u m  of  n 2 ~  < o a l lowed,  par t  o f  whic t r  is 

spacelike (see fig. 1). 

The  masses are d iscre te  b e t w e e n  the  values m 2_ and  m+ 2. Above  and  b e l o w  there  

is a c o n t i n u u m .  The  s ta tes  o f  the  relat ivist ic  H a t o m  are o b t a i n e d  b y  choos ing  the  

specific values 

+ m e  _ + r n  , • = 2e rnpm e .  (18)  m+ = mp , m = - mp e 

Then  t h e n  the  mass  s p e c t r u m  b e c o m e s  

mpm c ot 2 
m = m+ + O(~ 4) (19)  

n m+ 2n2 

at the  uppe r  b r a n c h  and  a c o n t i n u u m  above  m+. Besides this  the re  is a lower  b r a n c h  

o b t a i n e d  b y  changing  m e ~ - me. These  s ta tes  can be  i n t e r p r e t e d  as b o u n d  s ta tes  o f  

p r o t o n s  and  e lec t rons  o f  negat ive  energy  * 

n 2 
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Fig. 1. The mass spectrum of our wave equation is shown for the following values of the mass 
parameters: m+ = 1.12, m_  = 0.4. 

* At present it is unclear how to incorporate them into a consistent field theoretic description 
of the H atom. 
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Minimal coupling of  a photon to eq. (1) provides a conserved electromagnetic cur- 

rent * jU(p',p) = - (m+-m_)F 'u  + (.p'+ p)UL46 such that 

_ 1 

<p'q.(O)lp) iv ,X  u~'(P')J~(P"P) unq') (20) 
n n 

where N n are normalization factors chosen to provide unit charge for every state. 
Going to diagonal elements o f / °  in (20) we find 

m +  - m  

N 2 = sh0 ch0 n (21) 
n n 2m 

n 

With this current our wave equation (1) gives rise to a Compton amplitude for the 
scattering of  a photon  on the ground state m l of our infinite component  multiplet .  
If  we leave out u - c h a n n e l  and seagull cor t r ibut ions ,  we have 

1 U+l(p, ) j (p , ,p  + 1 T v  = - -  q) L (p+ q) Jv(P + q'p) Ul (p)" (22) 
N~ 

The contract ion of  the currents with the polarization vectors eVJv can be writ ten in 
the form 

eV(q) J ( p  + q,q) = - ( m + - m _ )  eV(q)Fv + eV(2p + q)v L46' (23) 

At his stage it is useful to introduce a five vector [18] 

pA _ [FU,L461 ' A = 0,1  . . . .  , 4  , (24) 

and a similar polarization vector 

C A ~  [ ( m + - m  ) e  u , e ( p +  q + q ) ]  

such that (23) can be writ ten as the scalar product  --eAI'A with a metric [18]. 

( ~ - 1 - 1  ) 
gAB = --1 1 " 

Then the Compton amplitude becomes simply 

(2s) 

___L__ 1 
r = , A B  TA B =  A__B ul(P')FA L(p  + q)  FBuI(p)  " (26) 

* The states Ip> are normalized according to (p' Ip> = 2Po(2rr) 3 6(3)(p'-p). Our scattering ampli- 
tude is defined by S = 1 - (2rr)4/~(4)e~(q ') Tt~,fV(q)- 
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This expression can be calculated explicitly. For this we simply go to the c.m. frame 
and choose a c.m. energy x/~ for which 

( m + - r n ) x / s >  s - m+m 

Then L(p + q) can be diagonalized by writing it in the form 

1 =i0sL45 1 eiOsL45 ~ T s a r s ) T s  1 (27) 

L(p + q) Z'(s) 

with 0 s given by eq. (8) and rn replaced by x/s. Here we can insert a complete set of  
intermediate states 

fin(O) ~+(0) = 1 
n 

such that TAB becomes 

(28) 

TAB - N~I b(s)g ~n u+I(p') FATsUn(O)~;(O)TslFBuI(P) " (29) 

This expression is evaluated in two steps. First one defines the five-vector of the pro- 
ton: 

X A = b (m2)[ (m+-m_)p  u ,m2-m+m_] , b(rn~) = 1 , (30) 
K 

with 

X 2 = xAxA = 1 , 

and notices that due to the wave equation (1), XAPA ul(P)  = ul(P).  Therefore one 
finds 

x '~x~rAa-  N~ ~ " l iP ~ s Un(O) (O)~Ju~ (p) 

b(s) 23 ~G+(~ ') ~,,(0) ~ .+(O)a(~)  Ul(O)-A 
K n 

(31) 
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where we have introduced the abbreviation 

G(~) =- e i0sL45 e -i~iLi5 e -i01L45 , 

Obviously,A is just the scalar amplitude 

= 1 ul(P,)... 1 A " I ( P )  • 
N~ L(p + q) 

Second one takes the 5-trace 

309 

(32) 

(33) 

7~ A _ 1 b(s) ~ ~+:~.,iO1L45Jfi'LiSr , e-iO~L45 
"I t')~ ~ '14 ~n (0) 

w~ ~ 

n ?b(s )  Un(O) ei°sL45FA e-i~iLi5 e-iO1L45ul(O) 

(34) 

and moves the operators F A in front of ~,(0) since the scalar product [ ' .  1Mis invari- 
ant under the transformation e i~'Li5 e -t'djLlS. Thus one can write for ~.,,a= ~': 

rA A 1 b(O ~ ~ ~(0)rA a+(~) ~n(0 ) ~ .+(0)a(~) V A ~1(0). (35) 
K n 

But using the creation and annihilation representation of F A, one calculates (see ap- 
pendix A): 

rA ~l(O)~(o)r A =- r A Jo><otr ~ 

[0)(01- ½ { I1010)( 1010}+ 110101 )(01011 

+11001 )( 10011+ I10110)(01101} 
(36) 

=,¢i) _ ~?(2) 

where p(n)denotes the projection onto the subspace of principal quantum number n. 
Therefore ~ t  A becomes 
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TAA = A + ~ 1 b(s)  ~ 1 

N21 K n n - b(s)  

-=A - B  . 

- -  trace [p(2) G ÷ (~) p(n)G(f)]  

(37) 

The calculation of A and B can be done according to the general method developed 
in appendix B of ref. [19]. We give here only the result for forward scattering (see 
our appendix B) 

4n  I x  - 1 )n 1 (38) 
A - 1 b(s) ~ Zb~(s)lx~-I x 2 -  1 

N 2  ~ n 

4n  [ x - 1~ n 1 . (x2 2 n x  + 2n2 1) 
B - 1 b(s) __ ~ n ~ L _ ~ ) ~ _ ~ ]  ( x 2 -  1) 2 

N~ ~: 
(39) 

where x is the scalar product of  the five-vector X A of the proton with an analogously 
defined five-vector of  the intermediate resonance 

rl A _ b(s)  [(rn+-rn ) (p  + q)t.t s - m+m ] . (40) 

In the c.m. flame X and r/s take the simple form 

~A = [chO 1 ch~-, O, O, ChOlsh~', shO 1] 

A = [ch0 s ,0 ,  0, 0 Sh0s] 

such that x can be written as 

x = chO s ch01 ch~" - shO s sh01 . (41) 

In the region st [m 2_, m 2] , the parameter x is x ~> 1 implying 

x - 1  
0 <  < 1 

and convergence of the series for A and B. We can continue the amplitude into the 
whole s plane cut from - oo to m 2_ and from rn2+ to ,o by performing the standard 
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Sommerfeld Watson nansformat ion and rewriting * 

A - 1 4 b ( s ) F i  f C dn n nl 1 
N2 -~ [_2 sinTrn n ---b(s) ( -  p)  x 2 -  1 

I 

x - 1  
- - ,  p - - - ~  (42) 

x + l '  

where the contour  C comes from n = - i oo, intersects the real axis between - 1  and 
+1, passes to the right of  the pole at n = b(s) and then runs up to n = i oo. The phase 
of ( -  p) has to be taken between - 7r and 7r. For  B we have to mult iply the integrand 
by  

(x 2 - 2 n x + 2 n  2 -  1) ~ (43) 
x 2 -  1 

In this form, the discontinui ty across the right hand cut is readily evaluated. One 
just notices that above and below this cut, b(s) is purely imaginary with the values 

b(s+) = + i D(s) . (44) 

Therefore chO s and shO s are 

chO s = + i s h ~  , 
+ 

shO s = +- i c h ~  , 
4- 

and also x is purely imaginary 

(45) 

x = -+ i ( sh~  chO 1 ch~ - chO s shO1) (46) 

As we consequence we find that A ( s )  can be writ ten in the same form as A(s+) ex- 
cept that the contour  of  integration passes to the left of  the pole at n = i b(s). In the 
difference A (s+) - A  (s_) one can contract  the contour to a circle around this pole 
and obtains 

d i s c A ( s + ) -  1 4b(s) rrb(s) t_p)b(s )  - 1 (47) 
N2 K sin 7r b(s) t x 2 - 1 

* Notice that  A can also be wri t ten in form of  hypergeometr ic  funct ion 

1 b(s) 4 1 F ( 2 , 1 _ b ,  2 _ b , X - 1  A 
2 1 - b  T -i) " 

The corresponding expression for B is slightly more  complicated. 
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The formula for B contains just one more factor (43) evaluated at the pole n = i b(s): 

discB(s+) - 1 4b(s) rib(s) 1 1) 2(x  2 _  1 - 2 b ( x - b ) ( 4 8 )  
2 K sin 7r b(s) ( -  p)b(s) ( x 2 -  

N 1 

With these results it is just a matter  of  kinematics to determine the structure func- 
tions of  the scattering of  an electron on the ground state m 1 -= m of  our infinite 
multiplet .  

3. IDENTIFICATION OF THE STRUCTURE FUNCTIONS 

If the forward Compton amplitude is expanded in the form 

quqv 1 pq pq 
uv m2 (Pu ~ q2 qv ) T = - (guv ~ ) Ti + - -  - qu ) (Pu - - -  T2 (49) 

then the standard definit ion for the dimensionless structure functions is * 

= i ( 5 0 )  WI, 2 - 2 ~  Im T1,2 ~-~-n disc T1, 2 • 

We now show how to determine F 1, T 2 in terms ofXAk B TAB and TAA. 
Let us expand TAB in the most general covariant basis: 

TAB = H1 )~AkB + H2 17A~B + ½ H3(kA~B + kB1)A) + H4 qAB " (51) 

Current conservation reduces the number of independent  amplitudes to two. Con- 
tracting our current 

jU(p + q,p) = _ (rn+-m) F u + (2p + q)U F 4 , (52) 

with qU we find 

quJ u (p + q,p) = - (m+-m_) qu pu + qu (2p + q)U pu (53) 

* With the cross sections sections for longitudinal and transverse photons given by 

4~2a 
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which can be written in five-vector language as 

qu jU(p + q, p) = _ QA pA (54) 

with 

QA _~ [(m+ m )qU, q (2p+q)]  . (55) 

By comparison with X A and r/A we observe 

QA = K r[ 4 - x A , (56) 

such that current conservation implies 

b~. A TAB = rl A TAB . (57) 

Inserting the decomposition (51 )we  find the two constraints on A i (x = Xr/): 

Hl(X - b) + ½ / / 3 ( 1 -  xb)  = H 4 b , 

H 2 0  - x b )  + ~ H 3 ( x  - b )  = - H 4 . 

On the other hand the expressions xA)k B TAB and TAA are the following combina- 
tions of  Hi: 

)kA)k B TAB = H 1 +H2x2 + H3x + H  4 , 

TAA = H I + H 2 + H3x + 5H 4 • 

(58)  

We can invert equations (58) and (59) and calculate H 1 . . . H 4 from ~tA~tBTAB and 
TAA : 

1 {(3x2b2_8xb+b2+4))tAXBTAB+(X21)TAA} 
U 1 - 3(x2 -- 1)2 

1 { (6x2_  1 6 x b + S b 2 + 2 ) x A x B T A B + 2 ( x 2  1)TAA} , 
H 2 - 6(x2 1) 2 

H3- 
3(x 2 -- 1) 2 

{(- 5bx + 4x(1 + b 2) - 3b)XAXBTAB+ X(X 2 -- 1) TAA } 

I {(b 2 - xb + a)xAxBT~B + (x 2 - 1) TA A} 
H4 3(x2 1) 

(60) 

(59) 
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For the calculation of  T I and T 2 in terms of  xAABTAB and TAA we simply contract 
the amplitudes Tuv and TAB with two specific polarization vectors of  photons, once 
transverse 

eu(1) = (0, 1,0,  0) 

and once longitudinal 

eu(0) = (p, 0, 0, -qo)  

in the c.m. frame where p is the momentum of the proton running along the z direc- 
tion. From Tuv one has: 

eu(1)eV(1)Tuv = T 1 ~ T T , (61) 

= _ q2T  L . 

(62) 

The same amplitudes are obtained from TAB by contracting with the corresponding 
five-vectors of  polarization: 

CA(l) = [(m+ rn ) e"(1), e(1)(2p + q)] = [0, m + -  m ,0,  0, 0] , 

EA(0) = [ ( m + -  m_)  eu(0), e(0)(2p + q)l (63) 

[(m+ ~ m_)p ,  O, O, -- (m+ - m )q O, 2pW].  

For the individual covariants 

)k A )k B ' 'q A1I B ' ~k A 'rI B ' gAB 

we obtain 

EA(1)EB(a) ~kA~, B = EA(1)EB(1) rIA1)B = EA(1)EB(1) ~,ArlB = 0 , 

EA(1 )EB(1 )gAB = -- (m+-- m_)  2 , 

(64) 
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such that 

T T = - ( m + -  m_)2H4 . (65) 

The longitudinal part  is more complicated since all ampli tudes/ / i  contribute. From 

c A ( 0 )  x A = _ 2 p w N  H , 

EA(0) r/A = - . 2pWib ( s ) [N~+s~  m2] , (66) 

EA(0)@A(0 ) = - - ( m + - - m  ) 2 - 4 p z W  2 , 

we find directly 

(67) 

-- i N 2 b ( s ) [ N 2 + s K m 2 3 H 3 -  H4} - ( m + - m _ ) 2 q 2 H 4  . 

Expressing T L in terms of T T and T 2, the last terms drops out and we obtain for T 2 

[ '7? T2 = 4m 2 {A~I H1 _/~2 N~ + H 2 (68) 

- i N~ i(s) [N~ + ~ ]  H3 - H4} . 

For large energy, b(s) ~ K/s such that (68) simplifies to 

T 2 . . . .  ,4m 2 {A~I H 1 - H2+ 4 - iN~H3} (69) 
$- - -~  0o 

The same results hold for the structure functions W T and W 2 if one replaces H i on 
the right-hand side by 

_ i disc H/ 

which are determined from (60), (31), (37), (47) and (48). 

4. THE STRUCTURE FUNCTIONS IN THE SCALING LIMIT 

Let us now consider our result in the scaling limit (S.L.) 

q2 
u ~ ~ ,  q2 _~ oo, ~ - 2mu - fixed 
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Then x has the form: 

q2 

x = i  
K L 2rap sh01J 

sh01 /  U~ ) ,  

s£ 
i.e. it stays finite! From (47) and (48) we see that 

i 4  1 
disc A (s+) ~ disc B(s+) 

S.L. S.L. N~ s x2 _ 1 

Hence 

disc kAx  B TAB "--* i 4 1 
S.L. N~ s x 2 - 1 

l a  A ~ 0 . disc 
S.L. 

Eqs. (60) tell us: 

disc ' ~ t 

/ 4 

3(x 2 - 1) 3 

x2+1 
(x 2 -- 1) 2 

7 /  8x 
3(x 2 -  1) 2 

1 

3(x 2 -  1)' 

disc )kA X BTAB . 

Hence that we obtain the results: 

.__. 1 1 1 

WT S.L. S nN 2 ( m + - m )  2 3(x2 - 1) 2 , 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 
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4m 2 
W2 ~--s--g- 

S.L 
{N~ ~-N~12 4x2+i~x}  - -  

(x2 _ 1)3 
(76) 

The standard scaling functions are defined as 

F T ~- lira W y , 

S.L 

~ - - - 1 ~  -v w 2 . 
m 

S.L. 

(77) 

According to (75) and (76) they have the properties 

F T  = 0 , 

8 
F2 - 3rr 

1 {N~ - N I 2  x 2 + 2ix} 
(1 - x 2 )  3 

(78) 

The vanishing of  the transversal structure function F T is characteristic for boson tar- 
gets. 

In order to display the behaviour of  T 2 as a function of  ~ we rewrite (1 - x 2) as 

U~ 2 

(79) 

= (1 - ~ ) 2  [ch201 ~ 2 _  2~ [1 + sh01N~] + 1 +N~I ] ~-(1 - ~ ) - 2 D ( ~ )  , 

and the factor in curly brackets in the form 

(1 IN (1 + NT1 2 sh201( - sh l ) 2 - t 
= (1 -- ~,)-2N12(shO1-N~)2 ~2 = (1 - ~)-2 ,~2 C . 

( 8 0 )  

Then F 2 is simply 

8 
F2(~)  = 3 7  C ~2(1 - ~)3 D-3(O ( 8 1 )  

Since D-3(1)  is finite, this result has the threshold behaviour a (1 - ~)3 at ~ = 1 
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showing the Drell-Yan relation with the dipole shape of  the elastic form factor [13] : 

4 1 
- - 2 ( 8 2 )  

GE (1+  x) 2 (1 ch201 q2)  

4m2 , 

At ~ = 0, F2(~) vanishes quadratically in ~. The maximum o f F  2 is found pretty close 
to the minimum of D. By writing D in the form 

m +  - m _  ] 2  
O = c h20 (~ -  ~0 )2 + ( ~ ] (83) 

with 

re+m_ ) 
~0 = ~ 1 + m---~--- (84) 

we see that F2(~) peaks at the right or left half of  the interval according to whether 
m+ and m have equal or opposite signs. 

This property of  the solution can easily be understood on physical grounds. Let 
us remember that our equation is a generalization of  the Schr~Sdinger equation of  
two particles of  masses rn_ = m+ - m_ and m e = m+ + m with the photon coupling 
only to the constituent o~mass m e.The average momentum of the constituent m e 
will be roughly a fraction me/m + of the total momentum p. In the patton picture, 
a constituent of momentum xp contributes to F2(~ ) in the form 

( q2) 
F2(~ ) = _v 6 v - = ~ ~(~ - x )  m ~ 

(85)  

l f f (x)  denotes the probability distribution for finding the constituent at momentum 
xp then 

F2(~) = ~f(~) (86) 

our "par ton" of  mass m e will have a distribution f (x)  peaked roughly at me/rn +. This 
is about the same result as that we have found in (84). In fact 

m 2 + rn 2 _ m 2 
• p 

~0 = 2m 2 
(87)  

becomes exactly equal to me/m + for binding energies small compared to m e and 
mp. 
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The resulting curves are displayed in fig. 2 for several values of  m+, m_.  A typical 
set of  parameters 

m + = ½ x / ~  ~ l . 1 2 , m  = 0  

g i v e s  

K = 1, ch01 = V ~ ,  sh01 = 2, 

C =  25 ~ ,  D = 5 ( ~ 2 - ~ + ~ )  , 

o r  m e = m p  = 0 . 5 6  ( 8 8 )  

) 

(89) 

25 

26 

1.5 

I0 

05 

o 05 l.o 

Fig. 2. The  s t ruc tu r e  f u n c t i o n  F 2 (~) o f  our  m o d e l  is d i sp layed  for th ree  typ ica l  values  o f  the  

mass  pa ramete r s :  1) m e = 0.76,  m p  = 0 .36  or m +  = 1.12, m = + 0.4;  2) m e = m p  = 0 .56  or m+  = 
1.12, m = 0; 3) m e = 0 .16,  m 0 = 0 .96  or m+  = 1.12, m = - 0.8. Our  curves  hfive the th resho ld  
b e h a v i o u r  (1 - ~)3 for ~ ~ 1. We see t h a t  for  decreas ing  mass m e o f  the  charged  c o n s t i t u e n t  the 

peak  m o v e s  le f t  and  the  area decreases.  In the l imi t ing  case o f  the H a t o m  me/m + ~ 10 - 3 ,  F2(~)  
shows  a h igh  and na r row p e a k  at  smal l  ~ ~ me/rn +. F o r  c o m p a r i s o n  we show the s t ruc tu r e  func-  
t ion  of  the  Majorana  e q u a t i o n  of  ref. [6]. ( - .  - .  - )  and the e x p e r i m e n t a l  F 2 (~) o f  the p r o t o n  

( - -). 
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such that 

2 I~2( 1 _ ~)3 1 
F2 - 45~ (~2 _ ~ + ~ ) 3  

(90) 

It has the maximum almost at ~ = 1 of high F2(½ ) ~ 1.8. If one takes a somewhat 
smaller m e by choosing 

m+ = 1.12, rn = - 0 . 8  

K = 0.303 

o r  m 
e 

= 0.16, mp = 0.96 , 

ch0 t ; 6.34, sh01 -- 6.27, N~ = 0.174 , 

one obtains 

C = 214 , 

D = 4 0 . 2  ~ 2  _ 4.18 ~ + 1.03 , 

which peaks around ~ ~ 0.1 with a value F 2 ~ 1.26. 
If we compare these results with the experimental structure functions of the pro- 

ton we see that 
(i) The threshold behaviour at ~ ~ 1 agrees with experiment since the form fac- 

tors have the correct falloff in t. 
(ii) The longitudinal to transverse ratio is opposite to what is observed experi- 

mentally. 
(iii) The zero at small ~ is wrong. Experimentally F2(~ ) seems to become constant 

0.25 for small ~. 
(iv) The size o f F  2 is too large by a factor at about 3. 
The failure to reproduce the longitudinal to transverse ratio is well known to 

come from the integer spins contained in our model. This defect will certainly be ab- 
sent in the realistic model of currents. 

The zero at ~ = 0 is also observed in the structure functions of the other three 
infinite component  wave equations. In the patton model there is always a zero if the 
probability P(N) of having N constituents falls faster than N -2. Therefore in order to 
explain the experimental fact F2(0 ) ~ 0.25, parton people are forced to invoke the 
presence of a cloud of quark-antiquark pairs inside the nucleon following a distribu- 
tion PN ~ C/N2" Our wave equation obviously remembers that it is just a generaliza- 
tion of a non-relativistic two body problem. 

What is the way to correct these defects of the model? When particles described 
by a wave equation based on a representation space of 0(3,  1) turned out to be hol- 
low, we had to introduce mixtures of such representations to construct bulk objects. 
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This was done by  going to a larger group, 0 (4 ,  2), which accommodates radial wave 
functions in a natural manner analogous to the H atom. The resulting particle turns 
out to be still a relativistic bound state of  two constituents. Experimental ly there 
are consti tuents of  very low mass present in a baryon.  Therefore the straight-forward 
generalization of  our equation will consist in mixing solutions for many low mass 
constituents. There should again be a larger representation space taking care of  such 
mixtures in a natural manner by introducing a new quantum number describing the 

consti tuent  distribution on the mass axis. Analogously to the radial quantum num- 
ber characterizing the radial mixtures this quantum number could be called "massal", 
One should study the structure functions in wave equations written down on such 
larger representation spaces containing such a massal quantum number. This type of  
procedure would presumably also provide the cure to the exaggeration of  size of  F 2. 
We can see from our fig. 2 that by decreasing me/m + the peak not  only moves left 
but  the area under it becomes smaller by the same amount.  The reason is that,  in the 
parton approximation,  f ( t )  = F2( t ) / t  is a normalized probabil i ty  distribution for 
finding the parton of  mass m e in a state of  momentum tP. Clearly, a peak in F2(t  ) at 
lower t0 goes along with an area proport ional  to t0- Thus, composing the proton 
predominant ly  out of  small mass partons will necessarily depress the f l F 2 ( t ) d  t 
which is experimentally -~ 0.16. 0 

4. DEEP INELASTIC SCATTERING OF ELECTRONS WITH HYDROGEN 
ATOMS 

Our result allows us to compute the amplitude for the process 

e + H ~ e + e - + p  

with the virtual photon  being absorbed by  the electron in the H atom. Since the 
form factors fall off  very fast in q2, on a momentum transfer scale o f q  2 ~ ½c~2memp, 
the amplitudes will be very small in most of  the deep inelastic region and therefore 
not be measurable. The structure function F 2 is obtained by  inserting * 

= + m  m = - m p + m  e , N~ 1 m+ mp e ' - ~ c~ ' 

m+ m+ (91) 
c h 0 1 ~  , s h 0 1 ~ -  , 

OOq7 
e e 

into our formula (81): 

* The ~ sign denotes an approximation to lowest order in c~ 2. The result contains no assumption 
on the smallness of me/m p. 
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8 1 (mp~ 2 ,e2( 1_~)3 F(m+~2(~ mel2+(mp~2~ -3 
F2(~) - -  - -  - -  . ( 9 2 )  

37r ot \ m e /  L\-~ee I m + l  \m+lJ 
We see that F 2 is extremely sharply peaked at very small values of  ~ ~ me/m + ~ 10 -3. 
There it takes a considerable size 

3rr ct mp 

However, the width of  this peak is only 

(93) 

o 0 ~ / m  
A ~  ~ 1 e p ,~ 10_ 5 

which makes it hard to resolve it experimentally. 
Also this result can easily be understood in terms of  the parton picture The wave 

function of  the ground state electron in the atom is given by 

t~100 ( p , )  _ V ~  1 _ memp 
7r ,.-['P~]2 + 1 7 2 '  11= rn+ ' (94) 

L~, c~u I _J 

where p* is the momentum of the electron in the c.m. frame. The normalized proba- 
bility of  finding the electron in a state of  longitudinal momentum p~ is obtained by 
integrating I V h 2 over all transverse momenta p~: 

P(p~) = f d2p'~ , I~lO0(P*)12/(oqa)2 

(95) 
8 1 

Consider the atom at a very high momentum. Then the longitudinal electron mo- 
mentum is the following fraction of  the total momentum p: 

me(") 
pe ~ - -  1+ p[" p =- xp • 

m+ m e 
(96) 

Therefore 
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Inserting this into P(p~) and multiplying by a factor m2/mempa we obtain the nor- 
malized probabi l i ty  distr ibution for the different x values 

2 m 2 2 (  me /2  1]_3 
m+ 8 I (  } (98) 

f(x) - °~memp 3rr L\~mpempl ~X ~++] + , 

leading to an F2(~) = gf(~) of  

2 
8 1 m+ 

b2(~) - 3rr o~ mere p 
Imp'6 ~(m+12 (~ m e t 2 + ( m p } 2 1 - 3  

This F 2 is almost exactly the same as the one obtained before.  It has an extremely 
sharp peak centered around me/m + with a peak value 

8 1 m+ 

37r c~ m p 

It differs from our exact formula only where it is extremely small. 
Consider the contr ibut ion to the scattering caused by the coupling of  tile photon 

to the proton.  It is obvious that in the H atom this coupling will be associated with 
a distr ibution fP(x)  and a structure function F~(x) which are obtained from (98), 
(99) by substituting m e +~ rap. This structure-function has a sharp peak at 

m m 
~ P  = 1 - ~ e  ~ 1 

Fr/+ /7/+ 

due to the fact that the proton is a parton carrying almost the whole total momen- 
tum. The width of  the peak is the same as for the electron since the wave function 
has the same spread in momentum space, The peak height is much larger, though, by 
a factor Ofmp/m e since F(~)/~ =f(~)  is normalized to one. In fact, this peak is ob- 
servable in electron scattering on a hydrogen target and is usually referred to as the 
elastic peak t .  

5. CONCLUSION 

The model we have studied seems to provide an interesting link between the par- 
ton interpretat ion of  the structure functions and the models based on resonances ex- 
changed in the s -channel .  While the explicit  form of  our amplitude has the charac- 
teristic s - channe l  resonance form, the parameters in it can be interpreted in terms 
of  constituents.  Defects of  the model  and their cures are strongly related to the cor- 
responding problems in the parton model.  With respect to the models based on wave 
equations of  the Majorana type,  we have been able to improve on the threshold be- 

f If one corrects for the proton form factor. In order to avoid confusion we should remind the 
reader that the true experimental elastic peak does not survive the scaling limit due to the form 
factor of the proton. In the SchriSdinger theory of the H atom the proton is treated as a point- 
like constituent with the observed electromagnetic structure coming entirely from its orbital 
motion, so that there the elastic peak is finite in the scaling limit. 
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haviour for ~ ~ 1 since our equation gives a proper  description of  the fall off of  re- 
sonance form factors or of  the momentum distribution of constituents. The rapid 
vanishing o f f  2 in our model  for small ~ and its large size have been shown to be re- 
lated to the lack of  the wave equation to provide for a mixture of  consti tuents of 
many different low masses. While parton models have to invoke core clouds of  
quark anti-quark pairs, the approach via wave equations needs an additional quantum 
number describing the parton mass content  in every state. In the resonance picture 
such a quantum number amounts to introducing a richer spectrum of  particles with 
faster growing multiplicities than those contained in our model. 

We hope that the construction of  a new wave equation on the representation 
space of  a larger group which accommodates  such a quantum number in the desired 
form will be feasible. Such an equation would be a considerable improvement over 
presently known equations which all describe at heart  a relativistic two body  pro- 
blem. 

The author wishes to thank Richard Brandt, M. Breidenbach and Murray Gell- 
Mann for many enlightening discussions on scale invariance 

APPENDIX A: THE REPRESENTATION SPACE 

The representation space for our infinite component  wave equation is build up 
by applying an equal number of  spin ~- creation operators a t  and br? to the vacuum 
state 10>: 

1 +p + q . + ~ . + ~  
Ipqff~> =- [p!q!~!~!] -~  a 1 a 2 o 1 02 10), 

On these states the operators 

Li/ -- ~(atoka + b~fOk b) - Lk , 

Li4 - l ( a t o f l -  b to ib  ) , 

Li5 - ½(atoiCb? - aCoib ) , 

L45 = ( a t C b *  - a C b )  , 

Li6 = ~i(atoiCb t + a C o ~ )  , 

L46 = ½(a?Cb t +aCb)  , 

L56 = ~(ata+ b i b ) +  1 , 

p + q = p + q  . (A.1) 

C - io 2 , 

(A.2) 
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form an irreducible representation of  the group 0(4,  2), the group of  orthogonal 
transformations in a space with the metric 

g ( - 1 - 1 - 1 - 1  1 1 ) = . ( A . 3 )  

Their commutation rules are 

[Lab Lac] = - t'gaa Lbc . (A.4) 

The operators L3, L34, and L56 are diagonal with eigenvalues ½ [p + fi - q - ~] ,  
½ [q - p  - ~ + p] and 21 [p + q + fi + ~] + 1, respectively. In analogy to the H atom, 
one can also introduce the so called hyperbolic quantum numbers nl, n2, m defined 
by L3, L34 and L56 having the eigenvalues rn, n l - n  2 and n I + n 2 + lm I + 1, i.e. 

t ln2 + m, nl, nl + m, n m >J O 
Inl n2 m ) - In 2,n 1 - m , n  1,n 2 - m )  m<<,O . 

(A.5) 

Notice that in spite of  this analogy there is no unitary transformation connecting 
these states In 1 n 2 m)  w]th the hyperbolic bound states of  the H atom. The reason is 
that our states form a complete Hilbert space while the hypbrbolic bound states are 
just part of  the Hilbert space of  the H atom. In fact, our wave equation accomodates 
both, the bound and the continuum states on the same Hilbert space ]n l n 2 m ) b y  
employing the non-unitary tilt operation e i°nL4s. The non-unitarity comes from the 
dependence of  the tilting angle on n ! 

The states A are the solutions of  the tilted wave equation with a mass given by 
b(m 2) = n = ½ (p + q + fi + ~) + I = 1,2,  3 . . . .  Therefore we can identify 

ffpqT) ~ (0) =- I p q ~  ) ,  p + q = p + q (A.6) 

In the text we have simply written ~n(0) leaving just the index characterizing the 
mass and omitting the degeneracy labels. 

APPENDIX B: CALCULATION OF A AND B 

In sect. 2 we have obtained simple expressions for the invariant amplitudes 
)t A XBTAB and TAA. By employing the basis decribed in detail in appendix A, eq. (31) 
can be written as 

1 b(s) ~ 1-b(s) (OlGt ( { ) [pq~  [G(~)I0) (B.1) A ~--x'AXBTAB- N~ K pq~O n -  
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where it is unders tood  that  p + q =- p + q and n = ~(p + q + fi + ~)  + 1. Similarly we 

can rewrite B,  f rom (37), in the form 

B = - 2 N ~  K p @ ~  n - b(s) [ (10011G+(~ ' ) lpq~)(pq~q-qG(~) l lO01)  

+ (0110 [G .+(~ ' ) [pqp cT)~pq~ ~G(~)L011 o> 

+ (1010 lGt(r~ ' ) Ipq~q3<p@O IG(~)ll 010) 

+ 10101 IGt (r, ' ) hp@q3~oq~O IG(r,)l0101)] . 

03.2) 

For  forward scattering, ~' = ~ and we can choose b o t h  p ro tons  to run in the Z direct ion.  

Then G cannot  change the quan tum number  m = (p + fi -- q - ~) /2  and for fixed n, 

the sum in (B . I )  ex tends  jus t  over states of  the form In 2 n 1 n 1 n 1) with n 1 = 0, 1 ,2 ,  
• . .  n - 1 and n 2 = n - 1 - n 1. In B we see f rom rotat ional  invariance that  the first 
two and the second two terms are equal  among each other.  In the first te rm,  m = 0 

and the in te rmedia te  states are the same as before .  In the third term all in te rmedia te  

states have to be rn = 1. They can be wri t ten  in the fo rm In 2 + 1 n 1 n 1 + 1 n 2) wi th  
n 2 = n - 2 - n 1. Thus we are left  with the evaluat ion of  the fol lowing mat r ix  ele- 

ments:  

n l = O , . . . , n -  1 

n 2 = n -  1 - n  1 

23 
n l = 0 , . . . , n -  1 

n 2 = n -  1 - - n  1 

t(01G(~')ln 2 n 1 n I n2)12 

1(1001 LG(~')In 2 n 1 n 1 n2)i2 (B.4) 

n l = 0 , . . . , n - 2  

n 2 = n -  2 - n  1 

I(lOlOIG(~.)In 2 + 1, n 1 n I + 1, n2)J 2 (B.5) 

Thanks to the s implici ty o f  the representat ion space, these mat r ix  e lements  o f  finite 

rota t ions  in 0 ( 4 ,  2) can all be expressed in terms of  the ro ta t ion matr ices  of  O(2,  1). 
For  this one first simplifies 

• ,.L -i~Lss -iO~L~s 
G(~) = e '°~"~ e e (B.6) 
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by bringing it to Euler angle form 

-io~L34 -i3L4s -iaL34 
G(~) = e e e (KT) 

The relation between the angles a, 3, 3' and Os, ~', 0, is obtained by using the fact that 
L45 , - L35 and L34 commute just like ~iol, ½i(~2, and ½03 and one can do the calcula- 
tion by using these specific two by two matrices. In this manner a direct comparison 
of  (B.6) and (B.7) yields 

cos ½(a + 3`) = ch ½(0 s - 01) ch ½~'/ch {-/3 , 

sin ½(a + 3') = - sh ½(Os+ 01) sh ½~'/ch 3/3, 

cos ½(a 3') = - sh 1(0 s -  01) ch½~'/sh {-3 , 

sin ½ ( a -  7) = -- ch ½(Os+ 01) sh ½~'/sh 3/3 , 

(K8) 

which can be solved for a,/3, 7 as 

sin a = - ch01 sh~'/sh/3, cos a = [ch0 s sh01 - shO s ch01 ch~']/sh/3 , 

sin 7 = chO s sh~'/sh/3, cos 7 = [ -  sh0 s ch01 + ch0 s sh01 ch~']/shl3 , (B.9) 

cSh½/3/ = [½(ch0 s ch0 ch~" - shO s sh0 T- 1)] ~ 
h½/31 

Using our scalar product x =- XArlA of eq. (41), we see 

sh 2 ½t3 = ½(x -- l)  , 

ch 2 ½/3 = -~(x + 1) 
(B.IO) 

In the matrix elements (B.3) - (B.5) the rotations by e -ic~L34 and e- i7L34 can be 
dropped since L34 is diagonal. Only e -i3L4s remains. The method to calculate this is 
the following. The basis states of  fixed m support the representations of  two com- 
muting 0(2 ,  1) groups which we denote by M i and Ni: 

M+ ~ M I + L M 2  ~ - a 2 b  1 , +  + M_ - ~ M  1 iM 2 = _ a 2 b l ,  M3~- ( a 2 a 2 + b l b l + l )  + + 

+ + _ = ~ ( a l a l + b 2 b 2  + 1). (B.11) N+ =- N l + iN 2 =- a+b 2 ,  S =- N 1 - - i N  2=- alb 2, N 3 - 1  + + 

The eigenvalues o f M  3 and N 3 are ½(q + fi + 1) and ½(p + ~-+ 1), respectively. Applying 
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raising and lowering operators/14+ and N+, one preserves the differences [p - ~ I and 
Ip - 31 respectively. The corresponding lowest eigenvalues which completely charac- 
terize the representation are therefore } ( k / -  i l l +  1) and ½(tp - ~1 + 1). The genera- 

tor L45 can be writ ten as the sum M 2 + N 2. Since M 2 and N 2 commute,  

- i~Las -iflM2 -i f lN2 
e - e e (B.12) 

If we match this product  between two arbitrary states, 

- iflM 2 - iflN 2 
(p 'q '~ '~ ' l  e e [Pqiq)  (B.13) 

only one intermediate state can contribute:  I p ' q ~ '  I. The reason is that M 2 cannot 
change p and ~ while N 2 leaves q and i invariant. This brings (B.13) to the form: 

-- i~M 2 - iflN2 
(p 'q '~ '~ ' l  e I p ' q ~ ' ) ( p ' q ~ ' l  e I p q ~ )  , (B.14) 

which can directly be writ ten as a product  of  representation functions V k n  of the 
representations D k of  0 (2 ,  1): 

V!2(tq - p l + l )  (fl) ~ ( p  ~1+1) ( - / 3 )  , (B.15) 
½ ( q ' + ~ ' ) , ½ ( q + f + l )  3(p~ ' + ~ ' + 1 ) , ~ p + ~ + 1 ) ~ (  

where V k n  are given for rn ~> n by  

Vm k = 0  k shm-n~/3  n m n - ~ - + ~ F 2 , 1  ( k - n ' l - n - k '  1 + m - n' -- sh2-~fl) 

0 k = 1 V (m - k)!(m + k - 1) !  
mn (m - n)[ 7 ~  -~ k--~.(n + ~ Z  1)! 

( B . 1 6 )  

For  m < n we have to use ( _ ) m  - n (VT)mn" In evaluating (B.3)- (B.5)  we run only 
into the particular matr ix elements: 

1 

V 2 1 1 
n l  + 5 ~ 5  

_ sh n' ~ fl 

ch  n, + l ~ _ f l  

v ) = x/h11 + I - shn' ~ , ( B . I 7 )  
n I+ 1,1 chn1+2~/3 

Va =I/2 sh n 2 - 1  t '- ~fl (1 _ 1  sh2 ~fl) n2>~l  
n2 +~,~ chn2+ 2 ~fl n 2 
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P e r f o r m i n g  the  sums over  n,  at f ixed  n we  ob t a in  
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n l = 0  . . . . .  n - 1  

n2=  n -  1 - n 1 

n l = 0  . . . . .  n - 1  

n 2 = n - I - n 1 

t(0]G(~')] n 2 n 1 n 1 n2)]2 = n th 2n - 2~fi c h - 4  21fl 

= n (  x 1~ n - t  _ _  
~ x +  l !  

[(0]G(~')Jn 2 n 1 n 1 n2)l 2 

( x +  1) 2 ' 
(B .18)  

= n th 2n - 41~ ch-821~ [~(2n 2 _ 3n + 1) - (n - 1 )sh2½fl+n sh4½fl] , 

n l =  0 . . . . .  n - 2 

n 2 = n  - 2 - n 1 

](0lG(~')ln 2 + 1, n 1 n 1 + 1 n2)12 

= n t h  2 n - 4 ~ / 3 c h - 8 ~ 3  [6*(n 2 -  1)] . 

(B .19)  

A d d i n g  the  last t w o  t e rms  up  we f ind 

n th 2n 2 c h - 4 ~ f l  { s h - 2 ~ f l c h - 2 ½ f l  [½n (n - 1 ) -  (n - 1 )sh2~-3+ sh4½fl]} 

4 I = n ~ x ~ - l ]  ( x +  1)2 [x 2 - - 2 n x + 2 n  2 -  1] 

F ina l ly ,  inser t ing  b o t h  t e rms  i n t o  (B.1)  and (B.2)  we  arrive e x a c t l y  at t he  resul t  g iven 
in eqs.  (36 )  and (37 )  o f  sect .  2. 
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